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Abstract

Sensitivity analysis is an important tool to describe power system dynamic behavior in response to parameter
variations. It is a central component in preventive and corrective control applications. The existing approaches for
sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort
that increases linearly with the number of sensitivity parameters. In this work, we investigate, implement, and
test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of
sensitivity parameters. The proposed approach is highly efficient for calculating trajectory sensitivities of larger
systems and is consistent, within machine precision, with the function whose sensitivity we are seeking. This is
an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment
of systems with switching, such as DC exciters, by deriving and implementing the adjoint jump conditions that
arise from state and time-dependent discontinuities. The accuracy and the computational efficiency of the proposed
approach are demonstrated in comparison with the forward sensitivity analysis approach.
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I. INTRODUCTION

Dynamic security is a concern for system planning and operation experts becoming significant higher
penetrations of renewable energy resources, most of which are electronically coupled to the grid, is
expected in the future. This situation presents some new technical challenges, particularly the increased
dynamic content and reduction of system inertia through the displacement of conventional generation
resources during light load periods. Thus, ensuring dynamic security along with the optimal and secure
steady state operation is an important emerging problem. To this end, utilities typically design preventive
or corrective actions based on a set of directives. For instance, a corrective action directive may prescribe
changing the dispatch of a specific set of generators to alleviate overload problems caused by a specific
contingency. These directives, based on expert operational judgement and accumulated knowledge, may
not be optimal, however, they may not be secure for the new dynamics of higher renewable energy usage.

Optimal and secure preventive and corrective control actions have been extensively studied by power
system researchers. The central component in these studies is the calculation of first-order sensitivities of
the power system dynamics trajectories with respect to the control parameters. Hiskens et. al. [1] estab-
lished the theory of trajectory sensitivity analysis for hybrid systems modeled by a differential-algebraic-
discrete structure and developed jump conditions for the sensitivities at discrete events. Their approach is
also known as forward sensitivity analysis or direct sensitivity analysis. Subsequently, sensitivity analysis
has been used in numerous applications: real-time emergency control of voltage in power systems [2];
design of optimal preventive control strategies through shunt compensation and generation rescheduling
[3]; identification of optimal location of series-connected controllers to enhance power system transient
stability [4]; determination of the minimum required susceptance and compensator location to maintain
the first swing stability of micro grids [5]; dynamic security constrained rescheduling under contingencies
[6]; reduction of composite load model parameters identified from field measurement [7]; identification of
critical power system parameters [8], [9]; improvement of transient stability of systems compensated by
series and shunt FACTS devices [10], [11], [12]; reduction of computational burden of model predictive
control method for load shedding [13], [14], [15], [16]; VAr planning in large power system heavily stressed
by voltage collapse [17]; optimal design of power system stabilizers [18], [19]; and suitable placement of
series compensators [20] for damping low frequency power oscillation and enhancing both transient and
small-signal stability. The use of trajectory sensitivities in complementing time domain simulation in the
analysis of large disturbance dynamic behavior of power systems is proposed in [21].

Almost all the previous work uses the forward sensitivity approach. An exception is [22], which has
applied a continuous adjoint equation method to evaluate the gradient of a stability metric for optimal power
flow (OPF) and demonstrated the significant improvement in efficiency. However, the state-dependent
nature of the switching conditions and as a result the jump conditions of sensitivity variables that are
characteristic of hybrid systems such as DC exciters were not addressed in this work.

For general sensitivity calculations, two approaches, continuous and discrete, are used for computing
these trajectory sensitivities, as shown in Fig. 1. In continuous methods, sensitivities equations are derived
directly from the model equations, and can be theoretically solved with integration methods and time
steps different from those used for the model equations. Discrete methods, on the other hand, are based
on the discretized equations, so the propagation scheme and time steps are completed determined by
the simulation code. Further, both these approaches have two variations: forward and adjoint mode. The
forward mode calculates the sensitivities by integrating a set of sensitivity equations forward in time,
while for the discrete mode the sensitivity equations need a backward-in-time integration. An interesting
observation is that the continuous forward approach can be equivalent to the discrete approach if using
the same choices of time integration methods and time steps; however, this is not the case for continuous
adjoint and discrete adjoint even if the same time integration methods and the same time steps are applied
to both. Table I summarizes the comparison between the discrete forward and adjoint approaches.

In this work we investigate discrete adjoint sensitivity approaches, for two reasons. First, the sensitivities
computed by discrete adjoint methods equal the derivatives of the function applied to the discretized
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Sensitivity Approaches

Continuous Discrete

Forward

Adjoint

Forward

Adjoint

Fig. 1. Taxonomy of approaches for trajectory sensitivity calculation

TABLE I
COMPARISON OF DISCRETE FORWARD AND ADJOINT METHOD

Forward Adjoint

Best to use when np � nc np � nc

Computational complexity O(np) O(nc)

Checkpointing No Yes

Implementation Difficulty Medium High

Accuracy High High
np:number of parameters nc:number of cost functions

dynamical system, up to the order of the machine precision. This is not the case for sensitivity computation
that use numerical integration of continuous adjoints [23] and may lead to difficulties in convergence if
the gradients are used for solving optimization problems [24]. Second, the computational cost of the
forward approach grows linearly with the number of sensitivity parameters whereas the cost of the adjoint
approach is effectively constant with respect to the same number and grows linearly with the number of
objective functions [25]. Therefore, the adjoint approach can be much more efficient than the forward
approach when calculating the gradients of a few objective functions with respect to many parameters, a
common occurrence in power system dynamics and control. The contributions of this work are as follows.

1) We design, describe, and analyze a workflow to compute discrete adjoints for single-step multistage
methods (such as theta methods and Runge-Kutta methods).

2) We implement this workflow in the widely used open-source parallel numerical library Portable
Extensible Toolkit for Scientific Computing (PETSc) [26]. This makes our approach available to
the research community for a large class of numerical integration schemes.

3) We extend the discrete adjoint sensitivity analysis of [27] to hybrid systems with state-dependent
jumps. We also include a corresponding discrete forward sensitivity formulation for completeness.

4) We validate the accuracy of our approaches and the expected behavior of adjoint differentiation
[25] on several test cases that include 9- and 118-bus dynamics with DC exciters, where the state-
dependent switching dynamics of the latter demonstrates the correctness of our jump conditions.

The report is organized as follows. The power system dynamic model, and its numerical solution are
discussed in Section II. The formulation of the discrete adjoint method, along with the sensitivity equations
and handling of state-dependent jumps, is proposed in Section III. Section IV presents the accuracy and
computational efficiency of the different approaches on several test systems. Section V summarize our
conclusions and briefly discuss future work.
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II. POWER SYSTEM DYNAMIC EQUATIONS

To carry out the objectives described in §I, we present a hybrid systems abstraction of the target
dynamical systems. Such a framework is useful for solving both forward problems and inverse problems
[28]. We assume that the continuous dynamics is governed by systems of parameter-dependent differential-
algebraic equations (DAEs), and the discrete events are reflected by a jumping mechanism between those
systems. This results in a piecewise smooth dynamical systems. For an initial value problem, the system
visits the smooth pieces in succession, with the states at the entrance in a smooth piece depending on the
states at the exit of the previous one. Mathematically this can be described by

ẋ(i) = f (i)(x, y; p) (1)
γ(i)(x(i), y(i); p) = 0 (2)
0 = g(i)(x, y; p), (3)

where x ∈ Rnx are the dynamic state variables such as machine angles and velocities, y ∈ Rny are the
algebraic variables such as load bus voltage magnitudes and angles, and p ∈ Rnp are the system parameters
such as line reactances, generator mechanical input power, and fault clearing time. An event is triggered
when the stage-dependent condition (2) is satisfied. The equations change at that point, resulting in
discontinuities in the state/algebraic variables. The superscript (i) identifies the different sets of equations
modeling the events. Initial conditions are given by

x(t0) = Ix0(p), y(t0) = Iy0(p), (4)

where we assume that we start in the interior of the smooth piece (0) and thus x0 and y0 must satisfy
the algebraic constraints for that piece:

g(x0, y0; p) = 0. (5)

We employ the usual assumption that g(i)y is nonsingular along the trajectories, so each set of equations
is a semi-explicit index-1 DAE system [29]. We start with the numerical solution and discrete sensitivity
analysis for a single DAE system:

ẋ = f(x, y; p) (6a)
0 = g(x, y; p), (6b)

and we then extend the approaches to the hybrid cases. The DAE system (6) can be cast into a general
form

MẊ = F (X; p), (7)

where
X =

[
x
y

]
, F =

[
f
g

]
, M =

[
Inx×nx

0ny×ny

]
.

To solve (7), we can directly apply, for example, theta methods:

MXn+1 =MXn + hn(1− θ)F (Xn; p) + hnθF (Xn+1; p), n = 0, . . . , N − 1. (8)

As special cases, the methods with θ = 1 and θ = 0.5 give backward Euler and Crank-Nicolson (also
known as trapezoidal) methods, respectively.
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III. DISCRETE ADJOINT SENSITIVITY CALCULATION

The adjoint approach, being complementary with the forward approach in terms of computational
efficiency, is particularly attractive for cases in which there are many parameters and just a few objective
functions. The discrete adjoint method is tightly tied to the specific time-stepping algorithm used for
solving the model equations so that it accounts for the fact that the objective function is obtained through
that discrete algorithm.

For deriving the discrete adjoint workflow, we assume that system (7) is integrated with a one-step
method

Xn+1 = Nn(Xn), n = 0, . . . , N − 1, X0 = I, (9)

where I are the initial values and the solution at the end of the simulation is given by XN . We aim to
efficiently compute sensitivities of an objective function (sometimes called response function) with respect
to initial values or system parameters. A general form of the objective function, involving a terminal and
trajectory term, can be written as

Ψ = ψ(X(tF ); p) +

∫ tF

t0

r(t,X; p)dt. (10)

Note that so-called trajectory sensitivity [21], known as the derivative of the final solution (corresponding
to Ψ = X(tF ) in (10)) with respect to initial values, is just a special case of what we are considering.
For notational brevity, in the rest of the discussion we drop the argument p in ψ, r, F .

Continuous sensitivity approaches that are then discretized do not take into consideration that the
objective function is approximated by numerical values, not the exact values. For example, the exact
function ψ(X(tF )) is approximated by ψ(XN), and the numerical approximation of the continuous gradient
with respect to the sensitivity parameters is the gradient of ψ(XN) only up to numerical integration
tolerance. Discrete approaches, on the other hand, compute algebraical derivatives of ψ(XN) and thus
have an error on the order of machine precision. For low- and moderate- precision integration (which, in
real time contexts for example, would be necessary) the latter error is much smaller. This is essential in
optimization application, where we would like to make sure that we have very accurate descent directions
for ψ(XN).

Assuming the approximated objective function is Ψapprox, we first consider a simple case in which we
compute sensitivities of Ψapprox = ψ(XN) to initial values. We use the Lagrange multipliers λ0,. . . ,λN to
account for the constraint from each time step as well as the initial condition, resulting in

L = Ψapprox − λT0 (X0 − I)−
N−1∑
n=0

λTn+1 (Xn+1 −N (Xn)) . (11)

Differentiating this equation w.r.t I leads to

dL
dI

= λT0 −
(
dψ

dX
(XN)− λTN

)
∂XN

∂I
−

N−1∑
n=0

(
λTn − λTn+1

dN
dX

(Xn)

)
∂Xn

∂I
. (12)

By defining λ to be the solution of the discrete adjoint model,

λN =

(
dψ

dX
(XN)

)T
, λn =

(
dN
dX

(Xn)

)T
λn+1, n = N − 1, . . . , 0, (13)

we obtain the gradient ∇IΨapprox = λ0.
For the general case that the objective function contains integral terms as in the general form (10) and

sensitivities to parameters are also desired, the discrete adjoint model can be derived in a similar way
from the extended system

MẊ = F (t,X), (14)
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where

M =

M Inp×np

1

 , X =

Xp
q

 , F =

 F
0np×1
r

 .
The second equation enforces constant parameters during the simulation, and the last equation comes
from a transformation of the integral

q =

∫ tF

t0

r(t,X)dX.

The initial condition for the extended system is X0 = [I 01×np 0]T .
With the basic framework established, the discrete adjoint for any one-step method can be easily derived.

For example, the adjoint theta method (8) reads

MTλs = λn+1 + hnθF
T
X(Xn+1)λs + hnθr

T
X(tn+1, Xn+1), (15)

λn =MTλs + hn(1− θ)F T
X(Xn)λs + hn(1− θ) rTX(tn, Xn), (16)

µn = µn+1 + hn
(
θ F T

p (Xn+1) + (1− θ)F T
p (Xn)

)
λs

+hn
(
θ rTp (tn+1, Xn+1) + (1− θ) rTp (tn, Xn)

)
, (17)

n = N − 1, . . . , 0.

with the terminal conditions

λN =

(
dψ

dX
(XN)

)T
, µN =

(
dψ

dp
(XN)

)T
. (18)

The gradients of the objective functions are given as

∇IΨapprox = λ0, ∇pΨ
approx = µ0.

However, if the terminal condition for λN in (18) is applied to the discrete adjoint of a DAE system,
there would be conflicts with the constraints brought up by the algebraic equations. Consider the simple
case θ = 1 (backward Euler method) and let λx, and λy be the discrete differential and algebraic adjoint
variables, respectively. One can see that (16) will lead to λy = 0 regardless of the terminal condition for
λyN . According to the implicit function theorem, the algebraic variable y can be locally solved from (6)
as

y = ϕ(x; p).

Substituting y into the objective functions yields that the terminal conditions λxN depend only on x and
λyN should be set to zero.

We observe the following.
• The discrete adjoint equations (15) propagate the sensitivity variables backward in time following

exactly the same trajectory with the forward run. Thus, there is no time step control in the backward
run. While this may result in increased memory requirements compared to forward approaches, that
requirement can be dramatically reduced with small increases in recomputation by using advanced
checkpointing techniques [25].

• The number of variables λ and/or µ is the same as the number of objective functions.
• For each objective function, only one linear system needs to be solved in (15) at each backward step,

regardless of the number of parameters. The number of linear solves depends on the time-stepping
method. For example, implicit Runge-Kutta methods may require as many linear solves as the number
of stages.

• The “prediction” matrix MT/(hn θ)− F T
X from (15) is the transpose of the one used in solving the

nonlinear equation (8). The Jacobian FX can be reused in the adjoint run.
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TABLE II
JACOBIANS NEEDED WHEN CALCULATING ADJOINT SENSITIVITIES FOR VARIOUS OPTIONS

ψ only with integral

initial values FX FX , rX

parameters FX , Fp FX , Fp, rX , rp

• The adjoint computation may require some extra Jacobian functions depending on the needs of the
application, as summarized in Table II.

For the examples in our experiments, we store the entire forward trajectory in memory in order to avoid
recomputation since the memory capacity is sufficient. Nevertheless, we have also implemented a variety
of advanced checkpointing schemes [25] for large-scale problems.

A. Sensitivity calculation with discontinuities
For illustration, we consider the following case of the hybrid system (1)-(3) that has a single discontinuity

at time τ separating the system into two stages:

X(1)(t0) = I,
MẊ(1) = F (1)(X(1)), t ∈ [t0, τ ],

γ(X(1)(τ)) = 0,

MẊ(2) = F (2)(X(2)), t ∈ (τ, tf ].

Here I is the initial condition, and γ is transition function between stages. The approach for this case can
be straightforwardly extended to multiple stages. We again assume that the discretization of the hybrid
systems is performed with one-step methods

X
(1)
k+1 = N (1)(X

(1)
k ), k = 0 . . . N1 − 1,

X
(2)
k+1 = N (2)(X

(2)
k ), k = N1 . . . N − 1, (N = N1 +N2).

The objective function Ψ is approximated by using the numerical solution:

Ψ ≈ Ψapprox = ψ(XN2).

The following assumptions are made about this model for the convenience of analysis:
1) The differential states in X(2) and X(1) are continuous at the junction time

x(2)(τ) = x(1)(τ).

2) F (1), F (2), and γ are C1.
3) The transversality condition is satisfied [30]

dγ

dX
(τ)F (1)(X(1)(τ)) 6= 0.

B. Jump conditions for discrete adjoint method
Similar to the steps taken in §III, we build the Lagrangian function

L̂ = Ψapprox −
(
λ
(1)
0

)T (
X

(1)
0 − I

)
−

N1−1∑
k=0

(
λ
(1)
k+1

)T (
X

(1)
k+1 −N

(1)(X
(1)
k )
)

−
N−1∑
k=N1

(
λ
(2)
k+1

)T (
X

(2)
k+1 −N

(2)(X
(2)
k )
)
. (19)
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Differentiating the Lagrangian function (19) at I and cancelling out identical terms yield

dL̂
dI

=
dψ

dX
(XN2)

∂XN2

∂I
−

XXXXXXXX
dλT0
dI

(X0 − I)−
(
λ
(1)
0

)T ∂X(1)
0

∂I
+
(
λ
(1)
0

)T
−

XXXXXXXXXXXXXXXXXXXX

N1−1∑
k=0

(
dλ

(1)
k+1

dI

)T (
X

(1)
k+1 −N

(1)(X
(1)
k )
)
−

N1−1∑
k=0

(
λ
(1)
k+1

)T (∂X(1)
k+1

∂I
− dN (1)

dX
(X

(1)
k )

∂X
(1)
k

∂I

)

−

XXXXXXXXXXXXXXXXXXXX

N−1∑
k=N1

(
dλ

(2)
k+1

dI

)T (
X

(2)
k+1 −N

(2)(X
(2)
k )
)
−

N−1∑
k=N(1)

(
λ
(2)
k+1

)T (∂X(2)
k+1

∂I
− dN (2)

dX
(X

(2)
k )

∂X
(2)
k

∂I

)

=
dψ

dX
(XN2)

∂XN2

∂I
−
(
λ
(1)
0

)T ∂X(1)
0

∂I
+
(
λ
(1)
0

)T
−

N1∑
k=1

(
λ
(1)
k

)T ∂X(1)
k

∂I
+

N1−1∑
k=0

(
λ
(1)
k+1

)T ∂N (1)

∂X
(X

(1)
k )

∂X
(1)
k

∂I

−
N∑

k=N1+1

(
λ
(2)
k

)T ∂X(2)
k

∂I
+

N−1∑
k=N1

(
λ
(1)
k+1

)T dN (2)

dX
(X

(2)
k )

∂X
(2)
k

∂I
.

Substituting
N1∑
k=1

(
λ
(1)
k

)T ∂X(1)
k

∂I
=
(
λ
(1)
N1

)T ∂X(1)
N1

∂I
−
(
λ
(1)
0

)T ∂X(1)
0

∂I
+

N1−1∑
k=0

(
λ
(1)
k

)T ∂X(1)
k

∂I
,

N∑
k=N1+1

(
λ
(2)
k

)T ∂X(2)
k

∂I
=
(
λ
(2)
N

)T ∂XN2

∂I
−
(
λ
(2)
N1

)T ∂X(2)
N1

∂I
+

N−1∑
k=N1

(
λ
(2)
k

)T ∂X(1)
k

∂I
,

and then reorganizing leads to

dL̂
dI

=
(
λ
(1)
0

)T
+

(
dψ

dX
(XN2)−

(
λ
(2)
N

)T) ∂XN2

∂I
−
(
λ
(1)
N1

)T ∂X(1)
N1

∂I
+
(
λ
(2)
N1

)T ∂X(2)
N1

∂I

−
N1−1∑
k=0

((
λ
(1)
k

)T
−
(
λ
(1)
k+1

)T dN (1)

dX
(X

(1)
k )

)
∂X

(1)
k

∂I
−

N−1∑
k=N1

((
λ
(2)
k

)T
−
(
λ
(2)
k+1

)T dN (2)

dX
(X

(2)
k )

)
∂X

(2)
k

∂I
.

(20)

We define λ to be the solution of the discrete adjoint model:

λ
(2)
N =

(
dψ

dX
(XN2)

)T
,

λ
(2)
k =

(
dN (2)

dX
(X

(2)
k )

)T
λ
(2)
k+1, k = N − 1, . . . , N1,(

λ
(1)
N1

)T ∂X(1)
N1

∂I
=
(
λ
(2)
N1

)T ∂X(2)
N1

∂I
,

λ
(1)
k =

(
dN (1)

dX
(X

(1)
k )

)T
λ
(1)
k+1, k = N1 − 1, . . . , 0.

Then we have
∇IΨapprox =

(
dL̂/dI

)T
= λ

(1)
0 .
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To avoid computing the forward sensitivities ∂X
(1)
N1
/∂I and ∂X

(2)
N1
/∂I, we use the results from [30,

Equation 50 and Theorem 1]:

dτ

dI
= −

dγ

dX
(X

(1)
N1

)
∂X

(1)
N1

∂I
dγ

dX
(X

(1)
N1

)
∂X

(1)
N1

∂t

and
∂X

(2)
N1

∂I
=
∂X

(1)
N1

∂I
−

(
∂X

(2)
N1

∂t
−
∂X

(1)
N1

∂t

)
dτ

dI
.

Then we obtain the sensitivity transfer equation

λ
(1)
N1

=

I +

(
∂X

(2)
N1

∂t
−
∂X

(1)
N1

∂t

) dγ

dX
(X

(1)
N1

)

dγ

dX
(X

(1)
N1

)
∂X

(1)
N1

∂t


T

λ
(2)
N1
. (21)

If we apply the analysis to the extended system (14), we will obtain an additional transfer equation for
the sensitivity variable µ as

µ
(1)
N1

= µ
(2)
N1

+


(
∂X

(2)
N1

∂t
−
∂X

(1)
N1

∂t

) dγ

dp
(X

(1)
N1

)

dγ

dX
(X

(1)
N1

)
∂X

(1)
N1

∂t


T

λ
(2)
N1
. (22)

A similar derivation for the forward sensitivity analysis is developed in Appendix A.
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IV. NUMERICAL RESULTS

This section illustrates the accuracy and computational efficiency of the adjoint discrete sensitivity
analysis approaches on a 9-bus and 118-bus test example. First, we compare the accuracy of the dis-
crete forward and adjoint approach on the hybrid system example given in [1]. Next, we present the
computational efficiency comparison of the discrete sensitivity approaches on several power system test
examples.

All simulations are performed with the open-source high-performance numerical library PETSc [26],
[31] freely available at https://bitbucket.org/petsc/. For this work, two additions (made by the first three
authors, and available with the PETSc distribution) were developed for PETSc’s time-stepping library TS
necessary for handling discontinuities and discrete sensitivity calculations. The TSEvent object supports
detecting events (zero-crossing of discontinuities),while performing the numerical integration, through an
interpolation-based root-finding approach. The TSAdjoint object is used for calculating the trajectory
sensitivities using a discrete adjoint sensitivity approach. Both the TSAdjoint and TSEvent objects
are compatible for calculating the sensitivities of hybrid systems.

A. Hybrid system example
The hybrid system given in [1] is governed by

ẋ = Aix, (23)

where x has two components x1 and x2 and Ai is an matrix that changes from

A1 =

[
1 −100
10 1

]
to A2 =

[
1 10
−100 1

]
when the switching condition x2 = 2.75x1 is satisfied and from A2 to A1 when x2 = 0.36x1. The initial
condition is I = [0 1]T and A1 is used. We are interested in the trajectory sensitivities of x1 and x2 to
the parameter p = 2.75 in the first switching condition.

Figure 2 shows the trajectory sensitivities to the perturbation of p computed with the discrete forward
approach and the discrete adjoint approach. The system is discretized by using the Crank-Nicolson scheme
with an initial time step of 0.001 seconds. PETSc monitors signs of the switching conditions (e.g., x2 −
2.75x1) at each time step and rolls back the step if the signs change indicating that an event has been
stepped over. A new time step estimated by using linear interpolation will then be attempted repeatedly
until the event point is reached within a certain numerical tolerance that the user can control (by default
it is set to 1e − 6). After the event, the step size will be adjusted so that the two steps before and after
the event sum up to 0.001.

To see how the theory on the adjoints is applied to this problem, consider the calculation of the trajectory
sensitivity of the solution component x1 with respect to initial condition and parameter p, represented by
λ = [∂x1/∂I] and µ = ∂x1/∂p, respectively. The terminal conditions are λ = [1 0] and µ = 0. According
to the jump conditions (21) (22), the adjoint variables should be transferred at the switching point by

λnew =

(
I + (A2 − A1)x

[−2.75 1]

[−2.75 1]A1x

)T
λold

µnew = µold +

(
(A2 − A1)x

[−2.75 1]

[−2.75 1]A1x

)T
λold

when A2 switches to A1 in the adjoint run and

λnew =

(
I + (A1 − A2)x

[−0.36 1]

[−0.36 1]A1x

)T
λold

µnew = µold +

(
(A1 − A2)x

[−0.36 1]

[−0.36 1]A1x

)T
λold



12

0.00 0.05 0.10 0.15 0.20
Time

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

S
e
n
si

ti
v
it

y
 o

f 
x

1
 a

n
d
 x

2
 t

o
 t

h
e
 p

a
ra

m
e
te

r

x1  sensitivity (adjoint)

x2  sensitivity (adjoint)

x1  sensitivity (forward)

x2  sensitivity (forward)

Fig. 2. Trajectory sensitivities for a hybrid example from [1]

when A1 changes to A2.
The sensitivities are plotted for different simulation times ranging from 0 to 0.2 seconds. As expected,

both sensitivities ∂x1/∂p and ∂x2/∂p jump at switching points and decay to zero as the trajectory
approaches the equilibrium point. The results of the two different methods show good agreement with
each other (the numerical values match for 15 digits), as well as with the result presented in Fig. 6 of
[1].

B. Maximization of generator mechanical power input
In this power system example, we consider a maximization objective of the mechanical power input Pm

subject to the generator swing equations and a constraint on the maximum rotor deviation δ(t) ≤ δmax,∀t:

maxPm (24)
s.t.

dδ

dt
= ωB (ω − ωs) (25)

dω

dt
=

ωs
2H

(Pm − Pe sin(δ)−D(ω − ωs)) (26)

δ(t) ≤ δmax, ∀t (27)

with initial conditions δ(t0) = δ0, ω(t0) = ω0. Here δ is the rotor angle and ω is the frequency. The
electrical power output of the generator is given by the algebraic relation

Pe =
EV

X
sin δ, (28)

where E and V represent the internal and terminal generator voltages, respectively, and X is the lumped
equivalent of the interconnecting network. Using constraint transcription approach, we can reformulate
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TABLE III
COMPARISON OF PARAMETER AND GRADIENT OBTAINED WITH DIFFERENT METHODS DURING OPTIMIZATION PROCESS

Iteration No. Adjoint Forward Finite Difference

0
Pm 1.06 1.06 1.06

gradient 140.0487958 140.0487958 140.0487323

1
Pm 1.032130009 1.032130009 1.032129996

gradient 45.40765371 45.40765371 45.40760848

2
Pm 1.018758331 1.018758331 1.018758323

gradient 14.84698503 14.84698503 14.84697329

the problem as a minimization with a penalty term on the rotor angle deviation as follows.

min−Pm + σ

∫ tF

t0

max (0, δ − δmax)η dt (29)

s.t.
dδ

dt
= ωB (ω − ωs) (30)

dω

dt
=

ωs
2H

(Pm − Pmax sin(δ)−D(ω − ωs)) (31)

Here, η is an exponent to ensure sufficient smoothness, and σ is a multiplier to ensure decent progress of
the optimization. The optimization problem is solved with the bounded limited-memory variable-metric
(BLMVM) algorithm in the TAO solver included in the PETSc package. The initial guess of Pm is 1.06.
The convergence tolerances are all set to 10−14, and δmax is set to 1 radian (i.e., 57.27 degrees).

Table III shows the gradients computed with the two discrete adjoint approaches against finite differ-
ences, with a step size 7.45×10−9 (comparable to the optimal choice of square root of machine precision
[25]), at the first three iterations of the optimization. As shown in Table III, the results of two discrete
approaches agree with each other and are close to the finite-difference approximations. Figure 3 shows the
convergence behavior using the gradients from the three methods. The forward and adjoint sensitivities
can make the optimization process converge to the optimal value 1.0079 after 13 iterations. On the other
hand, the finite-difference approximations cause the optimization to stall with a residual of 10−6. This is
an expected downside of the reduced precision of finite differences, now demonstrated on a power grid
example.

C. Sensitivity of frequency violations
Sensitivity-based approaches are necessary for solving dynamic security-constrained OPF (DSCOPF)

problems that include a frequency constraint. In [6], [32], the sensitivities of the generator frequency
violations have been used to obtain a transient security-constrained dispatch. The computational costs
of the approaches proposed therein, finite-differencing and forward sensitivity, can be high, especially
when the number of parameters to be optimized becomes large. We have compared forward and adjoint
sensitivity calculation approaches for DSCOPF on two test systems: the IEEE 9-bus and 118-bus. The
9-bus test case used in this work is the 3-generator, 9-bus system available in [33] with the dynamic data
from Chapter 7 of [34]. All generators use a fourth-order dq two-axis model with an IEEE Type-1 DC
exciter, shown in Figure 4. The power system dynamics equations are integrated by using the implicit
trapezoidal method with a time step of 0.01 seconds and a simulation horizon of 1 second. In our model
we include discontinuities that are both time-based (they occur at prescribed times) and state-based (at
which the transition is induced by state-dependent switching function). The time-based discontinuities are
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Fig. 3. Convergence of the optimization process using gradients obtained with three different methods.

Fig. 4. IEEE type-1 DC exciter model

initiated by faults, and they consist of a six-cycle self-clearing three phase fault applied on bus 1 for the
118-bus system and bus 9 for the 9-bus system. The state-based discontinuity is initiated when the voltage
regulator output reaches its minimum or maximum limit.

Following [32], the sensitivities are evaluated for the following dynamic security metric that measures
the severity of frequency violation for each generator:

Hi(x, y) = σ

∫ T

0

[
max(0, ωi − ω+, ω− − ωi)

]η
dt, i = 1, . . . ,m, (32)

Here, ωi is the speed of the generator i, m is the total number of generators, σ and η follow the conventions
in (29), and ω+ and ω− are the maximum and minimum limits respectively on the generator frequencies.
We aim to find the sensitivity of the constraint function Hi with respect to the parameters (i.e., the
generator active and reactive dispatch, and the bus voltage magnitudes and angles at time t0). The number
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TABLE IV
SETTINGS FOR THE 9-BUS AND 118-BUS SYSTEMS

No. of Variables No. of Parameters No. of Functions

9 bus 42 24 3

118 bus 884 344 54

TABLE V
SENSITIVITIES OF FREQUENCY VIOLATIONS (Hi) WITH RESPECT TO POWER DISPATCH PARAMETERS (Pg ) AT TIME t = 1 SECONDS

H1 H2 H3

P 1
g 0 0 0

P 2
g 0.059915 0.739715 0.170100

P 3
g 0.022315 0.062444 0.423199

of states for the differential-algebraic system and the parameters associated with the two systems are listed
in Table IV.

Figure 5 shows the generator frequencies, the frequency violations, and the sensitivities of the frequency
violations w.r.t the initial dispatch of the three generators for the 9-bus system. Following a fault on bus
9, the frequencies of the three generators deviate from the nominal, with generator 2 having the largest
frequency deviation because of its close proximity to the fault location. The shaded regions in the frequency
plots represent the frequency violation measure Hi. Generator 1, with the largest inertia, has the smallest
frequency deviation and does not exceed ω+=60.25 Hz. As a result H1=0. The sensitivities of the frequency
violation measure w.r.t. generator initial dispatch, ∂H/∂Pg are also shown in Fig. 5 and Table V. As seen
in Table V, generators 2 and 3 have the largest sensitivities for a fault at bus 9, while generator 1 has
the smallest one. This sensitivity information can serve as an important metric for performing generator
redispatch decisions.

Figure 6 shows the dynamics of the voltage regulator outputs V i
R, i = 1, 2, 3. V 2

R and V 3
R reach their

maximum limit. Generator 2 continues to operate at its maximum voltage limit, while V 3
R drops below

the maximum limit after about 0.7 seconds. The sensitivities of the voltage regulator output w.r.t. the
generator terminal voltage magnitudes, ∂V i

R/∂V
i
m, are shown in Fig. 6. This plot shows a jump in the

adjoints sensitivities when the maximum limit is reached or abandoned, which is accurately captured by
our method.

Table VI compares the difference between forward and adjoint sensitivity values in terms of maximum
norm for various time simulation intervals. All the observed discrepancies are close to machine precision
(around 1e−15).

Table VII presents the computational results of the two sensitivity approaches. For both systems, one
can see that the adjoint approach is faster than the forward sensitivity approach. Note that the execution
time listed in Table VII for the forward and adjoint approaches also includes the execution time for the
dynamics simulation. The adjoint approach is faster than the forward approach by 2.4X and 7.7X for the

TABLE VI
DIFFERENCE OF THE SENSITIVITY RESULTS FOR ADJOINT AND FORWARD APPROACHES (IN MAXIMUM NORM)

t = 0.5s t = 0.6s t = 0.7s t = 0.8s t = 0.9s t = 1s

9 bus 1.9e−16 3.3e−16 8.3e−16 1.1e−15 1.3e−15 1.7e−15

118 bus 3.9e−16 5.6e−15 1.0e−15 1.2e−15 1.0e−15 1.2e−15
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Fig. 5. Time series plots of frequencies (top), frequency violations (middle), and sensitivities of frequency violations to power dispatch
parameters (bottom) for 9-bus system.

TABLE VII
TIMING RESULTS FOR THE 9-BUS AND 118-BUS SYSTEMS

Forward Adjoint Simulation

9 bus 0.12 s 0.05 s 0.03 s

118 bus 14.00 s 1.82 s 0.33 s

9-bus and 118-bus systems, respectively. Larger speedups can be expected for larger networks or systems
with more parameters.

These results demonstrate that discrete adjoint approaches are significantly more effective than their
forward versions in the regimes described in this paper and that they can accurately compute derivatives
of numerically simulated trajectories, even when the added complexity of system switching is present.
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V. CONCLUSIONS

This report presents an efficient approach for computing sensitivities of large-scale power systems
using a discrete adjoint method. To accommodate the switching dynamics present in many applications,
such as the one induced by DC exciters, we derived the adjoint jump conditions that allow the accurate
computation of parametric derivatives by an adjoint approach. Numerical results on several test systems
and examples have been compared with the forward sensitivity approach demonstrating the accuracy and
efficiency of the proposed method. In particular, the discrete sensitivity approach has been demonstrated to
be much faster compared with the forward sensitivity approach, and in the 118-bus case it resulted in 7.7X
speedup. To our knowledge, this is the first time discrete adjoint computations have been demonstrated
in the power systems area for test cases of the size discussed here, which moreover included switching
dynamics. All the algorithms described in this paper are publicly available through the widely used open-
source numerical library PETSc. Future extensions will include the usage of advanced checkpointing for
reducing the memory footprint; parallel approaches for adjoint computations; and sensitivity calculation
of larger systems, such as interconnect-size ones.



19

APPENDIX A
DISCRETE FORWARD APPROACH

In contrast to the traditional forward approaches that differentiate the model equations, we take the
derivative of the one-step time integration algorithm and obtain the discrete forward model. For example,
differentiation of the theta methods (8) at parameter p will lead to

MS`,n+1 =MS`,n + hn
(
(1− θ) (FX(Xn)S`,n + Fp`(Xn)) + θ (FX(Xn+1)S`,n+1 + Fp`(Xn+1))

)
. (33)

Here S`,n = dXn/dp`, 1 ≤ ` ≤ m denote the solution sensitivities (also known as trajectory sensitivities).
One can verify that this approach leads to the same formulation as with the traditional forward approach
when using the same theta method and step size for solving the continuous sensitivity equation.

With the solution sensitivities, the total derivative of ψ(XN) can be computed by using

dψ

dp`
(XN) =

∂ψ

∂X
(XN)S`,N +

∂ψ

∂p`
(XN). (34)

Let q be the integral term in (10). The total derivative of q to parameters p is given as

dq

dp`
=

∫ tF

t0

(
∂r

∂X
(t,X)S` +

∂r

∂p`
(t,X)

)
dt. (35)

This integral must be calculated with the same time-stepping algorithm and sequence of time steps in
the discrete approaches such that the derivative computed sticks tightly to the numerical procedure that
is used to evaluate the objective function.

Note that for each parameter p` there is one variable S` carrying the sensitivity information, and one
linear system arising from (33) to be solved at each time step. Thus, the computational cost of the forward
approach is determined mainly by the number of parameters to which the sensitivities are desired.

The initial values for S` follow directly from the condition (5). Since X consists of both differential
variables and algebraic variables, S` can also be separated into Sx` and Sy` corresponding to sensitivities
associated with differential and algebraic parts of the solution respectively. Differentiating (5) yields the
following relationship:

gxSx` + gySy` + gp` = 0. (36)

Given the value of Sx` and the assumption that gy is invertible, Sy` could be solved from (36).
If the trajectory sensitivities to initial values are desired, we can also treat the initial values in the same

way as parameters, and the derivatives to p` such as Fp` , ∂ψ/∂p`, ∂r/∂p` and gp` in (33)-(36) should be
zeros.

We also present the sensitivity transfer equation used in forward method for completeness. Details on
the derivation can be found in [30] and [1]. The jump conditions are

S(2)
`,N1

=

I +

(
∂X

(2)
N1

∂t
−
∂X

(1)
N1

∂t

) dγ

dX
(X

(1)
N1

)

dγ

dX
(X

(1)
N1

)
∂X

(1)
N1

∂t

S(1)
`,N1

.



20

APPENDIX B
PETSC: PORTABLE EXTENSIBLE

TOOLKIT FOR SCIENTIFIC COMPUTATION

The PETSc package [26] consists of a set of libraries for creating parallel vectors, matrices, and
distributed arrays, scalable linear, nonlinear, and time-stepping solvers. A review of PETSc and its use for
developing scalable power system simulations can be found in [31]. This work uses the PETSc scalable
time-stepping library TS that comprises various explicit, implicit, and semi-explicit numerical integration
schemes of different orders. Both the discrete forward and adjoint approach for hybrid systems are available
in PETSc. Simulation of hybrid schemes is performed by taking advantage of the automatic event detection
and post-event handling in PETSc.
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