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We argue that deterministic market clearing formulations introduce strong and arbitrary distortions between

day-ahead and expected real-time prices that bias economic incentives and block diversification. We extend

and analyze the stochastic clearing formulation proposed by Pritchard et al. (2010) in which the social surplus

function induces `1 penalties between day-ahead and real-time quantities. We prove that the formulation

yields price distortions that are bounded by the bid prices, and we show that adding a similar penalty term

to transmission flows ensures boundedness throughout the network. We prove that when the price distortions

are zero, day-ahead quantities and flows converge to the medians of real-time counterparts. We demonstrate

that convergence to expected value quantities can be induced by using a squared `2 penalty. The undesired

effects of price distortions suggest that arguments based on social surplus alone are insufficient to fully

appreciate the benefits of stochastic market settlements. We thus propose additional metrics to evaluate

these benefits.
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1. Introduction

Day-ahead markets enable commitment and pricing of resources to hedge against uncertainty in

demand, generation, and network capacities that are observed in real time. The day-ahead mar-

ket is cleared by independent system operators (ISOs) using deterministic unit commitment (UC)

formulations that rely on expected capacity forecasts, while uncertainty is handled by allocating

reserves that are used to balance the system if real-time capacities deviate from the forecasts. A

large number of deterministic clearing formulations have been proposed in the literature. Repre-

sentative examples include those of Carrión and Arroyo (2006), Gribik et al. (2011), and Hobs

(2001). Pricing issues arising in deterministic clearing formulations have been explored by Wang

et al. (2012), Galiana et al. (2003), and O’Neill et al. (2005).
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In addition to guaranteeing reliability and maximizing social surplus, several metrics are mon-

itored by ISOs to ensure that the market operates efficiently. For instance, as is discussed in Ott

(2003), the ISO must ensure that market players receive appropriate economic incentives that

promote participation. It is also desired that day-ahead and real-time prices are sufficiently close

or converge. One of the reasons is that price convergence is an indication that capacity forecasts

be effective reflections of real-time capacities. Recent evidence provided by Bowden et al. (2009),

Birge et al. (2013), however, has shown that persistent and predictable deviations between day-

ahead and real-time prices (premia) exist in certain markets. This can bias the incentives to a

subset of players and block the entry of new players and technologies. Consequently, in designing

an appropriate pricing scheme, ISOs must achieve fairness. The introduction of purely financial

players was intended to eliminate premia, but recent evidence provided by Birge et al. (2013) shows

that this has not been fully effective. One hypothesis is that virtual players can exploit predictable

price differences in the day-ahead market to create artificial congestion and benefit from financial

transmission rights (FTRs).

Prices are also monitored by ISOs to ensure that they do not run into financial deficit (a situa-

tion called revenue inadequacy) when balancing payments to suppliers and from consumers. This

is discussed in detail in Philpott and Pritchard (2004). In addition, ISOs might need to use uplift

payments and adjust prices to protect suppliers from operating at an economic loss. This is neces-

sary to prevent players from leaving the market. As discussed by O’Neill et al. (2005) and Wang

et al. (2012), uplift payments can result from using improper characterizations of the system (e.g.,

nonconvexities) in the clearing model.

Achieving efficient market operations under intermittent renewable generation is a challenge for

the ISOs because uncertainty follows complex spatiotemporal patterns not faced before (Constan-

tinescu et al. (2011)). In addition, the power grid is relying more strongly on natural gas and

transportation infrastructures, and it is thus necessary to quantify and mitigate uncertainty in

more systematic ways (Liu et al. (2009), Zavala (2014)). Doing so will enable the ISOs to efficiently

allocate reserves thoughout the network and promote fair and efficient market conditions.

1.1. Previous Work

A wide range of stochastic formulations of day-ahead market clearing and operational UC pro-

cedures has been previously proposed. In operational UC models, on/off decisions are made in

advance (here-and-now) to ensure that enough running capacity is available at future times to

balance the system. The objective of these formulations is to ensure reliability and maximization

of social surplus (cost in case of inelastic demands) in intra-day operations. Examples include the

works of Takriti et al. (1996), Wang et al. (2008), Constantinescu et al. (2011), Jin et al. (2013),
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Ruiz et al. (2009), Bouffard et al. (2005). These studies have demonstrated significant improvements

in reliability over deterministic formulations. However, these works consistently report marginal

improvements in expected social surplus. In addition, these formulations do not explore pricing

issues.

Stochastic day-ahead clearing formulations have been proposed by Kaye et al. (1990) and Wong

and Fuller (2007). Kaye et al. (1990) analyse day-ahead and real-time markets under uncertainty

and argue that day-ahead prices should be set to expected values of the real-time prices. This price

consistency ensures that the day-ahead market does not bias real-time market incentives in the

long run. Such consistency also avoids arbitrage as is argued by Khazaei et al. (2013).Wong and

Fuller (2007) propose pricing schemes to achieve appropriate economic incentives (cost recovery)

for all suppliers. The pricing schemes, however, rely only partially on dual variables generated

by the stochastic clearing model which is adjusted to achieve cost recovery. Consequently, these

procedures do not guarantee dual and model consistency.

Morales et al. (2012) propose a stochastic clearing model to price electricity in pools with stochas-

tic producers. Their model co-optimizes energy and reserves and they prove that it leads to revenue

adequacy in expectation. In addition, they prove that prices allow for cost recovery in expectation

for all players (i.e., no uplifts are needed in expectation) but pricing consistency is not explored.

Pritchard et al. (2010) propose a stochastic formulation that captures day-ahead and real-time

bidding of both suppliers and consumers. The formulation maximizes the day-ahead social surplus

and the expected value of the real-time corrections by considering the possibility of players bidding

in the real-time market. The authors prove that the formulation leads to revenue adequacy in

expectation and provide conditions under which adequacy will hold for each scenario. The authors

do not explore pricing consistency and economic incentives.

Khazaei et al. (2013) propose a stochastic equilibrium formulation in which players bid param-

eters of a quadratic supply function to maximize the expected value of their profit function while

the ISO uses these parameters to solve the clearing model and generate day-ahead and real-time

quantities and prices. It is shown that the equilibrium model generates day-ahead prices that

converge to expected value prices and thus achieve consistency. It is also shown that day-ahead

quantities converge to expected value quantities and a small case study is presented to demonstrate

that the formulation yields higher social surplus and producer profits compared to deterministic

clearing. The proposed formulation uses a quadratic supply function and quadratic penalties for

deviations between day-ahead and real-time quantities. No network and no capacity constraints

are considered.

Morales et al. (2014) propose a bilevel stochastic optimization formulation that uses forecast

capacities of stochastic suppliers as degrees of freedom. Using small computational studies, they
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demonstrate that their framework provides cost recovery for all suppliers and for each scenario. The

authors, however, do not discuss the effects of the modified pricing strategy on consumer payments

(the demands are treated as inelastic) and do not discuss incentives and fairness issues. In addition,

no theoretical guarantees are provided. In particular, it is not guaranteed that a set of day-ahead

capacities and prices exist that can achieve cost recovery forboth suppliers and consumers in each

scenario. While plausible, we believe that this requires further evidence and theoretical justification.

1.2. Contributions of This Work

In this work, we argue that deterministic formulations generate day-ahead prices that are distorted

representations of expected real-time prices. This pricing inconsistency arises because solving a

day-head clearing model using summarizing statistics of uncertain capacities (e.g., expected fore-

casts) does not lead to day-ahead prices that are expected values of the real-time prices. We argue

that these price distortions lead to diverse issues such as the need of uplift payments as well as

arbitrary and biased incentives that block diversification. We extend and analyze the stochastic

clearing formulation of Pritchard et al. (2010) in which linear supply functions for day-ahead and

real-time markets are used. The structure of this surplus function has the key property that if

real-time bid prices are symmetric relative to the day-ahead prices, an `1 term arises that penalizes

deviations between day-ahead and real-time quantities. We prove that this formulation yields price

distortions that are bounded by the smallest real-time bid price and therefore it is very robust. We

also prove that when the price distortion is zero, the formulation yields day-ahead quantities and

network flows that converge to the median of their real-time counterparts. In addition, we prove

that the formulation yields revenue adequacy in expectation and yields zero uplifts in expectation.

We provide several case studies to demonstrate the properties of the stochastic formulation. More-

over, we demonstrate that quadratic supply functions induce day-ahead quantities and flows that

converge to the means of real-time counterparts.

The paper is structured as follows. In Section 2 we describe the market setting. In Section 3 we

present deterministic and stochastic formulations of the day-ahead ISO clearing problem. In Section

4 we present a set of performance metrics to assess the benefits of the stochastic formulation over

its deterministic counterpart. In Section 5 we present the pricing properties of the formulation. In

Section 6 we present case studies to demonstrate the developments. Pricing properties of quadratic

penalty functions are presented in Section 7. Concluding remarks and directions of future work are

provided in Section 8.
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2. Market Setting

We consider a market setting based on the work of Pritchard et al. (2010) and Ott (2003). A set

of suppliers (suppliers) G and consumers (demands) D bid into the day-ahead market by providing

price bids αgi ≥ 0, i ∈ G and αdj ≥ 0, j ∈ D, respectively. If a given demand is inelastic, we set the

bid price to αdj = V OLL where V OLL denotes the value of lost load, typically 1,000 $/MWh.

Suppliers and consumers also provide estimates of the available capacities ḡi and d̄j, respectively.

We assume that these capacities satisfy 0≤ ḡi ≤ Capgi and 0≤ d̄j ≤ Capdj where 0≤ Capgi <+∞
is the total installed capacity of the supplier (its maximum possible supply) and 0≤Capdi <+∞
is the total installed capacity of the consumer (its maximum possible demand). The cleared day-

ahead quantities for suppliers and consumers are given by gi and dj, respectively. These satisfy

0≤ gi ≤ ḡi and 0≤ dj ≤ d̄j.
Suppliers and consumers are connected through a network comprising of a set of lines L and a

set of nodes N . For each line `∈L we define its sending node as snd(`)∈N and its receiving node

as rec(`) ∈N . For each node n ∈N , we define its set of receiving lines as Lrecn ⊆L and its set of

sending lines as Lsndn ⊆L. These sets are given by

Lrecn = {`∈L|n= rec(`)}, n∈N (1a)

Lsndn = {`∈L|n= snd(`)}, n∈N . (1b)

Day-ahead capacities f̄` are also typically estimated for the transmission lines. We assume that

these satisfy 0≤ f̄` ≤ Capf` . Here, 0≤ Capf` <+∞ is the installed capacity of line (its maximum

possible value). We define the set of all suppliers connected to node n ∈N as Gn ⊆ G and the set

of demands connected to node n as Dn ⊆D. Subindex n(i) indicates the node at which supplier

i ∈ G is connected, and n(j) indicates the node at which the demand j ∈ D is connected. We use

subindex i exclusively for suppliers and subindex j exclusively for consumers.

At the moment the day-ahead market is cleared, the real-time market conditions are uncertain.

In particular, we assume that a subset of generation, demand, and transmission line capacities are

uncertain. We further assume that discrete distributions comprising a finite number of scenarios

Ω and p(ω) denote the probability of scenario ω ∈ Ω. We also require that
∑

ω∈Ω p(ω) = 1. The

expected value of variable Y (·) is given by E[Y (ω)] =
∑

ω∈Ω p(ω)Y (ω). If Y (ω) is scalar-valued, the

median is denoted as M[Y (ω)] and satisfies the following properties,

P(Y (ω)≥M[Y (ω)]) = P(Y (ω)≤M[Y (ω)]) =
1

2
(2a)

M[Y (ω)] = argmin
m

E[|Y (ω)−m|], (2b)
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where | · | is the absolute value function. The second expression can be used as a definition for a

median for the case of a multivariate Y (ω).

In the real-time market, the suppliers can offer to sell additional generation over the agreed day-

ahead quantities at a bid price αg,+i ≥ 0. The additional generation is given by (Gi(ω)−gi)+ where

Gi(ω) is the cleared quantity in the real-time market and 0≤ Ḡi(ω)≤Capgi is the realized capacity

under scenario ω ∈ Ω. Real-time generation quantities are bounded as 0 ≤ Gi(ω) ≤ Ḡi(ω). Here,

(X −x)+ := max{X −x,0}. The suppliers also have the option of buying electricity at an offering

price αg,−i ≥ 0 to account for any uncovered generation (Gi(ω)− gi)− over the agreed day-ahead

quantities. Here, (X −x)− = max{−(X −x),0}.
Consumers provide bid prices αd,−j ≥ 0 to buy additional demand (Dj(ω)−dj)+ in the real-time

market, where Dj(ω) is the cleared quantity and 0≤ D̄j(ω)≤Capdj is the available demand capacity

realized under scenario ω ∈Ω. We thus have 0≤Dj(ω)≤ D̄j(ω). Consumers also have the option

of selling the demand decifit (Dj(ω)− dj)− at price αd,+j ≥ 0.

The flows cleared in the real-time market are given by F`(ω) and satisfy 0≤ F`(ω)≤ F̄`(ω). Here,

F̄`(ω) is the transmission line capacity realized under scenario ω ∈Ω and satisfies 0≤ F̄`(ω)≤Capf` .

Uncertain line capacities can be used to model N − x contingencies or uncertainties in capacity

due to ambient conditions (e.g., ambient temperature affects line capacity).

We also define day-ahead clearing prices (i.e., locational marginal prices) for each node n ∈ N
as πn. The real-time prices are defined as Πn(ω), ω ∈Ω.

3. Clearing Formulations

In this section, we present energy-only day-ahead deterministic and stochastic clearing formulations.

The term “energy-only” indicates that no unit commitment decisions are made. We consider these

simplified formulations in order to focus on important concepts related to pricing and payments

to suppliers and consumers. Model extensions are left as a topic of future research.

3.1. Deterministic Formulation

In a deterministic setting, the day-ahead market is cleared by solving the following optimization

problem.

min
dj ,gi,f`

∑
i∈G

αgi gi−
∑
j∈D

αdi dj (3a)

s.t.
∑
`∈Lrecn

f`−
∑

`∈Lsnd
n

f` +
∑
i∈Gn

gi−
∑
i∈Dn

di = 0, (πn) n∈N (3b)

− f̄` ≤ f` ≤ f̄`, `∈L (3c)

0≤ gi ≤ ḡi, i∈ G (3d)

0≤ dj ≤ d̄j, j ∈D (3e)
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The objective function of this problem is the day-ahead negative social surplus. The solution of this

problem gives the day-ahead quantities gi, dj, flows f`, and prices πn. The deterministic formulation

assumes a given value for the capacities ḡi, d̄j, and f̄`. Because the conditions of the real-time

market are uncertain at the time the day-ahead problem (3) is solved, these capacities are typically

assumed to be the most probable ones (e.g., the expected value or forecast for supply and demand

capacities) or are set based on the current state of the system (e.g., for line capacities). In particular,

it is usually assumed that ḡi = E[Ḡi(ω)], d̄j = E[D̄j(ω)], and f̄` is the most probable state. One

can also assume that ḡi =Capgi and d̄j =Capdj , and f̄` =Capf` . Such an assumption, however, can

yield high economic penalties if the day-ahead dispatched quantities are far from those realized

in the real-time market. Similarly, one can also assume conservative values worst-case capacities.

This approach, however, can also yield high economic penalties. In this sense, note that day-ahead

capacities ḡi, d̄j, f̄ell provided by market players can be used as mechanisms to hedge against risk.

Doing so, however, gives only limited control because the players need to summarize the entire

possible range of real-time capacities in one statistic. In Section 4 we argue that this limitation

induces a distortion between day-ahead and real-time prices and biases revenues.

When the capacities become known, the ISO uses fixed day-ahead commited quantities gi, dj, f`,

to solve the following real-time clearing problem.

min
Dj(·),Gi(·),F`(·)

∑
i∈G

(
αg,+i (Gi(ω)− gi)+−αg,−i (Gi(ω)− gi)−

)
(4a)

−
∑
j∈D

(
αd,+j (Dj(ω)− dj)+−αd,−j (Dj(ω)− dj)−

)
(4b)

s.t.
∑
`∈Lrecn

F`(ω)−
∑

`∈Lsnd
n

F`(ω) +
∑
i∈Gn

Gi(ω)−
∑
j∈Dn

Dj(ω) = 0, (Πn(ω)), n∈N (4c)

− F̄`(ω)≤ F`(ω)≤ F̄`(ω), `∈L (4d)

0≤Gi(ω)≤ Ḡi(ω), i∈ G (4e)

0≤Dj(ω)≤ D̄j(ω), j ∈D (4f)

The objective function of this problem is the real-time negative social surplus. The solution of this

problem yields different real-time quantities Gi(ω),Dj(ω), flows F`(ω), and prices Πn(ω) depending

on the scenario ω ∈Ω realized.

4. ISO Performance Metrics

In this section, we discuss some objectives of the ISOs from a market operations standpoint and

use these to motivate a new set of metrics to quantify the benefits of using stochastic formulations

over deterministic counterparts. We place special emphasis on the structure of the social surplus

function and on the issue of price consistency. We provide arguments as to why price consistency
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is a key property in achieving fair incentives. We argue that deterministic formulations do not

actually yield price consistency and hence result in a range of undesired effects such as biased

payments, revenue inadequacy, and the need for uplifts.

4.1. Social Surplus

Consider the combination of the day-ahead and real-time costs for suppliers and consumers,

Cg
i (ω) = +αgi gi +αg,+i (Gi(ω)− gi)+−αg,−i (Gi(ω)− gi)− (5a)

Cd
j (ω) =−αdjdi +αd,+j (Dj(ω)− dj)−−αd,−j (Dj(ω)− dj)+. (5b)

We analyze the particular case in which the players bid prices satisfy the following symmetry

property: αg,+i −αgi = αgi −αg,−i = ∆αgi and αd,+j −αdj = αdj −αd,−j = ∆αdj . We refer to ∆αgi and ∆αdj

as the incremental bid prices. To avoid degeneracy, we require that ∆αgi > 0 and ∆αdj > 0.

Theorem 1. Assume that the day-ahead and real-time bids satisfy αg,+i − αgi = αgi − αg,−i = ∆αgi

and αd,+j −αdj = αdj −αd,−j = ∆αdj . The cost functions for suppliers and consumers become

Cg
i (ω) = +αgiGi(ω) + ∆αgi |Gi(ω)− gi|, i∈ G, ω ∈Ω (6a)

Cd
j (ω) =−αdjDj(ω) + ∆αdj |Dj(ω)− dj|, j ∈D, ω ∈Ω. (6b)

Proof:

Cg
i (ω) = αgi gi +αg,+i (Gi(ω)− gi)+−αg,−i (Gi(ω)− gi)−

= αgi gi + (αgi + ∆αgi )(Gi(ω)− gi)+− (αgi −∆αgi )(Gi(ω)− gi)−
= αgi gi +αgi (Gi(ω)− gi)+−αgi (Gi(ω)− gi)−+ ∆αgi (Gi(ω)− gi)+ + ∆αgi (Gi(ω)− gi)−
= αgi gi +αgi (Gi(ω)− gi) + ∆αgi |Gi(ω)− gi)|

= αgiGi(ω) + ∆αgi |Gi(ω)− gi)|. (7)

The last three equalities follow from the facts that |X − x|= (X − x)+ + (X − x)− and X − x=

(X −x)+− (X −x)−. The same property applies to Cd
j (ω) (using the appropriate cost terms). �

Definition 1. (Social Surplus) We define the expected negative social surplus (or social surplus

for short) as

ϕ :=E

[∑
i∈G

Cg
i (ω) +

∑
j∈D

Cd
j (ω)

]
=ϕg +ϕd (8)
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with Cg
i (·),Cd

j (·) defined as in (6) and where ϕg,ϕd are the expected supply and consumer costs,

ϕg :=E

[∑
i∈G

Cg
i (ω)

]
(9a)

=
∑
i∈G

(+αgiE[Gi(ω)] + ∆αgiE [|Gi(ω)− gi|])

ϕd :=E

[∑
j∈D

Cd
j (ω)

]
(9b)

=
∑
j∈D

(
−αdjE [Dj(ω)] + ∆αdjE [|Dj(ω)− dj|]

)
.

This particular structure of the expected social suplus function was noticed by Pritchard et al.

(2010) and provides interesting insights. From Equation (9), we note that the expected quantities

E[Gi(ω)], E[Dj(ω)] act as forecasts of the day-ahead quantities and are priced by using the day-

ahead bids αgi , α
j
d (first term). This immediately suggests that it is the expected cleared quantities

Gi(ω),Dj(ω) and not the capacities ḡi, d̄j that are to be used as forecasts, as is done in the day-ahead

formulation (3). The second term penalizes deviations of the real-time quantities from the day-

ahead commitments using the incremental bids ∆αgi and ∆αdj . The `1 structure of the second term

also suggests that if the expected social surplus function is minimized, day-ahead quantities will

tend to converge to the median of the real-time quantities, because of property (2b). A deterministic

setting, however, cannot guarantee optimality in this sense because it minimizes the day-ahead

and real-time components of the surplus function separately. The expected social surplus for the

deterministic formulation is obtained by solving the day-ahead problem (3) followed by the solution

of the real-time problem (4) for all scenarios ω ∈Ω. The day-ahead surplus and the expected value

of the real-time surplus are then combined to obtain the expected surplus ϕdet.

A deterministic setting can yield surplus inefficiencies because it cannot properly anticipate the

effect of day-ahead decision on real-time market decisions. For instance, certain suppliers can be

inflexible in the sense that they cannot modify their day-ahead supply easily in the real-time mar-

ket (e.g., coal plants). This results in constraints of the form gi =Gi(ω), ω ∈Ω or dj =Dj(ω), ω ∈Ω.

This inflexibility can trigger inefficiencies because the operator is forced to use expensive units in

the real-time market (e.g., combined-cycle) or because load shedding is needed to prevent infeasi-

bilities. Most studies on stochastic market clearing and unit commitment have focused on showing

improvements in social surplus over deterministic formulations. Many of those reports, however,

report minimal benefits. In Section 6 we demonstrate that even when social surplus differences are

negligible, the resulting prices and payments can be drastically different. Consequently, surplus can

be a misleading metric. This situation motivates us to consider alternative metrics for monitoring

performance.
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In the following discussion, we define different metrics based on market behavior in expectation.

A practical way of interpreting these expected metrics is the following: assume that the market

conditions of a given day are repeated over a sequence of days and we collect the results over

such period by using each day as an scenario. We then compute a certain metric (like the social

welfare) to perform the comparisons between the stochastic and deterministic clearing mechanisms

to evaluate performance. In this sense, market behavior in expectation can also interpreted as long

run market behavior.

4.2. Pricing Consistency

We seek that the day-ahead prices be consistent representations of the expected real-time prices.

In other words, we seek that the expected price distortions (also known as expected price premia)

πn −E[Πn(ω)], n ∈ N be zero or at least in a bounded neighborhood. This is desired for various

reasons that we will explain.

Definition 2. (Price Distortions) We define the expected price distortion or expected price

premia as

Mπ
n := πn−E [Πn(ω)] , n∈N . (10)

We say that the price is consistent at node n ∈ N if Mπ
n = 0. In addition, we define the node

average and maximum absolute distortions,

Mπ
avg :=

1

|N |
∑
n∈N

|Mπ
n| (11a)

Mπ
max := max

n∈N
|Mπ

n|. (11b)

Pricing consistency is related to the desire that day-ahead and real-time prices converge, as is

discused by Ott (2003). Note, however, that it is unrealistic to expect that day-ahead and real-

time prices converge in each scenario. This is possible only in the absence of uncertainty (capacity

forecasts are perfect such as in the perfect information setting). Any real-time deviation in capacity

from a day-ahead forecast will lead to a deviation between day-ahead and real-time prices. It

is possible, however, to ensure that day-ahead and real-time prices converge in expectation. This

situation also implies that any deviation of the real-time price from the day-ahead price is entirely

the result of unpredictable random factors. This is also equivalent to saying that day-ahead prices

converge to the expected value of the real-time prices.

Pricing consistency cannot be guaranteed with deterministic formulations because the day-ahead

clearing model forecasts real-time capacities, not real-time quantities. Consequently, players are

forced to “summarize” their possible real-time capacities in single statistics d̄j, ḡi, f̄`. Typically,
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expected values are used. This summarization, however, is inconsistent because it does not effec-

tively averages out real-time market performance as the structure of the surplus function (9)

suggests. In fact, as we show in Section 5, expected values need not be the right statistic to use

in the day-ahead market. This is consistent with the observations made by Morales et al. (2014).

In addition, we note that certain random variables might be difficult to summarize (e.g., if they

follow multimodal and heavy-tailed distributions).

4.3. Suppliers and Consumer Payments

As argued by Kaye et al. (1990), we can also justify the desire of seeking price consistency by

analyzing the payments to the market players. The payment includes the day-ahead settlement plus

the correction payment given at real-time prices, as is the standard practice in market operations.

For more details, see Ott (2003) and Pritchard et al. (2010).

Definition 3. (Payments) The payments to suppliers and from consumers for scenario ωinΩ

are defined as follows:

P g
i (ω) := giπn(i) + (Gi(ω)− gi)Πn(i)(ω)

= gi(πn(i)−Πn(i)(ω)) +Gi(ω)Πn(i)(ω), i∈ G, ω ∈Ω (12a)

P d
j (ω) :=−djπn(i)− (Dj(ω)− dj)Πn(j)(ω)

= dj(Πn(i)(ω)−πn(i))−Dj(ω)Πn(j)(ω), j ∈D, ω ∈Ω. (12b)

We say that the expected payments are fair if they satisfy

E [P g
i (ω)] = +E

[
Gi(ω)Πn(i)(ω)

]
, i∈ G (13a)

E
[
P d
j (ω)

]
=−E

[
Dj(ω)Πn(j)(ω)

]
, j ∈D, (13b)

where

E [P g
i (ω)] = +giMπ

n(i) +E
[
Gi(ω)Πn(i)(ω)

]
, i∈ G (14a)

E
[
P d
j (ω)

]
=−djMπ

n(j)−E
[
Dj(ω)Πn(j)(ω)

]
, j ∈D. (14b)

If the prices are consistent at each node n∈N , the expected payments are fair. The definition of

fairness is motivated by the following observations. The price distortion is factored in the expected

payments. From (14) we see that price distortions (premia) can bias benefits toward a subset of

players. In particular, if the premium at a given node is negative (Mπ
n < 0), a supplier will not

benefit from the day-ahead markey but a consumer will. IfMπ
n > 0, the oppostive holds true. This

situation can prevent consumers from providing price-responsive demands. We can thus conclude

that price consistency ensures payment fairness with respect to suppliers and consumers.



Zavala, Anitescu, and Birge: Stochastic Market Clearing with Consistent Pricing
12 Article submitted to Operations Research; manuscript no.

Price consistency is also desired because, depending on their position toward risk, certain players

can benefit more than others from exploiting the premia. If the premia are positive, risk-averse

players benefit. If the premia are negative, risk-taking players benefit. Therefore, price consistency

also ensures fairness in this sense. In fact, as discussed by Bessembinder and Lemmon (2002), and

efficient market setting must ensure that price consistency holds (regardless of the players position

toward risk) as the number of players converges to infinity.

Kaye Kaye et al. (1990) argue that setting the day-ahead prices to the expected real-time prices

(price consistency) is desirable because it effectively eliminates the day-ahead component of the

market. Consequently, the market operates (in expectation) as a pure real-time market. This situa-

tion is desirable because it implies that the day-ahead market does not interfere with the incentives

provided by real-time markets. This is particularly important for players that benefit from real-

time market variability (such as peaking units and price-response demands). This also implies that

the ISO does not have any preference to either risk-taking or risk-averse players. We also highight

that price consistency does not imply that premia do not exist; they can exist in each scenario but

not in expectation.

Deterministic formulations can yield persistent price premia that benefit a subset of players or

that can be used for market manipulation. For instance, consider the case in which a wind farm

forecast has a very similar mean but very different variance (uncertainty) for several consecutive

days. If the expected forecast is used, the day-ahead prices will be consistently the same for all

days, thus making them more predictable and biased toward a subset of players. While the use of

risk-adaptive reserves can help ameliorate this effect, this approach is not guaranteed to achieve

price consistency.

4.4. Uplift Payments

From (14) we see that if the premium at a given node is negative (Mπ
n < 0), negative payments

(losses) can be incurred by the suppliers. The reason is that gi and the term E
[
Gi(ω)Πn(i)(ω)

]
are non-negative if the prices are non-negative. Moreover, even if the payments are positive, they

might not cover the supplier costs, and the supplier will incur in a loss. This issue is analyzed by

Wong and Fuller (2007) and Morales et al. (2012). It is thus desired that suppliers be paid at least

as much as what they asked for and it is desired that consumers do not pay more than what they

are willing to pay for. This is formally stated in the following definition.

Definition 4. (Wholeness) We say that suppliers and consumers are whole in expectation if

E [P g
i (ω)]≥ E [Cg

i (ω)] , i∈ G (15a)

−E
[
P d
j (ω)

]
≤−E

[
Cd
j (ω)

]
, j ∈D. (15b)
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If the players are not made whole, they can leave the market this hinders diversification. Uplift

payments are routinely used by the ISOs to avoid this situation Galiana et al. (2003), Baldick et al.

(2005). Uplift can result from inadequate representations of system behavior such as nonconvexities

O’Neill et al. (2005). We will demonstrate that uplifts can also arise from inappropiate statisti-

cal representations of real-time market performance as that introduced by deterministic clearing.

Consequently, uplift payments are a useful metric to determine the effectiveness of a given clearing

formulation.

Definition 5. (Uplift Payments) We define the expected uplift payments to suppliers and con-

sumers as

MU
i :=−min{E[P g

i (ω)]−E[Cg
i (ω)],0} , i∈ G (16a)

MU
j :=−min

{
E[P d

j (ω)]−E[Cd
j (ω)],0

}
, j ∈D. (16b)

We also define the total uplift as MU :=
∑
i∈G

MU
i +

∑
j∈D

MU
j .

4.5. Revenue Adequacy

An efficient clearing procedure must ensure that the ISO does not run into financial deficit. In other

words, the ISO must have a positive cash flow (payments collected from consumers are greater

than the payments given to suppliers). We consider the following expected revenue definition, used

by Pritchard et al. (2010), to assess performance with respect to this case.

Definition 6. (Revenue Adequacy) The expected net payment to the ISO is defined as

MISO :=E

[∑
i∈G

P g
i (ω) +

∑
j∈D

P d
j (ω)

]
=
∑
i∈G

E[P g
i (ω)] +

∑
j∈D

E[P d
j (ω)]. (17)

We say that the ISO is revenue adequate in expectation if MISO ≤ 0.

Revenue adequacy guarantees that, in expectation, the ISO will not run into financial deficit.

The collected revenue is used to pay for financial transmission rights (FTRs). This topic is analyzed

by Philpott and Pritchard (2004). In particular, when a line is congested, a price difference is

created between nodes, and this creates a payment to the holder of the FTR. This implies that,

the stronger the friction, the more revenue the holder can collect. We define these FTR payments

in an analogous manner to the suppliers and consumers payments,

Definition 7. (FTRs) The FTR payments for line `∈L and scenario ω ∈Ω are defined as

P f
` (ω) := f`(πsnd(`)−πrec(`)) + (F`(ω)− f`)(Πsnd(`)(ω)−Πrec(`)(ω)). (18)
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Using this definition we have that

E
[
P f
` (ω)

]
= f`(πsnd(`)−πrec(`)) +E

[
(F`(ω)− f`)(Πsnd(`)(ω)−Πrec(`)(ω))

]
= f`

(
Mπ

snd(`)−Mπ
rec(`)

)
+E

[
F`(ω)

(
Πsnd(`)(ω)−Πrec(`)(ω)

)]
. (19)

This definition is an extension of the deterministic variant presented by Philpott and Pritchard

(2004). Note that the forward component of the payment is a function of the price distortion

differences Mπ
snd(`)−Mπ

rec(`). We now show the net payment to the ISO can be made equal to the

sum of the expected FTR payments over all transmission lines and that the day-ahead component

is eliminated if the distortions are zero. To establish this result, consider the following flow balance

equations.

∑
`∈Lrecn

f`−
∑

`∈Lsnd
n

f` +
∑
i∈Gn

gi−
∑
i∈Dn

di = 0, (πn) n∈N (20a)

∑
`∈Lrecn

(F`(ω)− f`)−
∑

`∈Lsnd
n

(F`(ω)− f`) +
∑
i∈Gn

(Gi(ω)− gi)

−
∑
j∈Dn

(Dj(ω)− dj) = 0, (p(ω)Πn(ω)) ω ∈Ω, n∈N (20b)

The first equation is the balance for day-ahead quantities and flows, as in (3b). The second equation

corresponds to the real-time market balance, but this is written in terms of differences, as opposed

to (4c). This is key to establish the following property.

Theorem 2. Assume the flow balance equations (20a)-(20b) are satisfied for a given set of cleared

quantities and flows gi,Gi(·), dj,Dj(·), f`,F`(·), and let MISO be given by (17). Then

MISO =−
∑
`∈L

E
[
P f
` (ω)

]
. (21)

If, in addition, the price distortion differences satisfy
(
Mπ

snd(`)−Mπ
rec(`)

)
= 0 for all `∈L, then

MISO =−
∑
`∈L

E
[
F`(ω)

(
Πsnd(`)(ω)−Πrec(`)(ω)

)]
. (22)

Proof: If the flow balances hold, we have

0 =
∑
n∈N

πn

 ∑
`∈Lrecn

f`−
∑

`∈Lsnd
n

f` +
∑
i∈Gn

gi−
∑
j∈Dn

dj


+E

∑
n∈N

Πn(ω)

 ∑
`∈Lrecn

(F`(ω)− f`)−
∑

`∈Lsnd
n

(F`(ω)− f`) +
∑
i∈Gn

(Gi(ω)− gi)−
∑
j∈Dn

(Dj(ω)− dj)

 .
(23)
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Consequently, for any arbitrary set of prices πn,Πn(·), we have

∑
n∈N

πn

 ∑
`∈Lrecn

f`−
∑

`∈Lsnd
n

f`

+E

∑
n∈N

Πn(ω)

 ∑
`∈Lrecn

(F`(ω)− f`)−
∑

`∈Lsnd
n

(F`(ω)− f`)


=
∑
n∈N

πn

(∑
i∈Gn

gi−
∑
j∈Dn

dj

)
+E

[∑
n∈N

Πn(ω)

(∑
i∈Gn

(Gi(ω)− gi)−
∑
j∈Dn

(Dj(ω)− dj)
)]

=
∑
i∈Gn

πn(i)gi +E

[∑
i∈Gn

Πn(i)(ω) (Gi(ω)− gi)
]
−
∑
j∈Dn

πn(j)dj −E

[∑
j∈Dn

Πn(j)(ω) (Dj(ω)− dj)
]

=MISO.

The last expression is holds from (14) and from the definition (17). We also have that

∑
n∈N

πn

 ∑
`∈Lrecn

f`−
∑

`∈Lsnd
n

f`

+E

∑
n∈N

Πn(ω)

 ∑
`∈Lrecn

(F`(ω)− f`)−
∑

`∈Lsnd
n

(F`(ω)− f`)


=
∑
n∈N

(πn−E[Πn(ω)])

 ∑
`∈Lrecn

f`−
∑

`∈Lsnd
n

f`

+E

∑
n∈N

Πn(ω)

 ∑
`∈Lrecn

F`(ω)−
∑

`∈Lsnd
n

F`(ω)

 .
We use the following identity:

∑
n∈N

πn

 ∑
`∈Lrecn

f`−
∑

`∈Lsnd
n

f`

=
∑
`∈N

f`(πrec(n)−πsnd(n)). (24)

The first result follows by applying this identity to day-ahead and real-time flows and by using

the definition of the expected FTR payments and price distortions. The second result follows by

setting the price distortions to zero for all n∈N . �

Theorem 2 establishes a connection between the ISO revenue and FTR payments and provides

the following insights.

• FTR payments are given by the price differences between nodes times the flows. If the price

difference is large, the FTR payment also will be large. Theorem 2 states that if the prices are

consistent, we have that the ISO net revenue is the expected value of the FTR payments in the real-

time market, which implies that the day-ahead component is eliminated. This property deserves

special attention. Recent studies have found persistent positive premia in electricity markets. The

ISOs have incorporated purely financial players (virtual players) in an attempt to reduce these

price gaps. The evidence provided by Bowden et al. (2009) and Birge et al. (2013), however,

demonstrates that this has not been fully effective. A hypothesis of Birge et al. (2013) is that certain

financial players manipulate their demand bids in trying to increase their FTR payments by creating

artificial congestion. If the day-ahead component of the FTR payments is effectively eliminated,
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FTR payments become less predictable, and thus the market is more difficult to manipulate.

In other words, the market is affected only by unpredictable randomness. Note that it is also

possible (as we demonstrate in Section 6) that artificial premia are being introduced into the market

because of the inability of deterministic clearing settings to properly average out real-time market

conditions.

• If revenue adequacy holds, then
∑

`∈LE
[
P f
` (ω)

]
≥ 0. Consequently, a lack of revenue adequacy

will make FTR holders incur a loss.

• Revenue adequacy and fair payments are not mutually exclusive. A given clearing can yield

fair payments but not revenue adequacy and viceversa. Consequently, we seek to have the clearing

satisfies both revenue adequacy and payment fairness.

• If all prices in the network are equal for each scenario (for any quantities and flows satisfying

the network equations), thenMISO = 0. The reason is that, if prices are equal, then FTR payments

are zero. From Theorem 2 we have that the FTR payments are equal to the net ISO revenueMISO.

This case includes the trivial case in which all lines in the network are uncongested or, equivalently,

that the network has a single node.

4.6. Stochastic Formulation

Motivated by the structure of the expected surplus function and of the flow balance equations and

the resulting properties, we consider the stochastic market clearing formulation.

min
dj ,Dj(·),gi,Gi(·),f`,F`(·)

ϕsto :=E

[∑
i∈G

αgiGi(ω) + ∆αgi |Gi(ω)− gi|
]

+E

[∑
j∈D

−αdjDj(ω) + ∆αdj |Dj(ω)− dj|
]

+E

[∑
`∈L

∆αf` |F`(ω)− f`|
]

(25a)

s.t.
∑
`∈Lrecn

f`−
∑

`∈Lsnd
n

f` +
∑
i∈Gn

gi−
∑
i∈Dn

di = 0, (πn) n∈N (25b)

∑
`∈Lrecn

(F`(ω)− f`)−
∑

`∈Lsnd
n

(F`(ω)− f`) +
∑
i∈Gn

(Gi(ω)− gi)

−
∑
j∈Dn

(Dj(ω)− dj) = 0, (p(ω)Πn(ω)) ω ∈Ω, n∈N (25c)

− F̄`(ω)≤ F`(ω)≤ F̄`(ω), ω ∈Ω, `∈L (25d)

0≤Gi(ω)≤ Ḡi(ω), ω ∈Ω, i∈ G (25e)

0≤Di(ω)≤ D̄j(ω), ω ∈Ω, j ∈D (25f)
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Note that the objective function can be written as

ϕsto :=ϕ+
∑
`∈L

∆αf`E [|F`(ω)− f`|] , (26)

where ϕ is the negative surplus function defined in (8) and ∆αf` > 0 are penalty parameters.

The stochastic setting provides a natural mechanism to anticipate the effects of day-ahead deci-

sions on real-time market corrections, and it minimizes the expected social surplus directly, which

includes contributions from the day-ahead and real-time markets. This optimality property gives

rise to several important pricing and payment properties, as we will see in the following section.

The above formulation is partially based on the one proposed by Pritchard et al. (2010). The

common features are the following.

• The real-time prices (duals of the network balance (25c)) have been weighted by their cor-

responding probabilities. This feature will enable us to construct the Lagrange function of the

problem in terms of expectations.

• The network balance in the real-time market is written in terms of the residual quantities

(Gi(ω)− gi), (Dj(ω)− dj), and flows (F`(ω)− f`). This feature will be key in obtaining consistent

prices and it emphasizes the fact that the real-time market is a market of corrections. As shown in

Theorem 2, this structure also guarantees consistency between the ISO net revenue and the FTR

payments.

The differences between the proposed formulation and the one presented by Pritchard et al.

(2010) are the following.

• The formulation does not impose bounds on the day-ahead quantities and flows. In Section 5 we

will prove that the penalization terms render bounds for the day-ahead quantities and flows redun-

dant. In Section 6 we will demonstrate that considering bounds on day-ahead variables together

with penalization terms can lead to price inconsistency.

• The objective function penalizes deviations between day-ahead and real-time flows in addition

to supply and demand quantities. In Section 5 we will show that this is key to ensure consistent

pricing throughout the network.

• We allow for randomness in the transmission line capacities. In Section 5 we will see that doing

so has no effect on the underlying properties of the model.

We refer to the solution of the stochastic formulation (25) as the here-and-now solution to reflect

the fact that a single implementable decision must be made now in anticipation of the uncertain

future and that day-ahead quantities and flows are scenario-independent. We also consider the

(ideal, non-implementable) wait-and-see (WS) solution. For details, refer to Birge and Louveaux

(1997). In the WS setting, we assume that the capacities for each scenario are actually known at
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the moment of decision. In other words, we assume availability of perfect information. In order to

obtain the WS solution, the clearing problem (25) is solved by allowing first-stage decisions gi, dj, f`

to be scenario-dependent. It is not difficult to prove that in this case, each scenario generates

day-ahead prices and quantities that are equal to real-time counterparts because no corrections

are necessary. We denote the expected social surplus obtained under perfect information as ϕstoWS.

The penalty structure of the social surplus function opens the possibility of considering different

formulations. For instance, quadratic penalties have been proposed by Pritchard et al. (2010)

and Khazaei et al. (2013), that result from using a quadratic supply and demand costs function.

Comparisons of the proposed framework with quadratic penalty formulations are presented in

Section 7.

To motivate the following discussions, we use a stochastic formulation with no network con-

straints:

min
dj ,gi,Gi(·),D(·)

E

[∑
i∈G

αgiGi(ω) + ∆αgi |Gi(ω)− gi|
]

+E

[∑
j∈D

−αdjDj(ω) +αdj |Dj(ω)− dj|
]

(27a)

s.t.
∑
i∈G

gi =
∑
j∈D

dj (π) (27b)∑
i∈G

(Gi(ω)− gi) =
∑
j∈D

(Dj(ω)− dj) ω ∈Ω (p(ω)Π(ω)) (27c)

0≤Gi(ω)≤ Ḡi(ω), i∈ G, ω ∈Ω (27d)

0≤Dj(ω)≤ D̄(ω), j ∈D, ω ∈Ω. (27e)

This formulation assumes infinite transmission capacity. In this case, the entire network collapses

into a single node; consequently, a single day-ahead price π and real-time price Π(ω) are used.

5. Properties of Stochastic Clearing

In this section, we prove that the stochastic formulations yield bounded price distortions and

that these distortions can be made arbitrarily small, leading to payment fairness. In addition, we

prove that day-ahead quantities are bounded by real-time quantities and that they converge to

the medians of the real-time quantities when the distortions are zero. Further, we prove that the

formulation yields revenue adequacy and zero uplifts in expectation.

5.1. No Network Constraints

To simplify the presentation, we begin with the single-node formulation and then generalize the

results to the case of network constraints. We recall that the partial Lagrange function of the single

node problem (27) is given by

L(dj,Dj(·), gi,Gi(·), π,Π(·)) =
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E

[∑
i∈G

αgiGi(ω) + ∆αgi |Gi(ω)− gi|
]
−E

[∑
j∈D

αdjDj(ω)−αdj |Dj(ω)− dj|
]

−π
(∑
i∈G

gi−
∑
j∈D

dj

)
−E

[
Π(ω)

(∑
i∈G

(Gi(ω)− gi)−
∑
j∈D

(Dj(ω)− dj)
)]

. (28)

Note that the contribution of the balance constraints can be written in expected value form if we

weight the Lagrange multipliers of the balance equations (prices) by the probabilities p(ω).

Theorem 3. Consider the single-node stochastic clearing problem (27), and assume that the incre-

mental bid costs satisfy ∆αdj > 0, j ∈D and ∆αgi > 0, i∈ G. The price distortion Mπ = π−E[Π(ω)]

is bounded as

|Mπ| ≤∆α, (29)

where

∆α= min

{
min
i∈G

∆αgi ,min
j∈D

∆αdj

}
. (30)

Proof: The stationarity conditions of the partial Lagrange function with respect to the day-ahead

quantities dj, gi are given by

∂djL=0 = ∆αdjP(dj ≥Dj(ω))−∆αdjP(dj ≤Dj(ω)) +π−E [Π(ω)] j ∈D (31a)

∂giL=0 = ∆αgiP(gi ≥Gi(ω))−∆αgiP(gi ≤Gi(ω))−π+E [Π(ω)] i∈ G, (31b)

where P(A) denotes the probability of event A. To obtain these relationships, we used the property

∂x|X −x|=
{

+1 ifX <x
−1 ifX >x.

(32)

From this we have that

∂xE[|X(ω)−x|] =E
[
1X(ω)<x−1X(ω)>x

]
=E

[
1X(ω)<x + 1X(ω)=x−1X(ω)=x−1X(ω)>x

]
= P(X(ω)≤ x)−P(X(ω)≥ x). (33)

Here, 1A is the indicator function of event A. Rearranging expression (31a), we obtain

0 = ∆αdjP(dj ≥Dj(ω))−∆αdjP(dj ≤Dj(ω)) +π−E [Π(ω)]

= ∆αdjP(dj ≥Dj(ω))−∆αdj (1−P(dj ≥Dj(ω)) +π−E [Π(ω)]

= 2∆αdjP(dj ≥Dj(ω))−∆αdj +π−E [Π(ω)] . (34)
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Similarly, (31b) becomes

0 = 2∆αgiP(gi ≥Gi(ω))−∆αgi −π+E [Π(ω)] . (35)

If we rearrange expressions (34)-(35), we obtain

P(dj ≥Dj(ω)) =
∆αdj −π+E [Π(ω)]

2∆αdj
(36a)

P(gi ≥Gi(ω)) =
∆αgi +π−E [Π(ω)]

2∆αgi
. (36b)

Because
∑

ω∈Ω p(ω) = 1, we know that 0≤ P(dj ≥Dj(ω))≤ 1 and 0≤ P(gi ≥Gi(ω))≤ 1. We thus

have,

0≤ ∆αdj −π+E [Π(ω)]

2∆αdj
≤ 1 (37a)

0≤ ∆αgi +π−E [Π(ω)]

2∆αgi
≤ 1. (37b)

These constraints have a feasible solution if ∆αdj ,∆α
g
i > 0. The above relationships are equivalent

to,

−∆αdj ≤ π−E [Π(ω)]≤∆αdj (38a)

−∆αgi ≤ π−E [Π(ω)]≤∆αgi . (38b)

or, equivalently,

|π−E [Π(ω)] | ≤∆αdj , j ∈D (39a)

|π−E [Π(ω)] | ≤∆αgi , i∈ G. (39b)

The proof is complete. �

The price distortion is bounded by the smallest of all ∆αgi and ∆αdj , which we denote as ∆α.

This implies that if we let ∆α (i.e., at least one incremental bid) be sufficiently small, then we

can make the price distortion Mπ arbitrarily small. This is a highly desirable feature because it

makes the price distortion robust to market manipulation. Note also that the bound is independent

of the cleared quantities, which also reflects the robust behavior induced by the `1 penalties.

Boundedness of the price distortion also eliminates the day-ahead component of the suppliers

and consumer payments and thus achieves payment fairness. We highlight that the condition

∆αdj ,∆α
g
i > 0 assumed that Theorem 3 is also required for nondegeneracy of the solution.

We now prove that the day-ahead quantities dj, gi obtained from the stochastic clearing model

are implicitly bounded by the minimum and maximum real-time quantities. Consequently, no day-

ahead bounds are needed.
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Theorem 4. Consider the single-node stochastic clearing problem (27), and let the assumptions

of Theorem 3 hold. The day-ahead quantities are bounded by the real-time quantities as

min
ω∈Ω

Dj(ω)≤ dj ≤max
ω∈Ω

Dj(ω), j ∈D (40a)

min
ω∈Ω

Gi(ω)≤ gi ≤max
ω∈Ω

Gi(ω), i∈ G. (40b)

Proof: From (38), consider the case in which the price distortion hits the lower bound for a given

demand, π−E [Π(ω)] =−∆αdj . From (36a) we have

0 = 2∆αdjP(dj ≥Dj(ω))− 2∆αdj , (41)

and P(dj ≥ Dj(ω)) = 1. This implies that dj ≥ Dj(ω), ∀ω ∈ Ω and dj ≥ min
ω∈Ω

Dj(ω) ≥ 0. If π −
E [Π(ω)] = −∆αdj , we have P(dj ≤ Dj(ω)) = 1. This implies that dj ≤ Dj(ω), ∀ω ∈ Ω and dj ≤
max
ω∈Ω

Dj(ω). We thus conclude that dj is bounded from below by minω∈ΩDj(ω) and from above by

maxω∈ΩDj(ω). The same procedure can be followed to prove that gi is bounded from below by

minω∈ΩGi(ω) and from above by maxω∈ΩGi(ω). �

The implicit bound on the day-ahead quantities dj, gi is a key property of the stochastic model

proposed because it implies that we do not have to choose day-ahead capacities ḡi, d̄j (e.g., sum-

marization statistics). These are automatically set by the model through the scenario information.

This is important because, as we have mentioned, obtaining proper summarizing statistics for

complex probability distributions might not be trivial. This also prevents the possibility of players

manipulating their day-ahead capacities.

We now prove that if the price distortion is zero, the day-ahead quantities converge to the median

of the real-time quantities.

Theorem 5. Consider the stochastic clearing problem (27) and let the assumptions of Theorem 3

hold. If the price distortion is zero at the solution, then

dj =M[Dj(ω)], j ∈D (42a)

gi =M[Gi(ω)], i∈ G. (42b)

Proof: From (36a)-(36b) we have that if π = E [Π(ω)] = 0, then P(dj ≥Dj(ω)) = 1
2
, which implies

dj =M[Dj(ω)], j ∈D. We also have that P(gi ≥Gi(ω)) = 1
2
, which implies gi =M[Gi(ω)], i∈ G. �

This result implies that the day-ahead quantities dj, gi can obe guaranteed to converge to the

expected values of the real-time quantities E[Dj(ω)],E[Gi(ω)] only for the case in which the prob-

ability distributions are symmetric. The reason is that, in such a case, the mean and the median

coincide. In other words, the expected value is not necessarily the right statistic to be used for the
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capacities in the day-ahead market. In fact, for our model, it is also not necessarily the median

(although from the model properties we see that such behavior can be expected if the price distor-

tion is zero). We emphasize that convergence to median quantities is the result of the `1 penalty

structure of the surplus function. In Section 7 we show that a quadratic penalty yields day-ahead

quantities converging to the expected value of the real-time quantities.

We now prove that the stochastic formulation yields zero uplifts in expectation. Revenue ade-

quacy is not considered because this is a single-node problem. We use the strategy followed by

Morales et al. (2012). For this discussion, we denote a minimizer of the partial Lagrange function

(subject to the constraints (27d) and (27e)) as d∗j ,Dj(·)∗, g∗i ,Gi(·)∗, π∗,Π∗(·). Because the problem

is convex, we know that the optimal prices π∗,Π∗(·) satisfy

(d∗j ,Dj(·)∗, g∗i ,G∗i (·)) = argmin
dj ,Dj(·),gi,Gi(·)

L(dj,Dj(·), gi,Gi(·), π∗,Π∗(·)) s.t. (27d)− (27e). (43)

Moreover, at fixed π∗,Π∗(·), the partial Lagrange function can be separated as

L(dj,Dj(·), gi,Gi(·), π∗,Π∗(·)) =
∑
i∈G

Lgi (gi,Gi(·), π∗,Π∗(·)) +
∑
j∈D

Ldj (dj,Dj(·), π∗,Π∗(·)), (44)

where

Lgi (gi,Gi(·), π∗,Π∗(·)) :=E[Cg
i (ω)]−E[P g

i (ω)], i∈ G (45a)

Ldj (dj,Dj(·), π∗,Π∗(·)) :=E[Cd
j (ω)]−E[P d

j (ω)], j ∈D. (45b)

Consequently, one can minimize the partial Lagrange function by minimizing (45) independently.

Theorem 6. Consider the single-node clearing problem (27), and let the assumptions of Theo-

rem 3 hold. Any minimizer d∗j ,Dj(·)∗, g∗i ,Gi(·)∗, π∗,Π∗(·) of (27) yields zero uplift payments in

expectation:

MU
i = 0, i∈ G (46a)

MU
j = 0, j ∈D. (46b)

Proof: It suffices to show that E[Cg
i (ω)] ≥ E[P g

i (ω)] for all i ∈ G and E[P d
j (ω)] ≤ E[Cd

j (ω)] for

all j ∈ D. For fixed π∗,Π∗(ω), the candidate solution dj = 0,Dj(·) = 0, gi = 0,Gi(·) = 0 is fea-

sible for (43) with values Lgi (gi,Gi(·), π∗,Π∗(·) = 0, i ∈ G and Ld(dj,Dj(·), π∗,Π∗(·) = 0, j ∈ D.

Because the candidate is suboptimal we have Lgi (g∗i ,G∗i (·), π∗,Π∗(·)) ≤ Lgi (gi,Gi(·), π∗,Π∗(·)) = 0

and Ldj (d∗j ,D∗j (·), π∗,Π∗(·))≤ 0. Equation (45) and the definition of MU
i and MU

j in (16) give the

result. �
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5.2. Network Constraints

Having established some insights into the properties of the stochastic model, we now turn our

attention to the full stochastic problem with network constraints (25) and generalize our results.

It is well known that stochastic formulations yield a better expected social surplus. This follows

from the well-known inequality (see Birge and Louveaux (1997)):

ϕstoWS ≤ϕsto ≤ϕdet. (47)

This follows from the fact that the stochastic formulation will lead to a lower recourse cost (real-time

penalty costs) than will the deterministic solution because the deterministic day-ahead problem

does not anticipate recourse actions. The wait-and-see setting can perfectly anticipate real-time

market conditions and therefore its real-time penalties are zero. This makes it the optimal, but

nonimplementable, policy.

We now establish boundedness of the price distortions throughout the network. To establish

our result, we need the following definitions. We define the subset N̄ ⊆N containing all nodes at

which at least one supplier or consumer is connected. We recall that the partial Lagrange function

problem (25) is given by

L(dj,Dj(·), gi,Gi(·), f`,F`(·), πn,Πn(·)) =

E

[∑
i∈G

αgiGi(ω) + ∆αgi |Gi(ω)− gi|
]
−E

[∑
j∈D

αdjDj(ω)−αdj |Dj(ω)− dj|
]

+
∑
`∈L

∆αf`E [|F`(ω)− f`|]

−
∑
n∈N

πn

 ∑
`∈Lrecn

f`−
∑

`∈Lsnd
n

f` +
∑
i∈Gn

gi−
∑
i∈Dn

di


−E

∑
n∈N

Πn(ω)

 ∑
`∈Lrecn

(F`(ω)− f`)−
∑

`∈Lsnd
n

(F`(ω)− f`) +
∑
i∈Gn

(Gi(ω)− gi)−
∑
j∈Dn

(Dj(ω)− dj)

 .
(48)

Theorem 7. Consider the stochastic clearing model (25) and assume that the incremental bid

costs satisfy ∆αdj > 0, j ∈D, ∆αgi > 0, i∈ G, and ∆αf` > 0, `∈L. The price distortions Mπ
n, n∈N

are bounded as

|Mπ
n| ≤∆αn, n∈ N̄ , (49a)

|Mπ
snd(`)−Mπ

rec(`)| ≤∆αf` , `∈L, (49b)

where

∆αn = min

{
min
i∈Gn

∆αgi , min
j∈Dn

∆αdj

}
, n∈ N̄ . (50)
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Proof: The stationarity conditions of the partial Lagrange function with respect to the day-ahead

quantities gi, dj are given by

∂djL=0 = ∆αdjP(dj ≥Dj(ω))−∆αdjP(dj ≤Dj(ω)) +πn(j)−E
[
Πn(j)(ω)

]
j ∈D (51a)

∂giL=0 = ∆αgiP(gi ≥Gi(ω))−∆αgiP(gi ≤Gi(ω))−πn(i) +E
[
Πn(i)(ω)

]
i∈ G, (51b)

where we recall that n(i) is the node at which supplier i is connected and n(j) is the node at which

demand j is connected. Following the same bounding procedure used in the proof of Theorem 3,

we obtain

−∆αgj ≤Mπ
n(j) ≤∆αdj , j ∈D (52a)

−∆αgi ≤Mπ
n(i) ≤∆αgi , i∈ G. (52b)

Because ∆αn is the smallest incremental bid price at node n∈ N̄ , we obtain the bound

−∆αn ≤Mπ
n ≤∆αn, n∈ N̄ . (53)

We now establish the second result. From the stationarity conditions with respect to the day-ahead

flows we obtain

0 = ∆αf`P(f` ≥ F`(ω))−∆αf`P(f` ≤ F`(ω)) +πsnd(`)−E
[
Πsnd(`)

]
−πrec(`) +E

[
Πrec(`)

]
, `∈L. (54)

Because 0≤ P(f` ≥ F`(ω))≤ 1 and P(f` ≥ F`(ω)) = 1−P(f` ≤ F`(ω)), we have

P(f` ≥ F`(ω)) =
∆αf` +Mπ

snd(`)−Mπ
rec(`)

2∆αf`
(55)

and

−∆αf` ≤Mπ
snd(`)−Mπ

rec(`) ≤∆αf` , `∈L. (56)

The proof is complete. �

If ∆αf` are made arbitrarily small, then the difference between the distortions at adjacent nodes

can be made arbitrarily small. From Theorem 2 we have that this is enough to guarantee that

the day-ahead component of the FTR payments is eliminated. The boundedness of the difference

between distortions also implies that if the price distortion on one of the extremes of the line is

bounded, then the price distortion at the other extreme will be bounded. Thus, the price distortions

remain bounded throughout the network by the incremental bid costs at the nodes n ∈ N̄ , which

guarantees payment fairness thoughout the network. To illustrate this, consider the case in which
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the distortion at the sending node of a given line is bounded as −∆αsnd(`) ≤Mπ
snd(`) ≤∆αsnd(`)

and that the distortion difference is bounded as −∆αf` ≤Mπ
snd(`)−Mπ

rec(`) ≤∆αf` . We thus have

−∆αf` −∆αsnd(`) ≤Mπ
rec(`) ≤∆αf` + ∆αsnd(`). (57)

If ∆αf` is sufficiently small then the distortion at the receiving and sending nodes have the same

bounds; and if the distortion ∆αsnd(`) is made sufficiently small, then both distortions can be made

arbitrarily small. We now state two results that are natural extensions of Theorems 5 and 4.

Theorem 8. Consider the stochastic clearing model (25), and let the assumptions of Theorem 7

hold. The day-ahead quantities and flows are bounded by the real-time quantities and flows as

min
ω∈Ω

Dj(ω)≤ dj ≤max
ω∈Ω

Dj(ω), j ∈D (58a)

min
ω∈Ω

Gi(ω)≤ gi ≤max
ω∈Ω

Gi(ω), i∈ G (58b)

min
ω∈Ω

F`(ω)≤ f` ≤max
ω∈Ω

F`(ω), `∈L. (58c)

Proof: For the suppliers and demands, we can use the same procedure used in the proof of Theorem

4. The bounds on the day-ahead flows follow the same argument as well. From (54) we have the

implicit bound 0 ≤ P(f` ≥ F`(ω)) ≤ 1, because
∑

ω∈Ω p(ω) = 1. If P(f` ≥ F`(ω)) = 1 then we have

f` ≥minω∈ΩF`(ω). If P(f` ≤ F`(ω)) = 1, then f` ≤maxω∈ΩF`(ω). �

Theorem 9. Consider the stochastic clearing problem (25), and let the assumptions of Theorem

7 hold. If the price distortions Mπ
n, n∈N are zero at the solution, then

dj =M[Dj(ω)], j ∈D (59a)

gi =M[Gi(ω)], i∈ G (59b)

f` =M[F`(ω)], `∈L. (59c)

Proof: From (51) we have that if Mπ
n, n ∈ N̄ , then P(dj ≥ Dj(ω)) = 1

2
, which implies dj =

M[Dj(ω)], j ∈ D. We also have that P(gi ≥Gi(ω)) = 1
2
, which implies gi = M[Gi(ω)], i ∈ G. From

(55) we see that this implies that Mπ
snd(`),Mπ

rec(`) = 0 and P(f` ≥ F`(ω)) = 1
2
. �

We treat the penalty terms purely as a means to constrain the day-ahead flows and induce the

desired pricing properties. Our results indicate that this can be done with no harm by allowing

∆αf` to be sufficiently small. Moreover, making these arbitrarily small gurantees that the expected

social surplus of the stochastic problem (26) satisfies ϕsto ≈ϕ. The alternative, is to simply impose

day-ahead bounds on the form −f̄` ≤ f` ≤ f̄` and to eliminate the `1 penalty terms on the flows. In

this case, however, we cannot guarantee that the difference between price distortions at adjacent

nodes is bounded, as we illustrate in the next section. In addition, similar to the case of day-ahead
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quantities, imposing day-ahead bounds on flows would require us to choose a proper statistic for

f̄`, which might not be trivial to do.

We now prove revenue adequacy and zero uplift payments in expectation for the network-

constrained formulation. We denote a minimizer of the partial Lagrange function (48) (subject to

the constraints (25d) and (25f)) as d∗j ,D
∗
j (·), g∗i ,G∗i (·), f∗` ,F ∗` (·), π∗n,Π∗n(·). Because the problem is

convex, we know that the prices π∗n,Π
∗
n(·) satisfy

(d∗j ,Dj(·)∗, g∗i ,G∗i (·), f∗` ,F ∗` (·)) = argmin
dj ,Dj(·),gi,Gi(·),f`,F`(·)

L(dj,Dj(·), gi,Gi(·), f`,F`(·), π∗,Π∗(·))

s.t. (25d)− (25f). (60)

Moreover, at π∗n,Π
∗
n(·), the partial Lagrange function can be separated as

L(dj,Dj(·), gi,Gi(·), f`,F`(·), π∗n,Π∗n(·)) =∑
i∈G

Lgi (gi,Gi(·), π∗n,Π∗n(·)) +
∑
j∈D

Ldj (dj,Dj(·), π∗n,Π∗n(·))−Lf (f`,F`(·), π∗,Π∗(·)). (61)

where the first two terms are defined in (45) and

Lf (f`,F`(·), π∗n,Π∗n(·)) =∑
n∈N

πn

 ∑
`∈Lrecn

f`−
∑

`∈Lsnd
n

f`

+E

∑
n∈N

Πn(ω)

 ∑
`∈Lrecn

(F`(ω)− f`)−
∑

`∈Lsnd
n

(F`(ω)− f`)

 (62)

Consequently, one can minimize the partial Lagrange function by maximizing (62) and minimizing

(45) independently. From Theorem 2 note that Lf (f`,F`(·), π∗,Π∗(·)) =MISO.

Theorem 10. Consider the stochastic clearing problem (25), and let the assumptions of Theorem

7 hold. Any minimizer d∗j ,Dj(·)∗, g∗i ,Gi(·)∗, f∗` ,F ∗` , π∗n,Π∗n(·) of (25) yields zero uplift payments for

all players and revenue adequacy in expectation:

MISO ≤ 0 (63a)

MU
i = 0, i∈ G. (63b)

Proof: At fixed π∗n,Π
∗
n(·) we note that f` = 0,F`(·) = 0 is a feasible candidate solution for the

maximization of Lf (f`,F`(·), π∗n,Π∗n(·)) and that, at this suboptimal point, this term is zero. We

thus have Lf (f∗` ,F
∗
` (·), π∗n,Π∗n(·))≤ 0, which, from Theorem 2, implies MISO ≤ 0. �

We highlight that the introduction of the penalty term for flows does not affect revenue adequacy

and cost recovery because the partial Lagrange function remains separable for fixed prices.
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6. Computational Studies

In this section, we illustrate the different properties of the stochastic model proposed. We also

demonstrate that the stochastic model outperforms the deterministic one in all the metrics pro-

posed. We also highlight that arguments based on social surplus alone can be misleading in assessing

the benefits of stochastic formulations.

6.1. System I

We first consider system I sketched in Figure 1. The system has two deterministic suppliers on nodes

1 and 3 and a stochastic supplier on node 2. The stochastic supplier has three possible capacity

scenarios G2(ω) = {25,50,75} MWh of equal probabilities p(ω) = {1/3,1/3,1/3}. For deterministic

clearing, the day-ahead capacity limit ḡ for the wind supplier will be set to 50 MWh, the expected

value forecast. The demand in node 2 is deterministic and inelastic at a level of 100 MWh. We

use αd = V OLL=1000$/MWh as the bid price and an incremental bid price of ∆αd = 0.001. The

bid prices αgi for the suppliers are {10,0.1,20} $/MWh, and the incremental bid prices ∆αgi are

{1.0,0.01,2.0} $/MWh. The transmission capacities of lines 1→ 2 and 3→ 2 are deterministic and

set to F̄1→2 = {25,25,25} MWh and F̄2→3 = {50,50,50}, respectively. The line capacities have been

designed such that the system becomes stressed in the scenario in which the stochastic supplier

delivers only 25 MWh. In this scenario, both transmission lines become congested, and real-time

prices will reach high values.

Ḡ = 50
↵ = 20
Ḡ = 50

↵ = 10

D̄ = 100
↵ = 1000

1 2 32

Ḡ(!) = {25, 50, 75}
↵ = 1

F̄ = 25 F̄ = 50

Figure 1 Scheme of System I.

We compare the performance of the deterministic, stochastic here-and-now, and the stochastic

wait-and-see (WS) settings. The results are presented in Table 2. We compare the expected surplus

for the suppliers ϕg as well as prices and quantities. Because the demand is inelastic, the surplus

for the consumers ϕload is a constant. Consequently, we show only ϕg. For the deterministic setting,

the expected supply surplus ϕg is $783, and the day-ahead prices πn are {10,20,20} $/MWh. The
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price difference between the first two nodes results from the binding day-ahead flow for line 1→ 2

line at 25 MWh. In the real-time market, the prices for each scenario Πn(ω) are {10,803,412},
{14,21,21}, and {10,16,16} $/MWh with expected value E[Πn(ω)] ={10,280,150}. There is a strong

distortion in the prices, indicated by the metrics Mπ
avg = 130 and Mπ

max = 260. The deterministic

supplier biases the solution toward the expected capacity of the wind supplier of 50 MWh and is

overly optimistic about conditions in the real-time market.

We now analyze the clearing of the stochastic formulation. The day-ahead prices are {10,276,148}
and the real-time prices are {10,790,406}, {10,20,20}, {10,18,18} with expected value {10,276,148}.
The price distortion metricsMπ

avg,Mπ
max are both zero. We note that the expected surplus as well

as the day-ahead and real-time quantities for the stochastic and deterministic formulations are the

same. The reason is that the the deterministic and stochastic formulations have the same primal

solution. This situation might lead the practitioner to believe that no benefits are obtained from

the stochastic formulation. The prices obtained, however, are completely different. Hence once can

see that arguments based on social surplus can be misleading.

The different prices obtained with both formulations lead to drastically different payment dis-

tributions among the market participants. As seen in Table 2, for the deterministic setting the

suppliers obtain expected payments E[P g
i (ω)] of {250,-5553,3799} $. The wind supplier receives

negative payments, and requires an uplift to enable cost recovery. In this case, the expected cost

E[Cg
i (ω)] for the wind supplier is $5 and thus requires an expected uplift MU

i of $5,548. For

the stochastic formulation, the expected payments are ${250,7316,6886}. The wind supplier has

positive payments and no uplift is required. This situation illustrates that the stochastic setting

diversifies resources more efficiently.

From Table 1 we note that the stochastic WS solution is consistent in that it leads to no

corrections of quantities in the real-time market and it yields the same day-ahead and real-time

prices. Thus, we can guarantee convergence of day-ahead and real-time prices for each scenario

only in the presence of perfect information. From Table 2 we can see that even if the social surplus

is better for the WS solution compared with the here-and-now solution, the expected payments are

higher only for the stochastic supplier. This result illustrates that we cannot, in general, expect

higher payments for all participants if we have perfect information. It is important, however, to

monitor the payment distribution for the case of perfect information in order to validate the

performance of the stochastic model.

We also compare the ISO revenue for the different formulations. Note that all formulations are

revenue adequate in expectation. The stochastic here-and-now solution reaches similar revenues as

the wait-and-see counterpart. Both formulations collect an order of magnitude more revenue than

does the deterministic counterpart.
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Table 1 System I. Comparison of quantities, prices, and social surplus.

gi πn Gi(ω) Πn(ω) E[Πn(ω)] ϕg

Deterministic {25,50,25} {10,20,20}
{25,25,50} {15,802,412}

{15,280,150} 835{25,50,25} {15,22,22}
{25,75,0} {15,18,18}

Stochastic {25,50,25} {10,276,148}
{25,25,50} {10,790,406}

{10,276,148} 835{25,50,25} {10,20,20}
{25,75,0} {10,18,18}

Stochastic-WS
{25,25,50} {10,821,420} {25,25,50} {10,803,412}

{10,281,150} 800{25,50,25} {10,20,20} {25,50,25} {10,20,20}
{25,75,0} {10,20,20} {25,75,0} {10,20,20}

Table 2 System I. Comparison of suppliers and ISO revenues.

E[P g
i (ω)] E[Cg

i (ω)] MISO

Deterministic {250,-5553,3799} {250,5,533} -3504
Stochastic {250,7316,6886} {250,5,533} -12955

Stochastic-WS {250,7555,7055} {250,5,500} -13360

6.1.1. Bounds on Day-ahead Quantities We now demonstrate that adding bounds on

the day-ahead flows, as opposed to adding `1 penalty terms, can affect the pricing properties of

the stochastic model. The price distortions π − E[Π(ω)] obtained using day-ahead flow bounds

are {−1.5,0,0} while those obtained with the penalty term using a penalty of ∆αf = 0.001 are

{0.001,0.001,0.001}. The penalty term achieves the desired pricing property. The day-ahead flows

obtained with the `1 penalty formulation are {25,25}; these are the medians of the real-time flows

which are {25,50} for scenario 1, {25,25} for scenario 2, and {25,0} for scenario 3. This also implies

that the day-ahead flows are bounded and therefore day-ahead bounds are redundant.

6.1.2. Effect of Incremental Bid Prices We now illustrate the effect that the incremental

bid prices have on the price distortion. Consider the case in which the demand in the central node

is also stochastic and with scenarios D(ω) = {100,50,25}. The stochastic supplier scenarios are

again G(ω) = {25,50,75}. We set the incremental bid price for the stochastic supplier ∆αg2 to 1.0

and vary the demand incremental bid price ∆αd on the range {1.0,0.001}. In Table 3, we present

the price distortions as a function of ∆αd. The distortion remains bounded by the incremental bid

and can be made arbitrarily small as we decrease the incremental bid. The result is consistent with

the properties established.

6.2. System II

We now consider the more complex system presented in Figure 2. This is an adapted version of

the system presented in Pritchard et al. (2010). The system has two stochastic suppliers in nodes

2 and 4 and three deterministic suppliers in nodes 1, 3, and 5. The stochastic suppliers can have 5
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Table 3 System I. Effect of incremental bid ∆αd on maximum price distortion.

∆αd Mπ
∞

1.0 0.43
0.1 0.058

0.01 0.006
0.001 0.0006

1 5

3

2 4

6

Ḡ = 100

Ḡ = 100

Ḡ = 50
↵ = 100

↵ = 100

↵ = 200

↵ = 1000

D̄(!) ⇠ N (250, 50)

↵ = 1↵ = 1

Ḡ(!) = {10, 20, 60, 70, 90}Ḡ(!) = {10, 20, 60, 70, 90} F̄ = 50F̄ = 50

F̄ = 50
F̄ = 25

F̄ = 25F̄ = 25

F̄ = 100

F̄ = 100F̄ = 100

Figure 2 Scheme of System II.

possible capacities {10,20,60,70,90}MWh. The total number of scenarios is 25. These are obtained

by permuting all possible capacities and we assigned equal probabilities. The demand in node 6

is stochastic as well (distributed normally) and it is treated as inelastic. We set αd = V OLL and

∆αd = 0.001. We also set a penalty for the flows of ∆αf` = 0.001.

6.2.1. Price Distortion and Uplift Payments The results are presented in Tables 4 and

5. We first note that the price distortion for the deterministic setting is large, reaching values as

large as -273 $/MWh. Also note that the distortion (premia) is small and positive in nodes 1, 2, 6

and large and negative in nodes 3, 4, and 5. This is inefficient because it biases incentives towards

a subset of players. In addition, the day-ahead prices are all equal to 100 $/MWh because clearing

the day-ahead market using expected values for the demand and for the stochastic suppliers yields

a solution with no transmission congestion. The system is overly optimistic about performance
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in the real-time market where multiple scenarios exhibit transmission congestion, but the deter-

ministic setting cannot foresee this. This situation is reflected in the ISO revenue collected, which

is two orders of magnitude lower for the deterministic formulation compared with the stochastic

formulation.

The stochastic formulation has almost the same expected social surplus as the deterministic

formulation, but the price distortion is eliminated. Again, expected social surplus is a misleading

metric. The largest price distortion is equal to the demand incremental bid price of 0.001, as

expected. In Table 5 we see that payments for both formulations are similar except for the 4th

supplier, which is a stochastic supplier. This supplier receives a negative payment and requires

uplift under deterministic clearing. The uplift is eliminated by using the stochastic formulation. The

expected payments and expected ISO revenue collected with the stochastic here-and-now solution

are close to those of the perfect information solution.

Table 4 System II. Comparison of day-ahead prices and surplus with deterministic and stochastic formulations.

ϕ Mπ
n πn

Deterministic -217529 {9,9,9,-205,-208,-273} {100,100,100,100,100,100}
Stochastic -217628 {0.001,0.001,0.001,0,0,0} {96,96,96,307,310,374}

Stochastic-WS -218266 - -

Table 5 System II. Comparison of suppliers and ISO revenues with deterministic and stochastic formulations.

E[P g
i (ω)] E[Cg

i (ω)] MISO

Deterministic {7149,4974,5736,-2083,11001} {6863,52,5491,52,3201} -1937
Stochastic {7116,4876,5139,8318,11001} {7116,52,5139,52,3200} -60750

Stochastic-WS {6794,4760,5120,8362,10910} {6794,49,5120,49,2910} -60300

6.2.2. Median vs. Mean In Table 6 we compare the day-ahead quantities gi with the medians

M[Gi(ω)] and the means E[Gi(ω)] of the real-time quantities. As can be seen, convergence is

achieved for all suppliers.

Table 6 System II. Day-ahead, median of real-time quantities, and mean of real-time quantities for suppliers.

Gen 1 Gen 2 Gen 3 Gen 4 Gen 5
gi 68 60 42 60 0

M[Gi(ω)] 68 60 42 60 0
E[Gi(ω)] 70 50 49 49 15
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6.2.3. Reliability Constraints We now consider the case in which there are random line

failures. We consider 25 scenarios and we assume that each one of the lines 1→ 6, 2→ 6, 3→ 6,

4→ 6, and 5→ 6 fails in at least five scenarios. All scenarios have equal probability. The results

are presented in Table 7.

The deterministic setting becomes revenue inadequate in this case, whereas the stochastic setting

is revenue adequate and achieves an expected ISO revenue that is close to that of the perfect

information setting. An average price distortion of 150 $/MWh and a maximum distortion of 658

$/MWh were obtained for the deterministic setting, indicating a pronounced effect of line failures

on prices. The stochastic formulation eliminates the distortion and the need for uplift payments.

Note also that the fourth supplier (stochastic) again faces a negative revenue under deterministic

clearing and an uplift payment is needed. This again illustrates that deterministic clearing can affect

resource diversification because it consistently biases the payments towards a subset of players.

Table 7 System II. Comparison of suppliers and ISO revenues with deterministic and stochastic formulations.

E[P g
i (ω)] E[Cg

i (ω)] MISO

Deterministic {5803,4723,5100,-919,9627} {5231,50,3876,47,3387} 40570
Stochastic {5107,3955,3683,7371,9623} {5107,51,3683,46,3383} -118103

Stochastic-WS {4951,3888,3422,7170,9479} {4951,47,3422,45,3079} -118283

6.3. IEEE-118 System

We now demonstrate the properties of the stochastic setting in a more complex network. The

IEEE-118 system comprises 118 nodes, 186 lines, 91 demand nodes, and 54 suppliers. We have 3

stochastic suppliers (4, 27, and 52), and we assign an installed capacity of 300 MWh to all of them.

This represents 5% of the total generation capacity. We use 10 randomly generated scenarios for

the stochastic suppliers assuming that they are independent, and we allow for fluctuations as large

as 50% of the installed capacity. The demands are assumed to be deterministic and inelastic, and

we set ∆αdj = 0.001. We set a penalty penalty parameter for the flows of ∆αf` = 0.001.

The results are presented in Table 8. The deterministic setting again requires uplift payments.

Interestingly, the uplift payments are needed only for the stochastic suppliers (4 and 52). This

again illustrates that deterministic clearing can block resource diversification. The price distortions

for the deterministic setting can be as large as 280 $/MWh. The stochastic formulation eliminates

the uplift payments and eliminates the price distortion. The maximum distortion isMπ
∞ = 0.0017.

Note that this is smaller than 0.002, the sum of ∆αf and ∆αd.
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Table 8 IEEE-118 System. Comparison of suppliers and ISO revenues with deterministic and stochastic

formulations.

MU ϕg Mπ
avg Mπ

max MISO

Deterministic -13,797 344,142 16 280 -833,656
Stochastic 0 343,959 0.0005 0.0017 -818,250
Stochastic-WS 0 343,578 0 0 -818,583

If we relax ∆αdj to a value of 10, the maximum distortion is Mπ
max = 0.17. If we also relax ∆αgi

(multiplying by a factor of 10), the maximum distortion becomes Mπ
max = 1.4. This illustrates

that the pricing property remains fairly robust to variations of the incremental bid prices. This is

remarkable feature of the model (given the complexity of the network) and a direct result of the

`1 penalties. If we set day-ahead bounds on flows instead of `1 penalties, the maximum distortion

obtained is Mπ
max = 3.2.

The difference in social surplus between deterministic and stochastic formulations is marginal

(less than 1%). Also note that the penalty parameters for the flows can be set to arbitrarily small

values because they have no economic interpretation. Consequently, they do not affect the social

surplus significantly. The stochastic here-and-now solution results in collected ISO revenues that

are more consistent with the wait-and-see clearing.

7. Quadratic Penalty Formulation

In this section, we provide some insights into the effect of adding a quadratic penalty into the

objective function. We demonstrate that doing so results in day-ahead prices that converge to

the expected value of the real-time prices. In addition, the day-ahead quantities converge to the

expected values of the real-time quantities.

7.1. Properties

Consider the following simplified model with no network constraints.

min
dj ,Dj(·),Gi(·),

E

[∑
i∈G

αgiGi(ω) +
1

2
∆αgi (Gi(ω)− gi)2

]
+E

[∑
j∈D

−αdjDj(ω) +
1

2
∆αdj (Dj(ω)− dj)2

]
(64a)

s.t.
∑
i∈G

gi =
∑
j∈D

dj (π) (64b)∑
i∈G

Gi(ω)− gi =
∑
j∈D

Dj(ω)− dj, ω ∈Ω (p(ω)Π(ω)) (64c)

0≤Gi(ω)≤ Ḡi(ω), i∈ G, ω ∈Ω (64d)

0≤Dj(ω)≤ D̄j(ω), j ∈D, ω ∈Ω. (64e)
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The optimality conditions with respect to the day-ahead quantities are given by,

0 = ∆αdjE[Dj(ω)− dj] +π−E[Π(ω)], j ∈D (65a)

0 = ∆αgiE[Gi(ω)− gi]−π+E[Π(ω)], i∈ G (65b)

At a solution we know that
∑

i∈GGi(ω)− gi =
∑

j∈DDj(ω)− dj holds for all ω ∈Ω. Consequently,

E
[∑

i∈GGi(ω)− gi
]

=E
[∑

j∈DDj(ω)− dj
]

must also hold. This condition is equivalent to∑
i∈G

E [Gi(ω)− gi] =
∑
j∈D

E [Dj(ω)− dj] . (66)

Substituting the optimality conditions in this expression, we obtain

(π−E[Π(ω)])
∑
i∈G

1

∆αgi
=−(π−E[Π(ω)])

∑
j∈D

1

∆αdj
. (67)

If ∆αgi ,∆α
d
j > 0, this relationship can hold only if π=E[Π(ω)]. From the optimality conditions we

have that this implies that E[Gi(ω)− gi] = 0,E[Dj(ω)−dj] = 0 or gi =E[Gi(ω)] and dj =E[Dj(ω)].

The day-ahead quantities converge to the mean. This also implies that no bounds are needed for

gi and dj. Generalizing these pricing and bounding properties to a more general network model is

challenging because the probabilistic bounds induced by the `1 penalties do not hold any more. We

explore the behavior of the quadratic penalty model empirically in a more general network setting.

7.2. Case Studies

We first use system II sketched in Figure 2 to perform the tests. For the quadratic penalty formula-

tion we use the squared roots of the incremental costs used for the `1 formulations:
√

∆αgi ,
√

∆αdj .

We impose bounds only on the day-ahead flows.

The resulting day-ahead generation quantities gi are {66,48,58,45,16} and the

expected real-time quantities E[Gi(ω)] are {6,48,58,44,15}. The day-ahead prices πn

are {100,100,100,281,282,350}, and the expected the real-time prices E[Πn(ω)] are

{100,100,100,282,283,351}. The day-ahead f` and expected real-time flows E[F`(ω)] are

{−27,1,20,40,20,69,16,85,−93} and {−25,1,21,39,21,66,16,81,−92}, respectively. While there

are slight differences between the flows, quantities, and prices, we can see that the model gives

the desired pricing behavior.

The price distortions at all nodes for the IEEE-118 system can also be eliminated by using the

quadratic penalty formulation. In addition, day-ahead and expected real-time quantities converge.

The price distortions remain zero even if the incremental bid prices are increased by a factor of 10

and decreased by a factor of 0.1. This indicates that the formulation is robust. We have observed

that uplifts are needed in some instances but these remain fairly small. We have also tested the
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quadratic penalty formulation using penalties on the day-ahead flows instead of bound constraints

and we have found similar performance.

These results give some indication that one can derive stochastic clearing formulations that can

achieve the desired pricing properties for different cost functions.

8. Conclusions and Future Work

We have demonstrated that deterministic market clearing formulations introduce strong and arbi-

trary distortions between day-ahead and expected real-time prices that bias incentives and block

diversification. We present a stochastic formulation capable of eliminating these issues. The formu-

lation is based on a social surplus function that accounts for expected costs and penalizes deviations

between day-ahead and real-time quantities using `1 penalties. We show that the formulation yields

day-ahead prices that are close to expected real-time prices. In addition, we show that day-ahead

quantities and flows tend to converge to the median of real-time counterparts. We have also demon-

strated that a quadratic penalty approach can induce convergence to expected value quantities,

flows, and prices.

Future work requires extending the model in multiple directions. First, it is necessary to capture

the progressive resolution of uncertainty by using multi-stage models and to incorporate ramping

constraints and unit commitment decisions. Second, it is necessary to construct formulations that

design day-ahead decisions that approach ideal wait-and-see behavior. Morales et al. (2014) demon-

strate that this might be possible to do by using bi-level formulations, but a more detailed analysis

is needed. Third, the proposed stochastic model is computationally more challenging than existing

models available in the literature because it incorporates the detailed network in the first-stage.

This leads to problems that much larger first-stage dimensions which are difficult to decompose

and parallelize. Consequently, scalable strategies are needed.
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