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Abstract

Gaussian processes are a common analysis tool in statistics and uncertainty quantifi-
cation. The covariance function of the process is generally unknown and often assumed
to fall into some parameteric class. One of the scalability bottlenecks for the large-scale
usage of these processes is the computation of the maximum likelihood estimates of the
parameters of the covariance matrix. In a classical approach this requires a Cholesky
factorization of the dense covariance matrix for each optimization iteration. Recent ap-
proaches with stochastic approximations of the score equations Anitescu et al. (2012);
Stein et al. (2013, 2012) require solving linear systems only with the covariance matrix,
which is a significant improvement but continues to be a nontrivial expense. In this
work, we present an estimating equation approach for the maximum likelihood estima-
tion of parameters. The distinguishing feature of this approach is that no linear system
needs to be solved with the covariance matrix. As a result, this approach requires only
a small fraction of the computational effort of maximum likelihood calculations; for
certain commonly used covariance models and data configurations, this approach re-
sults in fast and scalable calculations. We prove that when the covariance matrix has a
bounded condition number, our approach has the same convergence rate as does max-
imum likelihood in that the Godambe information matrix of the resulting estimator is
at least as large as a fixed fraction of the Fisher information matrix. Moreover, our
approach presents additional advantages compared with the previous ones Anitescu
et al. (2012); Stein et al. (2013, 2012), namely, the preservation of an optimization
structure and the guarantee of finding global optima for covariance models that are
linear in the parameters. We demonstrate the effectiveness of the proposed approach
on two synthetic examples, one of which involes up to 1 million data points.
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1 Introduction

Gaussian processes have been widely used throughout the statistical and machine learning
communities for modeling of natural processes, for regression and classification problems,
for uncertainty quantification, and for interpolation in parameter space for computer model
output. Their widespread use is in part because they provide conceptual and computational
advantages for processes that are a function of a continuous index, and in part because they
can be used as a building block for modeling non-Gaussian processes Diggle et al. (1998);
Rasmussen and Williams (2006).

1.1 Likelihood Function and Its Computational Challenges

In most applications, the covariance structure of such a Gaussian process is at least partially
unknown and must be estimated from the available data. Assuming we are willing to specify
the covariance structure up to some parameter θ ∈ Θ ⊂ Rp, the generic problem we are faced
with is computing the loglikelihood for y ∼ N(0, K(θ)) for some random vector y ∈ Rn and
K an n×n positive definite matrix parameterized by the unknown θ. Since unknown mean
parameters generally pose far fewer difficulties than do covariance parameters, we will assume
that the mean is known to be 0 throughout this work.

The loglikelihood is then, up to an additive constant, given by

L(θ) = −1

2
yTK(θ)−1y − 1

2
log det{K(θ)}. (1)

If K has no exploitable structure, the standard direct way of calculating L(θ) is to compute
the Cholesky decomposition of K(θ), which then allows yTK(θ)−1y and log det{K(θ)} to
be computed quickly. However, the Cholesky decomposition generally requires O(n2) storage
and O(n3) operations, both of which can be prohibitive for sufficiently large n.

If our goal is just to find the maximum likelihood estimate (MLE), we can avoid comput-
ing the log determinant by considering the score equations, which are obtained by setting
the gradient of the loglikelihood equal to zero. Specifically, defining Ki(θ) = ∂

∂θi
K(θ), we

can express the score equations for θ by (suppressing the dependence of K on θ)

1

2
yTK−1KiK

−1y − 1

2
tr(K−1Ki) = 0 (2)

for i = 1, . . . , p.
The left-hand side of (2) requires linear solves with K (arising from expressions of the

form K−1x for a vector x). For large-scale problems, these can be done by using itera-
tive methods; in turn, efficiency considerations require multiplying arbitrary vectors by K
rapidly. Exact matrix-vector multiplication generally requires O(n2) operations, but if the
process is stationary and the data form a regular grid (or a subset of the grid), then it
can be done in O(n log n) operations by using circulant embedding followed by fast Fourier
transform Chen and Li (2013); for observations on an irregular grid, fast multipole approx-
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imations can be used Anitescu et al. (2012); Chen et al. (2014). If an iterative method is
used for linear solves, the number of iterations required is related to the condition number
of K (the ratio of the largest to smallest singular value), thus making preconditioning Chen
(2005) essential; see Stein et al. (2012) for some circumstances under which one can prove
that preconditioning works well. Computing the first term in (2) requires only one solve
in K; however, the trace term requires n solves (one for each column of Ki) for each i, a
prohibitive requirement when n is large.

Recently, in Anitescu et al. (2012), we analyzed and demonstrated a stochastic approx-
imation of the trace term based on the Hutchinson trace estimator Hutchinson (1990). To
define it, let u1, . . . ,uN be iid random vectors in Rn with iid symmetric Bernoulli compo-
nents, that is, taking values 1 and −1 with equal probability. Define a set of estimating
equations for θ by

gi(θ, N) =
1

2
yTK−1KiK

−1y − 1

2N

N∑
j=1

uTj K
−1Kiuj = 0 (3)

for i = 1, . . . , p. In Stein et al. (2013), we showed that if K(θ) is well-conditioned, then one
can estimate θ with nearly the same statistical efficiency as the exact maximum likelihood
estimates with fairly small values of N (N ≈ 50 often appears to be adequate). In Stein
et al. (2012) we showed that optimal preconditioning is achievable for certain classes of
Matérn kernels, in the sense that the preconditioned matrix has a bounded condition number
independent of the number of observations. Subsequently, we extended this approach to
observations on an irregular grid Chen (2013).

The approach (3) ensures that the number of vectors x for which one needs to compute
K−1x is small and that the number of matrix-vector multiplications needed to solve these
linear equations with an iterative method is also small. Nevertheless, if K is dense, then each
matrix-vector multiplication is generally an O(n2) operation. We have demonstrated faster
calculations, O(n log n), for the cases of regular grid and irregular grid in Chen and Li (2013);
Chen et al. (2013a) and Chen et al. (2014, 2013b), respectively, by using the aforementioned
fast Fourier transforms and fast multipole approximations. The demonstrated calculations
scale to matrices of size up to n = 109 on O(103) CPU cores with good parallel efficiency.

The combination of these results Anitescu et al. (2012); Stein et al. (2013, 2012); Chen
and Li (2013); Chen et al. (2013a, 2014, 2013b) has allowed us to scalably perform the
overall Gaussian process analysis for up to O(109) data points. We have developed a soft-
ware package ScalaGAUSS (available at http://press3.mcs.anl.gov/scala-gauss/) that
implements this development in two versions, one written in Matlab and one in C++.

1.2 Comparison with Other Approaches

Several other approaches have been developed to accommodate the computational bottle-
necks of carrying out the maximum likelihood calculations for the loglikelihood function
(1).
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Along the vein of our previous work, Anitescu et al. (2012); Stein et al. (2013, 2012);
Chen and Li (2013); Chen et al. (2013a, 2014, 2013b), one can approximate log(det(K)) =
tr(log(K)) by using a power series approximation to logK followed by a stochastic approx-
imation of the trace Zhang (2006). The examples presented by Zhang (2006) show that the
approach does not generally provide a good approximation to the loglikelihood, however.

Several other approaches have been proposed for approximating maximum likelihood
estimates for large-scale Gaussian processes. However, as opposed to the algorithms based
on (3), the approximations generally cannot come arbitrarily close to the exact maximum
likelihood estimates. Spectral approximations of the likelihood can be fast and accurate for
gridded data Whittle (1954); Guyon (1982); Dahlhaus and Künsch (1987), but they have
difficulty at increasing dimensions; and the performance of such methods is less attractive
for ungridded data Fuentes (2007).

Low-rank approximations, in which the covariance matrix is approximated by a low-rank
matrix plus a diagonal matrix, can be efficient computationally Cressie and Johannesson
(2008); Eidsvik et al. (2012), but they work poorly if the diagonal component of the covari-
ance matrix does not dominate the higher frequency variations in the observations Stein
(2008).

Covariance tapering replaces the covariance matrix of interest by a sparse covariance
matrix with similar local behavior Furrer et al. (2006). However, the tapered covariance
matrix must be very sparse for computational efficiency, which in turn affects the method
accuracy Stein (2012).

Composite likelihood methods Vecchia (1988); Stein et al. (2004); Caragea and Smith
(2007) based on conditional Gaussian decompositions and approximations can in principle
approach the maximum likelihood estimator. To increase the accuracy, however, one must
condition on large data subsets, an action that again requires Cholesky factorizations of large
covariance matrices.

1.3 This Work

While the approach based on sample average approximation (3) has allowed us to solve
scalably large parameter estimation problems for Gaussian process, it still presents several
difficulties. The approach is based on nonlinear equations for which it is hard to guarantee
that we can find a solution, as opposed to finding at least local minima of optimization
problems. This difficulty is aggravated by the fact that likelihood surfaces can be quite
complex (see an example in Stein et al. (2013)). In addition, solving (3) requires several
linear system solves per each nonlinear iteration. Thus, it is worth inquiring whether good
alternatives exist that may require less calculation per step.

In this work, we investigate an approach based on new unbiased estimating equations.
The approach solves an optimization problem, the computation of which does not require
linear solves with the covariance matrix.

The paper is organized as follows. In §2 we introduce the new estimating equations
that like (3) involve computing the trace of a matrix but unlike (3) do not involve the
inverse covariance matrix. We show that if the condition number of K is bounded, then the
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statistical efficiency of this approach is within a fixed factor of the standard one. In §3 we
discuss computational and global convergence aspects of the new approach in comparison
with existing methods. In §4 we present numerical results that demonstrate the robustness
and accuracy of the approach on two examples, including one involving more than 1 million
data points.

2 Estimating Equations

Using the notation introduced in the preceding section, we have

E
[
yTKiy

]
= E

[
tr
(
yTKiy

)]
= E

[
tr
(
Kiyy

T
)]

= tr
(
KiE

[
yyT

])
= tr (KiK) . (4)

Thus, we define a system of estimating equations

g(θ) = 0, (5)

where each component is defined as

gi(θ) := yTKi(θ)y − tr (Ki(θ)K(θ)) , i = 1, 2, . . . , p. (6)

Based on (4), we immediately see that the estimating equations (5) are unbiased, that is,
Eθ(g(θ)) = 0 for all possible θ . In addition, we note that (5) gives the first-order optimality
condition of the optimization problem

max
θ

(
yTK(θ)y − 1

2
tr
(
K2(θ)

))
. (7)

In what follows, we derive the Godambe information matrix of the new estimating equations
and show the relation with the Fisher information matrix. To simplify notation we, suppress
in the rest of the paper the dependence of K(θ), Eθ, and covθ on θ.

Lemma 1. The estimating function g admits that

Λij := E
(
∂gi(θ)

∂θj

)
= −tr (KiKj) (8)

Γij := cov(gi(θ), gj(θ)) = 2tr (KiKKjK) (9)

for all i, j = 1, 2, . . . , p.

Proof. For (8), we have

∂gi
∂θj

= yTKijy − tr (KijK)− tr (Kij) ,
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where Kij = ∂
∂θj
Ki = ∂

∂θi
Kj. Since

E
(
yTKijy

)
= E

{
tr
(
yTKijy

)}
= E

{
tr
(
Kijyy

T
)}

= tr (KijK) ,

(8) immediately follows.
For (9), we have E(gi) = 0, and (4) implies that

Γij = cov(gi, gj) = E (gi, gj)

= E
(
yTKiyy

TKjy
)

+ tr (KiK) tr (KjK)

− E
{

tr
(
yTKjy

)
tr (KiK)

}
− E

{
tr
(
yTKiy

)
tr (KjK)

}
= E

(
yTKiyy

TKjy
)
− tr (KiK) tr (KjK) .

Consider now a vector u with components ui, i = 1, 2, . . . , p; we have

p∑
i,j=1

uiujΓij = E
(
yTAyyTAy

)
− tr (AK) tr (AK) , (10)

where A =
∑n

i=1 uiKi. If we define y = K0.5e, then e is a random vector from N (0, In).
Thus, the first term in (10) becomes

L = E
(
yTAyyTAy

)
= E

(
eT ÃeeT Ãe

)
, Ã = K0.5AK0.5.

Since A is symmetric, so is Ã, which has the eigenvalue decomposition Ã = QDQT . In turn,
this results in

L = E
(
yTAyyTAy

)
= E

(
eTQDQTeeTQDQTe

)
= E

(
ẽTDẽẽTDẽ

)
,

where ẽ = QTe is a random vector from N (0, In). We rewrite the last term to obtain

L = E

(
n∑
i

diẽ
2
i

)2

= E

(
n∑
i,j

didjẽ
2
i ẽ

2
j

)
= E

(
n∑

i,j=1,i 6=j

didjẽ
2
i ẽ

2
j

)
+ E

(
n∑
i=1

d2i ẽ
4
i

)
.

From the properties of the normal distribution, we have that E(ẽ2i ẽ
2
j) = E(ẽ2i )E(ẽ2j) = 1

when i 6= j and E(ẽ4i ) = 3. Then,

L =
n∑

i,j=1,i 6=j

didj + 3
n∑
i=1

d2i =

(
n∑
i=1

di

)2

+ 2
n∑
i=1

d2i .

By the fact that the di’s are the eigenvalues of Ã = K0.5AK0.5 we obtain that
∑n

i=1 di =
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tr(Ã) = tr(KA) and that
∑n

i=1 d
2
i = tr(Ã2) = tr(AKAK). Thus,

L = (tr(KA))2 + 2tr(KAKA).

Substituting L in (10), we obtain

n∑
i=1

uiujΓij = 2tr(KAKA) = 2
n∑

i,j=1

uiujtr (KKiKKj) .

Since this equality holds for all u, we conclude (9).

Now define the matrices

Γ = {Γij}pi,j=1 , Λ = {Λij}pi,j=1 . (11)

Their quadratic forms can be bounded by each other. For this purpose, we first need the
following result.

Lemma 2. Let D be a positive diagonal matrix and M a positive semidefinite matrix. Then
tr(DM) ≤ maxi{di} · tr(M).

Proof. We have that tr(DM) =
∑n

i=1 dimii ≤ maxi{di}(
∑n

i=1mii), the last inequality fol-
lowing from the fact that mii ≥ 0. We immediate conclude the lemma.

Lemma 3. The matrices Γ and −Λ are positive semidefinite and satisfy

Γ � 2σ2
M(K)(−Λ), (12)

where σM(K) denotes the largest eigenvalue of the covariance matrix K and � denotes the
positive semidefinite ordering. If Γ is positive definite, then so is −Λ, and we thus have

Γ−1 � 1

2σ2
M(K)

(−Λ)−1. (13)

Proof. Take now a vector u ∈ Rp whose entries are u1, u2, . . . , up. We have

p∑
i,j=1

uiujΛij = −tr(AA)

where A =
∑p

i=1 uiKi is a symmetric matrix, which makes A2 a symmetric positive semidef-
inite matrix whose trace is nonnegative. We thus obtain −Λ � 0.

Similarly,

uTΓu = 2tr(KAKA) = 2tr(K0.5AKAK0.5) = 2tr[(K0.5AK0.5)2] ≥ 0,

which proves that Γ � 0.
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Define the eigenvalue decomposition of K = QDQT , with D � 0 and maxi{di} = σM(K).
We have

tr(KAKA) = tr(QDQTAKA) = tr(DQTAKAQ) ≤ σM(K)tr(QTAKAQ), (14)

which follows from Lemma 2. One step further,

tr(QTAKAQ) = tr(AKA) = tr(KA2) ≤ σM(K)tr(A2).

Hence, we obtain

uTΓu = 2tr(KAKA) ≤ 2σ2
M(K)tr(A2) = −2σ2

M(K)uTΛu,

which proves (12).
For the second part, if Γ is positive definite, then it is invertible. Thus, so must be

Λ. Applying positive definite ordering (Horn and Johnson, 2012, Corollary 7.7.4) to (12)
yields (13).

We now consider the Fisher information matrix I attached to the likelihood function (1),
with Iij = 1

2
tr (K−1KiK

−1Kj). We have the following result.

Lemma 4. Let σm denote the smallest eigenvalue of K. Then,

I � 1

2σ2
m(K)

(−Λ).

Proof. We take an abitrary vector u ∈ Rp and form

uTIu =

p∑
i,j=1

uiuj
1

2
tr
(
K−1KiK

−1Kj

)
=

1

2
tr
(
K−1AK−1A

)
,

where A is defined in the proof of the preceding lemma. Using the eigenvalue decomposition
K = QDQT , we obtain

uTIu =
1

2
tr
(
QD−1QTAK−1A

)
=

1

2
tr
(
D−1QTAK−1AQ

)
≤ 1

2σm(K)
tr
(
AK−1A

)
,

where the last inequality follows from Lemma 2. Applying this lemma again we have

uTIu ≤ 1

2σm(K)
tr
(
AK−1A

)
=

1

2σm(K)
tr
(
K−1A2

)
≤ 1

2σ2
m(K)

tr
(
A2
)
.

By using a result in the proof of the preceding lemma, tr (A2) = uT (−Λ)u, we obtain

uTIu ≤ 1

2σ2
m(K)

uT (−Λ)u.
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This inequality concludes the proof.

We are now in a position to make a claim about the statistical efficiency of the estimating
equations (5). For such equations, the statistical efficiency is governed by the Godambe
information matrix Varin et al. (2011)

E(g(θ)) = E(∇θg(θ))[cov(g(θ))]−1E(∇θg(θ)). (15)

Under certain assumptions, its inverse approaches the covariance matrix of the estimate pro-
duced by (5). As estimating equations, under some regularity conditions, the score equations
(2) are optimal in that their Godambe information matrix is the Fischer information matrix
I and that E(g(θ)) � I for any unbiased estimating equations g(θ) = 0 Bhapkar (1972).
Thus, comparing E(g(θ)) with I gives a measure of the statistical efficiency of (5). The
following result lower bounds E(g(θ)).

Theorem 1. The Godambe information matrix (15) for the unbiased estimating equations
(5) satisfies

E(g(θ)) � 1

cond(K)2
I,

where cond(K) = σM(K)/σm(K) is the condition number of K.

Proof. From Lemma 1 we have
E(g(θ)) = ΛΓ−1Λ.

Using Lemmas 3 and 4, we obtain

ΛΓ−1Λ � 1

2σ2
M(K)

Λ(−Λ)−1Λ =
1

2σ2
M(K)

(−Λ) � 2σ2
m(K)

2σ2
M(K)

I,

which proves the claim.

3 Discussion

The value of solving the optimization problem (7) for estimating the Gaussian process pa-
rameters θ is that the calculation of the objective function and its gradient (6) does not
require solving linear systems with the covariance matrix K, as opposed to maximizing the
likelihood (1), solving the score equations (2), and our previous work (3). Moreover, not
only are the resulting estimating equations unbiased, but also, by Theorem 1, when the con-
dition number of the covariance matrix is uniformly bounded as the number of data points
increases, the Godambe information matrix is bounded below by a fixed factor of the Fisher
information matrix. Therefore, the statistical accuracy of the estimating equations (5) is of
the same order as the optimal one of the maximum likelihood estimator. Specifically, if we
use our estimator (5) for M independent samples from the Gaussian process, then the ratio
of the norm of the asymptotic variance to the one of the maximum likelihood variance as
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M → ∞ is the same as the ratio between the inverses of the Godambe information matrix
and the Fisher information matrix Varin et al. (2011). Thus, by Theorem 1 this ratio is
bounded independent of n. Asymptotic statements for one sample but increasing n are more
difficult to make even for the maximum likelihood estimator alone Stein (1999), but the
relationship between the Godambe information matrix and the Fischer information matrix
is still a good measure of the relative statistical efficiency of the two methods Stein et al.
(2013).

For the estimating equation approach (5), even a condition number slowly increasing with
n may result in a statistically and computationally efficient method (see §4.2, in particular,
Table 4). When we can efficiently precondition K, resulting in a small condition number of
the covariance matrix of the transformed data, the approach based on (5) has substantial
appeal. We have demonstrated an efficient preconditioning for the case of the Matérn process
class using Laplacian filtering Stein et al. (2012); Chen (2013), which indicates that the
method proposed in this work offers potential to be both accurate and efficient. We now
discuss some numerical issues.

3.1 Computational Considerations

There are several classes of problems for which (7), and implicitly the estimating equa-
tions (5), can be solved efficiently, at least in cost per gradient computation of (7).

• If K is sparse for any θ, then the gradient of (7) can be computed in O(n). We present
one such example in §4.1. In this case, computing the likelihood (2) and its gradient
directly may be competitive only when the Cholesky factorization can be carried out
in time comparable to O(n), which, while is true for the example in §4.1, is hard to
guarantee in general. We also note that this setting may appear not only for Gaussian
process models but also for certain large-scale generalized linear models when mixed
effects are used McCullagh and Nelder (1989).

• If the data is on a regular grid and the kernel is stationary, that is, the kernel function
k(x,y;θ) = k(x − y;θ), then matrix-vector multiplications can be carried out in
O(n log n) by means of circulant embedding and fast Fourier transform. Moreover,
as we show in the appendix, the trace of the product of two Toeplitz matrices, as in
KKi, can be computed in O(n) time. Thus, both the function evaluation of (7) and
the gradient evaluation (6) can be computed in O(n log n) time. We present such an
example in §4.2.

• If the data is not on a regular grid but the kernel is smooth away from the origin, then
computing matrix-vector products can be done in O(n log n) time by using treecode
methods, as we have developed and demonstrated for the Matérn kernel Anitescu et al.
(2012); Chen et al. (2014).

For the last two cases, maximum likelihood estimation would require the Cholesky factor-
ization of a dense matrix, which is prohibitive on large data sets. Moreover, for the approach
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proposed here, no linear system with K needs to be solved, which puts the method in this
paper at an advantage over our previous work Anitescu et al. (2012); Stein et al. (2013,
2012); Chen and Li (2013); Chen et al. (2014).

Since the number of parameters p is generally much smaller than n, the fact that the
objective and the gradient of the optimization problem (7) can be efficiently computed
suggests quasi-Newton approaches for solving (7).

3.2 Global Convergence

We can determine a solution to the estimating equation (5) by solving the associated op-
timization problem (7). Since optimization algorithms Nocedal and Wright (2006) can be
guaranteed under fairly mild conditions to be globally convergent in the sense of convergence
to a stationary point and since the latter satisfies the unbiased estimating equations (5), the
optimization approach may be advantageous over the nonlinear equation approach.

An additional advantage of optimization is that in a nonlinear equation approach, the
parameter θ is no longer intrinsically constrained on the domain where K is positive definite
(which is done by the fact that the log-det term becomes singular in (1) and acts as a
penalty for K leaving the K � 0 region). While we have not encountered this problem in our
approach, it can certainly in principle become a difficulty. Explicit constraints on θ are not
difficult to impose, particularly in an optimization setup; but the KKT optimality conditions
would involve complementarity constraints Nocedal and Wright (2006) and would no longer
be exactly (5). For example, in the one-dimensional case, when fitting an exponential kernel
k(x, y;θ) = θ1 exp(−|x− y|/θ2), one would require θ1, θ2 ≥ 0 .

Nevertheless, important examples exist for which the problem can be stated so as not
to pose significant difficulties. First, one can use reparameterization to remove constraints,
such as replacing a parameter θ ≥ 0 by a free parameter θ̃ with θ̃2 = θ.

Second, there is a class of covariance models where one has that K is linear in the
parameter θ, as occurring, for example, when taking linear combinations of fixed covariance
models (Rasmussen and Williams, 2006, §4.2.4) with to-be-determined coefficients. We also
note that this situation appears for generalized linear models that include stochastic or mixed
effects and cases when the parameters are the squared variances McCullagh and Nelder
(1989). The resulting optimization problem (7) is then a concave maximization, and we are
guaranteed to get a globally optimal solution by solving one linear system of equations, of
size p × p only, with respect to θ. This by itself points to a feature of our approach that
maximum likelihood does not exhibit: for a fairly large class of models (where K is linear
in θ) we can obtain a global solution by using a local algorithm. In effect, any kernel can in
principle be approximated to belong to such a class, at the cost of a large number of “basis”
covariance matrices with which the linear combination is formed. As we demonstrate in
§4.1, the likelihood function will not be convex for this model class; while we cannot prove
that the likelihood function has other stationary points, it seems difficult to guarantee that
maximum likelihood can find the global optimum, since solving (5) would do in this case.
Of course, if the linear model is not a good model, then solving either problem could result
in estimates for which the covariance function is even not positive definite; however, in this
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case, the uniqueness of the solution to (5) will point out the need for refining the problematic
model.

4 Numerical Experiments

We first investigate the benefit of using (5) in a simple setting, where the covariance matrix K
depends linearly on its parameters. In this case, the estimating equations (5) are linear and
can thus be solved with one p× p small linear system. For likelihood maximizations, on the
other hand, one would have to solve the likelihood problem iteratively, a considerably more
complicated endeavor. In this case our method shares some features with the MINQUE
method as applied to random effects models Rao (1971); Hocking (1996). Indeed, both
methods are based on setting quadratic forms of the data to their expected value, and both
result in estimating equations that are linear in their parameters, although the quadratic
forms used here and their theoretical guarantees are different. We next perform large-scale
experiments to showcase the superiority of the optimization formulation (7) in a nonlinear
setting. These experiments also demonstrate a better scalability in numerical calculations
compared with our previous approach (3) that requires the solution of linear systems of size
n× n.

4.1 An Example with Linear Parametric Dependence of the Co-
variance

Consider the covariance matrix K = θ1In + θ2Ln, where In is the identity matrix and Ln is
the 2D Laplacian matrix, both of size n× n. We simulated data from this distribution with
θ = [3; 2] and we used (5) to estimate θ and compare it with the true value [3; 2]. We note
that for θ ∈ [ε, T ]× [0, T ], where ε, T > 0 are fixed parameters, the condition number of K is
uniformly bounded, independent of the dimension n. We are thus in the regime posited by
Theorem 1, and we therefore expect that the accuracy of the estimators produced by solving
(5) is quite good.

An interesting issue is in comparing the complexity of (5) with the likelihood approach.
For n = 100 we sampled from the distribution attached to the covariance matrix K([1; 2]) and
we computed the likelihood at [1; θ2] for varying values of θ2. We display the loglikelihood
and its second derivative in Figure 1. The loglikelihood has a minimum very close to 2, as
expected. On the other hand, we see that the second derivative is negative for a large range
and eventually approaches singularity. This situation would likely create nontrivial challenges
for optimization-based formulations that employ Newton-type algorithms. Moreover, there
is no obvious simplifying structure here: no convexity or low-degree polynomial structure.
For comparison, the estimating equations (5) are linear; and from Theorem 1 we expect
them to have comparable statistical power with maximum likelihood.

We generated M = 100 random realizations for n = 100, n = 1000, and n = 10000 for
θ = [3; 2], and we used (5) to compute estimate θ̂. The mean and standard deviation across
the M experiments are displayed in Table 1. We note that the estimates converge to their
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Figure 1: Loglikelihood and its second-order divided differences for a simulated data set with
n = 100.

Table 1: Estimators from exact trace computation estimator (5) for the model K(θ) =
θ1In + θ2Ln. Truth: θ1 = 3 and θ2 = 2. Standard deviations are computed from M = 100
repeated experiments.

n 100 1000 10000

θ̂1 ± σ1 3.046±0.783 2.964±0.278 3.004±0.076

θ̂2 ± σ2 2.024±0.543 2.010±0.191 1.991±0.049

true values and the variance for both cases behaves close to n−0.5. Moreover, the number of
operations to set up the equations is O(n), since In and Ln are sparse, (5) is linear in θ, and
they need be set up only once. Note that it would be hard to guarantee a priori that the
maximum likelihood estimates be obtained by using O(n) operations, as is the case for the
method developed in this paper on this particular example, because the number of nonlinear
iterations for solving maximum likelihood problem would be hard to bound.

4.2 Large-Scale Experiments with Power-law Kernel

We simulate data with the d-dimensional power-law kernel (d = 2)

G(x;θ) =

{
Γ(−α/2)rα, if α/2 /∈ N
(−1)1+α/2rα log r, if α/2 ∈ N,

(16)
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where x = [x1; . . . ;xd] ∈ Rd denotes coordinates, ` = [`1; . . . ; `d] ∈ Rd denotes scales, and r
is the elliptical radius

r =

√
x21
`21

+ · · ·+ x2d
`2d
. (17)

Hence, θ = [`1; . . . ; `d;α] consists of all the fitting parameters. The function G is condi-
tionally positive definite; therefore, only the covariances of authorized linear combinations
of G are defined (Chilès and Delfiner, 2012, Sec. 4.3). Thus, we perform filtering to ensure
positive definiteness. We note that this requires an a priori upper bound on α. Stein et
al. Stein et al. (2012) show that if α+ d ∈ 4N, then performing τ = (α+ d)/4 times filtering
on the process will yield a covariance matrix with bounded condition number independent
of the matrix size. In what follows, the matrix K represents the covariance matrix of the
filtered process.

We use the method of Chen et al. (2011) to simulate a random realization of the filtered

process. The method computes y = K
1
2z for a random vector z ∼ N(0, I) in a matrix-

free style (i.e., without any factorization of the matrix); hence, it is practical to generate
samples with large n. Then, we estimate the parameters and compare the results against the
true parameters that are used to generate y. To evaluate the trace terms in (5) and (7), we
restrict the simulation on a regular grid so that the involved matrices are multilevel Toeplitz.
We use the technique presented in the appendix to evaluate the trace of the product of two
multilevel Toeplitz matrices in O(n) time. Furthermore, we compute the matrix-vector
products in (5) and (7) by using an O(n log n) time algorithm with circulant embedding and
fast Fourier transform Anitescu et al. (2012). For computing the confidence intervals, the
Godambe information matrix E and the Fisher information matrix I cannot be computed
exactly by using less than O(n3) time. We thus use the Hutchison estimator with N = 50
random vectors Anitescu et al. (2012) to approximate the trace terms therein and use the
conjugate gradient linear solver for solving linear systems with respect to K Chen and Li
(2013). Specifically, Λ in (8), Γ in (9), and the Fisher information matrix I are approximated
by their unbiased estimators

Λ̂ij =
N∑
k=1

2uTkKiKjuk (18)

Γ̂ij =
N∑
k=1

2uTkKiKKjKuk (19)

Îij =
N∑
k=1

1

2
uTkK

−1KiK
−1Kjuk, (20)

where each uk is a random vector with independent entries of ±1 with equal probability.
The cost of computing the matrices Λ and Γ is then O(Nn log n), and the cost of computing
I is O(mNn log n), where m is the number of conjugate gradient iterations.

An n1×n2 regular grid (so that n = n1n2) is laid on a rectangular region of size 100×100.

14



The true parameters are set to be θ = [7; 13; 1]. For estimation, we use the equations (5),
solved as a nonlinear equation. The initial guess is the same as the truth, and the nonlinear
solver is the Matlab fsolve function with the default algorithm trust-region-dogleg.
Here we note that θ3 = α > 4 may result in covariance matrices that are not positive
definite. However, our numerical algorithm remained significantly away from that region,
so this did not pose a problem for our setup. Table 2 summarizes the fitting results
θ̂1, θ̂2, and θ̂3, with the respective standard deviations σ1 =

√
(E−1)11, σ2 =

√
(E−1)22,

and σ3 =
√

(E−1)33, where E is evaluated at the estimate θ̂. For comparison, we also list

σ′1 =
√

(I−1)11, σ′2 =
√

(I−1)22, and σ′3 =
√

(I−1)33, where I is also evaluated at θ̂. As
anticipated by our theoretical results, the latter estimates of the standard deviations are not
much smaller than the ones based on E .

One sees that the estimated parameters agree well with the truth and that the two sets
of standard deviations are close. Clearly, the third parameter θ3 (that is, the power α) is
the best estimated; the standard deviations decrease by half every time n is increased by a
factor of 4, as expected.

Table 2: Results for nonlinear equations formulation (5). Truth: θ = [7, 13, 1]. Initial guess
same as the truth.

Grid Size 64× 64 128× 128 256× 256 512× 512 1024× 1024

θ̂1 ± σ1 6.988±1.014 7.862±0.791 7.043±0.387 7.400±0.245 7.119±0.132

θ̂2 ± σ2 12.684±1.965 14.165±1.502 13.448±0.786 13.653±0.474 13.281±0.258

θ̂3 ± σ3 1.004±0.059 0.970±0.029 0.996±0.014 0.990±0.007 0.996±0.004

±σ′1 ±0.539 ±0.404 ±0.204 ±0.128 ±0.070
±σ′2 ±1.065 ±0.782 ±0.419 ±0.251 ±0.137
±σ′3 ±0.033 ±0.016 ±0.008 ±0.004 ±0.002

When we try to perform the same calculation with a different set of initial guess, even
if the guess is close to the truth (e.g., θguess = [10; 11; 1]), the nonlinear solver does not
converge to a desired point. To examine the cause, we show in Figure 2 the contour plots
of (7) projected on the `1-α plane, together with the trajectory of the iterates. The black
cross marker is the truth, somewhere close to the maximum of (7). The solver starts near
the truth but gradually drifts away instead of approaching the truth. The residuals of the
estimating equations (5) do decrease, but the value of the antiderivative (7) does not increase.
The nonlinear solver uses a direction that is not an ascent direction for the corresponding
optimization problem and consequently diverges away from its solution.

Thus, we directly solve the optimization problem (7) instead by using the Matlab function
fmincon with the algorithm interior-point/bfgs. We pose (7) as a constrained optimiza-
tion problem subject to θ3 ∈ [0, 2] because of difficulties in manipulating the power-law kernel
for larger α. However, since the bounds were not reached during optimization, not enforcing
the bounds would have produced the same result. The solver successfully finds the solution
even when the initial guess is far from the truth. In Table 3 we show the results for the
initial guess θguess = [30; 50; 1.8]. One sees that all the estimates are close to the truth, just
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Figure 2: Contour plots of the objective function, projected on the `1-α plane, and the
trajectory of the nonlinear solve.

like the case in Table 2. The standard deviations of the parameters are also similar to the
those in Table 2.

Table 3: Results for optimization formulation (7). Truth: θ = [7; 13; 1]. Initial guess:
θguess = [30; 50; 1.8].

Grid Size 64× 64 128× 128 256× 256 512× 512 1024× 1024

θ̂1 ± σ1 6.899±0.935 7.630±0.717 7.068±0.374 7.394±0.236 7.119±0.128

θ̂2 ± σ2 12.574±1.887 13.803±1.404 13.453±0.771 13.636±0.464 13.282±0.253

θ̂3 ± σ3 1.008±0.058 0.977±0.029 0.995±0.014 0.990±0.007 0.996±0.003

In Figure 3 we compare the computation time of two methods: (i) solving the estimat-
ing equations (5) in this paper and (ii) solving the SAA of the score equations proposed
in Anitescu et al. (2012). Not plotted are the times to compute the confidence intervals;
for (i), the time is approximately the same as that of computing the estimates; for (ii), the
time is typically 1/10 of that of computing the estimates. The computational advantage of
the former method is that it does not require linear solves as does the latter method. For
fairness of comparison we use the nonlinear equations formulation for both approaches, since
the SAA score equations approach does not have an optimization counterpart to (7). We
start the initial guess at θguess = [7; 13; 1] and use the Matlab function fsolve. The com-
putations are performed on one compute node of a computing cluster. The compute node
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consists of Intel Sandy Bridge processors with a total of 16 cores, which means that Matlab
is run with a maximum of 16 threads. In the figure, the dashed lines serve as references
with a slope 1. One sees that the times approximately conform with the theoretical linear
complexity; the fluctuations are caused by the dissimilar numbers of linear iterations and
nonlinear iterations for different grid sizes. For the largest grid, solving the SAA of the score
equations is more than 100 times slower than solving the estimating equations proposed in
this paper. We note that for the largest case treated here, a classical approach based on
maximum likelihood that requires a factorization of a 4 million by 4 million dense matrix
would have been entirely beyond reach. The widths of the confidence intervals of the two
schemes are similar.
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Figure 3: Computation time as grid size increases.

When the smoothness order α is not in the form of 4Z+−d, where Z+ denotes a positive
integer, filtering is not able to yield a bounded condition number. However, the bound
in Theorem 1 that relates the ratio of E and I by the squared condition number is too
pessimistic sometimes. In Table 4 we list the ratios σ1/σ

′
1, σ2/σ

′
2, and σ3/σ

′
3 for two cases:

(i) α = 3, filtered once, and (ii) α = 3, filtered twice. One sees that in the first case the
ratios increase slightly slower than O(1/

√
n) and in the latter case they stay approximately

constant. Thus, even when the condition number is not bounded, fitting results originating
from solving the estimating equations (5) can be as reliable as those originating from solving
the standard score equations. The N/A case in the table demonstrate a computational
advantage of the method presented in this paper: neither fitting nor the computation of
confidence intervals requires a linear solve whose success is heavily tied to the conditioning
of the covariance matrix.
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Table 4: Comparison of E and I. The N/A cases are caused by the failure of convergence
(within 1,000 block conjugate gradient iterations) in the linear solves when estimating the
diagonal of I by SAA for error estimation comparison purposes.

(i) α = 3, filtered once.

Grid size 64× 64 128× 128 256× 256 512× 512 1024× 1024

σ1/σ
′
1 2.497 4.038 8.158 15.187 27.396

σ2/σ
′
2 2.763 4.658 8.625 17.467 31.654

σ3/σ
′
3 6.147 7.758 19.516 40.365 67.807

(ii) α = 3, filtered twice.

σ1/σ
′
1 2.956 2.936 2.919 2.879 N/A

σ2/σ
′
2 2.605 2.656 2.700 2.699 N/A

σ3/σ
′
3 2.478 2.536 2.589 2.601 N/A

5 Conclusions

Gaussian processes are important statistical models used in data analysis and uncertainty
quantification. For large-scale data sets, estimating the covariance parameters of such models
can be demanding because of the cost of computing the likelihood, which in its classical form
requires performing the Cholesky factorization of a potentially dense and large covariance
matrix.

In this work, we have presented a new approach for estimating the parameters of a Gaus-
sian process, and, in general, of a Gaussian model. The approach solves an optimization
problem whose optimality condition is the unbiased estimator of the Gaussian process co-
variance parameters. The most expensive part of setting up the gradient of this optimization
problem is the computation of the trace of a product of matrices. This can be computed
in O(n) time, where n is the number of data points, for sparse matrices and for generally
positioned data points. We prove that the Godambe information matrix of the resulting
estimating equations is bounded below by a factor of the Fisher information matrix, where
the factor is the inverse of a small power of the condition number of the covariance matrix.
In turn, when the condition number of the covariance matrix is bounded independent of
the number of data points, the resulting estimates have a statistical efficiency of the same
order with the maximum likelihood independent of data size, at only a small fraction of its
computational cost. Such a bounded condition number can be obtained, for example, for
certain Matérn processes when preconditioned with Laplacian filtering Stein et al. (2012);
Chen (2013).

Moreover, for models whose covariance matrix is linear in its parameters, the estimating
equations have a unique solution that can be obtained by solving a single p×p linear system,
where p is the number of parameters. We note that for likelihood approaches one can rarely
be guaranteed to practically obtain the global maximum for a large problem class. Further,
the fact that we solve an optimization problem, as opposed to a nonlinear equation as we did
for our recent scalable approach Anitescu et al. (2012); Stein et al. (2013), confers additional
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robustness to this method.
We demonstrate the benefit of the new approach on two examples of synthetic data using

a sparse covariance matrix with linear dependence on its parameter and using a power-law
process. In the latter case, the approach is compared with another stochastic estimation
approach we introduced recently that was demonstrated to be scalable Anitescu et al. (2012);
Stein et al. (2013) but that still required solving several systems of linear equations per
nonlinear iteration. On these examples the estimating equation method introduced in this
paper is proved accurate in the sense of recovering the parameters that were used to create
the data, with an accuracy close to the optimal one as measured by the inverse of the Fisher
information matrix, but at a fraction of the cost (1% or even less) for data sets of up to 1
million data points. We note that when estimating the Fisher information matrix itself for
the large data sets by a stochastic approach—which requires linear solves with the covariance
matrix—the preconditioned conjugate gradient algorithm took more than 1,000 iterations
and still had not converged. On the other hand, the Godambe information matrix—which
can be used to estimate the variance of the estimator produced by the new approach—does
not require linear system solves with the covariance matrix and can be efficiently computed.
Moreover, as for the power-law example where the covariance matrix was dense, the likelihood
calculation would have required a dense Cholesky factorization, which would have been very
difficult for the 1 million data points because of its O(n3) complexity. These facts indicate
the significant potential of computational efficiency combined with good accuracy that can
be brought about by the proposed method.

The method does present several downsides. Likelihood calculations have an impor-
tance that goes beyond estimating parameters, such as in model comparison or for use with
Bayesian approaches; our approach cannot make up for this lost information. Moreover, as
opposed to likelihood approaches, there is no natural barrier to exploring parametric regions
where the covariance function is not positive definite, if the set of validity of the parameters
has a boundary. The latter may be a problem if the model class explored is not a good one
for the data. While several fixes exist for some problem classes, this issue requires further
investigation. However, the potential of the method of obtaining estimates of the parame-
ters much faster than existing methods and, at least in some cases, at near-optimal accuracy
motivates our further investigation in removing some of these shortcomings.
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A A Linear-Time Algorithm for Computing the Trace

of the Product of Two Toeplitz Matrices

Here, we present a linear-time algorithm for computing the trace of the product of two
multilevel Toeplitz matrices with matching dimensions. The algorithm is simple to code in
most programming languages. We demonstrate the code in Matlab.

We start from the 1-level case. A matrix A is (1-level) Toeplitz if each of its diagonals is
constant, that is, A is in the form

A =



a0 a1 a2 · · · · · · an−1

a−1 a0 a1
. . .

...

a−2 a−1
. . . . . . . . .

...
...

. . . . . . . . . a1 a2
...

. . . a−1 a0 a1
a−n+1 · · · · · · a−2 a−1 a0


. (21)

The matrix A is represented solely by its first column and the first row and is stored as an
order-1 tensor:

tA = [a−n+1, · · · , a−2, a−1, a0, a1, a2, · · · , an−1].

Denote by C = AB, which is the product of two Toeplitz matrices A and B. Since tr(C)
is equal to the sum of all the elements of the matrix A ◦ BT , where ◦ denotes elementwise
multiplication, and because A ◦BT is Toeplitz, we have

tr(C) =
n−1∑

k=−n+1

|n+ k|akb−k.

Pictorially, we write the data representation of A, the flipping of the data representation of
B, and a mask |n+ k| by ranging k from −n+ 1 to n− 1 as in the following:

tA: a−n+1 · · · a−2 a−1 a0 a1 a2 · · · an−1
flip of tB: bn−1 · · · b2 b1 b0 b−1 b−2 · · · b−n+1

mask: 1 · · · n− 2 n− 1 n n− 1 n− 2 · · · 1 .

Then, we perform an elementwise multiplication of these order-1 data tensors and obtain
the trace as the sum of the elements of the resulting tensor.

A multilevel Toeplitz matrix is defined recursively based on the number of levels. Specif-
ically, in (21), A is (d + 1)-level Toeplitz if each ai, considered as a submatrix, is d-level
Toeplitz. To keep track of the sizes, let the dimensions of each level be n1, n2, . . ., nd,
. . .. Then, the data representation of a d-level Toeplitz matrix is an order-d tensor of size
(2n1 − 1)× (2n2 − 1)× · · · × (2nd − 1). The following shows the layout of a 2-level Toeplitz
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matrix

A =



a0,0
. . . a0,n2−1 an1−1,0

. . . an1−1,n2−1
. . . . . . . . . . . . . . . . . . . . .

a0,−n2+1
. . . . . . an1−1,−n2+1

. . . . . .

. . . . . . . . .

a−n1+1,0
. . . a−n1+1,n2−1

. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

a−n1+1,−n2+1
. . . . . . . . . . . . . . .


and its data representation:

tA =


a−n1+1,−n2+1 · · · a−n1+1,0 · · · a−n1+1,n2−1

...
. . .

...
. . .

...
a0,−n2+1 · · · a0,0 · · · a0,n2−1

...
. . .

...
. . .

...
an1−1,−n2+1 · · · an1−1,0 · · · an1−1,n2−1

 . (22)

To compute tr(AB), where A and B are both d-level Toeplitz with matching dimensions,
we perform a procedure similar to the 1-level case. It suffices to show a 2-level example.
We reuse the data representation of A, tA, in (22). We write the flipping of the data
representation of B as in the following:

flip of tB =


bn1−1,n2−1 · · · bn1−1,0 · · · bn1−1,−n2+1

...
. . .

...
. . .

...
b0,n2−1 · · · b0,0 · · · b0,−n2+1

...
. . .

...
. . .

...
b−n1+1,n2−1 · · · b−n1+1,0 · · · b−n1+1,−n2+1

 .

Note that the flipping is performed along all the dimensions. The mask is defined as

mask =


1× 1 · · · 1× n2 · · · 1× 1

...
. . .

...
. . .

...
n1 × 1 · · · n1 × n2 · · · n1 × 1

...
. . .

...
. . .

...
1× 1 · · · 1× n2 · · · 1× 1

 ,

which is the outer product of two 1-level masks [1, . . . , n1 − 1, n1, n1 − 1, . . . , 1] and
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[1, . . . , n2− 1, n2, n2− 1, . . . , 1]. We perform the elementwise multiplication of tA, flip
of tB, and mask. Then, tr(AB) is the sum of all the elements of the resulting tensor.

Figure 4 shows the Matlab code, which consists of only seven lines of calculations, ex-
cluding the comments. The code was written in a manner that generalization to cases other
than 2-level Toeplitz is straightforward. One sees that the computational cost (both in time
and in storage) for the general d-level case is O(n1n2 · · ·nd), linear in the number of rows
of A and B. If the matrices are symmetric in all Toeplitz levels, they can be represented
by using data tensors of size n1 × n2 × · · · × nd. Thus, the code can be straightforwardly
optimized, resulting in a computational cost reduced by a factor of 2d.

1 function tr = tr_toep_toep_mult_2level(tA, tB)

2 % This code computes the trace of the product of two 2-level Toeplitz

3 % matrices A and B, which are stored as tA and tB by using a data

4 % tensor format. Let the dimensions of each level be n1 and n2,

5 % respectively; that is, A has n1*n2 rows (and columns), and similarly

6 % for B. Both A and B are stored as an order-2 tensor of size

7 % (2*n1-1)*(2*n2-1).

8

9 % Get the size of tA

10 sz1 = size(tA);

11

12 % Get the two numbers n1 and n2

13 sz2 = (sz1+1)/2;

14

15 % Compute the elementwise product of tA and the flipping of tB

16 tC = tA .* tB(end:-1:1, end:-1:1);

17

18 % Generate mask. The mask is the outer product of two vectors v1 and

19 % v2, where v1 = 1,2,..,n1,..,2,1 and v2 = 1,2,..,n2,..,2,1

20 mask1 = repmat(reshape([1:sz2(1) sz2(1)-1:-1:1], sz1(1),1), [1,sz1(2)]);

21 mask2 = repmat(reshape([1:sz2(2) sz2(2)-1:-1:1], 1,sz1(2)), [sz1(1),1]);

22 mask = mask1 .* mask2;

23

24 % Final result is the sum of all the elements of the elementwise

25 % product of tC and mask

26 tr = sum(sum(tC.*mask));

Figure 4: Matlab code of computing tr(AB), where A and B are 2-level Toeplitz.
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