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1 Problem Description and Goals

The intent of this document is to provide the analytical framework for a longer term project that focuses on chemical,

physical, and mechanical nanostructures investigation.

Nanostructures have dimensions in the range of 10-20 nm and typically contain tens of thousands of atoms.

Applying the classical Kohn-Sham DFT method [14] for non-periodic structures of 60 atoms has led in the past

to simulations that can take up to three months to complete [24]. When long term interactions are ignored and

pseudo-potentials are used, ab-initio simulations have been carried out for non-metallic structures with up to 1500

atoms [18]. The approach used to increase the number of atoms considered belongs to the family of so called O(N)

methods [9], which scale as N with the dimension of the problem (in this case the number of electrons).

This work will not be concerned with fundamental electronic structure computation methods. Acknowledging the

small-dimension constraint placed on the problem by the existing Density Functional Theory (DFT)-based methods,

the goal of the proposed work is to use techniques that by closing the spatial scale gap render electronic structure

information at the nanoscale. This electronic structure information is then used to investigate the physical, chemical,

and mechanical properties of the material.
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In the context of mechanical analysis of nanostructures, the methodology proposed follows in the steps of the

quasi-continuum work proposed in [20, 13, 7]. This is an extension of the work in [20, 13], since rather than

considering a potential-based interatomic interaction that has a limited range of validity and is difficult to generalize

to inhomogeneous materials, the approach proposed uses ab-initio methods to provide for the particle interaction;

at the same time it is a generalization of the method proposed in [7] since rather than considering each mesh

discretization element to be part of a periodic and uniformly deformed infinite crystal, the proposed method treats

in a generic optimization framework any structure (nonperiodic and inhomogeneous) once the electronic density

distribution is available.

The benefit of this work is twofold; (a) development and software implementation of a methodology that can

substantially increase the dimension attribute of the electronic structure problem, (b) support for investigation of

general nanostructures (metallic and nonmetallic, non-periodic structures, inhomogeneous materials).

2 Fluctuation Reconstruction

2.1 Paradigm of the proposed approach

The fluctuation reconstruction described is done in reference to a regular lattice or domain of a regular lattice.

Significant computational savings are anticipated to stem from two assumptions: (a) the lattice is only minimally

deformed; (b) for a given ionic distribution, the electronic energy can be expressed like

E(ρ, ρA) =
∫

θ1(ρ, ρA, r)dr +
∫∫

θ2(ρ, ρA, r; ρ, ρA, r′)drdr′ (1)

This representation is commonly used in conjunction with the so called Orbital-Free DFT (OFDFT) method [23].

Here θ1,2 are the relevant energy density functions, ρ is the electronic density, ρA is the nuclear density (which may

include delta functions). The first term typically includes the kinetic energy and the exchange-correlation term,

whereas the second integral includes all pairwise interactions.

The electronic structure computation is then formulated as an optimization problem [11]: find the electronic

density ρ that solves the problem

min
ρ

E(ρ, ρA) (2a)
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subject to the charge conservation constraint

∫
ρ(r)dr = Ne (2b)

where Ne represents the number of electrons present. The solution to this problem depends parametrically on the

nuclear density ρA, ρ = ρ(ρA), a consequence of the Born-Oppenheimer assumption. Subsequently, the computation

of the ground state of the entire system as the solution of the optimization problem

min
ρA

E(ρ(ρA), ρA); (3)

provides the nuclei distribution. The latter problem is the one that governs the approach to the first question.

As indicated above, one of the two central assumptions is that almost everywhere in the nanostructure the solution

to the nuclei distribution problem results only in small deformations. To quantify the concept of small deformation

the nanostructure is consider to occupy an initial reference configuration D0 ⊂ �3. The structure undergoes a change

of shape described by a deformation mapping Φ(r0, t) ∈ �3, where as indicated the mapping might depend on time

t. This deformation mapping gives the location r in the global Cartesian reference frame of each point r0 represented

in the undeformed material frame. Introducing the components of the deformation gradient

FiJ =
∂Φi

∂r0
J

(4)

where upper-case indices refer to the material frame, and lower-case indices to the Cartesian global frame. Thus,

F = ∇0 Φ where ∇0 represents the material gradient operator, and therefore the deformation of an infinitesimal

material neighborhood dr0 about a point r0 of D0 is expressed as

dri = FiJ dr0
J (5)

The concept of small distortion is equivalent to requiring that the spectral radius of F be sufficiently small; i.e.,

||∇0 Φ||2 < K (6)

is expected to hold for almost everywhere in the domain B0, for a suitable chosen value of K.

Computational savings are anticipated to result under this assumption since for all the domains that satisfy

the condition of Eq.6 a two tier interpolation-based approach will reduce the dimension of the problem. First, the
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electronic structure will be constructed in these domains by interpolation using adjacent regions in which a DFT-

based approach has been used to accurately compute the electronic structure problem. Secondly, the position of the

nuclei will be expressed in terms of the positions of a reduced set of so called representative nuclei repnuclei, in an

approach similar to the one proposed in [20].

2.2 A simple example: a domain with a gap and Thomas-Fermi DFT

The notation introduced in section 2.1 as well as the proposed methodology is first applied when the Thomas-Fermi

functional is used to describe the dependency of the energy on electronic density [21, 8]. The Thomas-Fermi functional

has well known limitations and herein it is not selected for its accuracy. It is though a simple framework in which

some of the key points of the methodology proposed for electronic density reconstruction are more easily introduced.

2.2.1 The Thomas-Fermi functional

The Thomas-Fermi-based energy functional assumes the form

E [ρ, {RA}] = Ene [ρ, {RA}] + J [ρ] + K [ρ] + T [ρ] + Vnn ({RA}) (7)

where

Ene [ρ, {RA}] = −
M∑

A=1

∫
ZA ρ(r)
‖RA − r‖ dr (8a)

J [ρ] =
1
2

∫ ∫
ρ(r) ρ(r′)
‖r− r′‖ dr dr′ (8b)

T [ρ] = CF

∫
ρ

5
3 (r) dr (8c)

K [ρ] = −Cx

∫
ρ

4
3 (r) dr (8d)

Vnn ({RA}) =
M∑

A=1

M∑
B=A+1

ZA ZB

rAB
(8e)

Here CF = 3
10 (3π2)2/3, and Cx = 3

4

(
3
π

)1/3, and the following notation is used:

• Ne - total number of electrons in the system

• Ene - energy corresponding to nucleus-electron interaction

• ρ - electron density
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• J - Coulomb energy

• K - Exchange energy

• T - Kinetic energy

• Vnn - inter-nuclear interaction energy

• T - kinetic energy

• ZA - atomic number associated with nucleus A

• ri - global position of electron i

• rA - global position of nucleus of atom A

• rij - distance between electrons i and j

• riA - distance between electron i and nucleus A

• rAB - distance between two nuclei A and B

The expression of the energy functional of Eq.7 justifies the notation used in Eq.1: the kinetic, exchange energy

and nuclear electronic energy are represented through the θ1 term; the electron-electron interaction is associated

with the term θ2.

In this simple example assume that there are three identical domains D1, D2, D3, as in Fig.1. The electronic

density in the respective domains is denoted by ρ1(r), ρ2(r), ρ3(r):

ρ(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ1(r)

ρ2(r)

ρ3(r)

r ∈ D1

r ∈ D2

r ∈ D3

The definition of the density outside the domain D1 ∪ D2 ∪ D3 is extended by assuming that its value is zero.

In this example the optimality conditions subject to the constraint that the total density should add up to Ne are

written for the case when there is no deformation in the underlying crystal structure of the material, whose nuclei

are at positions {RA}, for A = 1 . . .M . The optimization problem depends parametrically on the positions of the
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Figure 1: Fluctuation reconstruction.

nuclei:

minρ E(ρ; {RA}) + λ
(∫

ρdr − N
)

s.t.
∫

ρdr − N = 0

In this form, the electronic optimization problem above is a reformulation of Eq.2. In a direct approach, the

dimension of the problem is prohibitive most of the time; unless simplifying assumptions are taken into account, such

as periodic boundary conditions, local effects (truncation), pseudo-potentials, etc., systems that contain hundreds of

atoms cannot be typically simulated. For the Thomas-Fermi functional, Appendix A shows how solving the electronic

problem can be equivalently expressed as a series of optimization problems on smaller domains with suitably defined

energy functionals. Thus for domain Di, i = 1, 2, 3, the energy is defined as

Ei(ρi, λi; ρ̄i, {RA}) = CF

∫
Di

ρ
5
3
i (r) dr − Cx

∫
Di

ρ
4
3
i (r) dr +

∫
Di

∫
D−Di

ρ(r) ρ̄(r′)
‖r− r′‖ dr dr′ (9)

+
1
2

∫
Di

∫
Di

ρ(r) ρ̄(r′)
‖r − r′‖ dr dr′ −

M∑
A=1

∫
Di

ZA ρ(r)
‖RA − r‖ dr + λi

∫
Di

ρi dr

Appendix A shows that a domain decomposition can be carried out to solve for this example three smaller

optimization problems in Di, i = 1, 2, 3. The optimality conditions for these subdomain problems are

∇ρiEi(ρi, λi; ρ̄i, {RA}) = 0, i = 1, 2, 3 (10a)

λ1 = λ2 = λ3 (10b)

∫
ρdr − Ne = 0 (10c)
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2.2.2 Reconstruction through interpolation

Assuming that the solution is sufficiently close to, but not necessarily periodic, for r ∈ D2 the density is reconstructed

by averaging, that is (see Fig.1):

ρ2(r) ≈ 1
2

(ρ1(r − a(1, 0, 0)) + ρ3(r + a(1, 0, 0))) (11)

This approximation can be improved by using only domains away from the endpoints of the overall slab-like domain.

However, for simplicity, in this example the entire domains D1 and D3 are considered for reconstruction. This leads

to the following coupled system of nonlinear equations

∇ρ1E1(ρ1, λ1; ρ3,
1
2

(ρ1(r − a(1, 0, 0)) + ρ3(r + a(1, 0, 0))) , {RA}) = 0 (12a)

∇ρ3E3(ρ3, λ3; ρ1,
1
2

(ρ1(r − a(1, 0, 0)) + ρ3(r + a(1, 0, 0))) , {RA}) = 0 (12b)

λ1 = λ3 (12c)

∫
D1

ρ1dr +
∫

D3

ρ3dr =
2
3
Ne (12d)

which can be solved without making any reference to the second domain D2. Note that no assumption is made in

regards to charge neutrality in the domains; if an external nonsymmetric potential is present, the total charge will

reflect the non-symmetry.

The condition in Eq.12a leads to the following integral equation, which must hold for any r ∈ D1:

5
3
CF ρ

2
3
1 (r) − 4

3
Cxρ

1
3
1 (r) +

∫
D1

ρ1(r′)K11(r′, r)dr′ +
∫

D3

ρ3(r′)K13(r′, r)dr′ −
M∑

A=1

ZA

||r − r′|| + λ1 = 0 (13a)

where the kernels K11 and K13 are defined as

K11 =
1

||r − r′|| +
0.5

||r − (r′ + T)|| K13 =
1

||r − r′|| +
0.5

||r − (r′ − T)|| (13b)

where T = a(1, 0, 0). Similarly, writing the optimality condition of Eq.12b leads to the following integral equation,

which must hold for any r ∈ D3:

5
3
CF ρ

2
3
3 (r) − 4

3
Cxρ

1
3
3 (r) +

∫
D1

ρ1(r′)K31(r′, r)dr′ +
∫

D3

ρ3(r′)K33(r′, r)dr′ −
M∑

A=1

ZA

||r − r′|| + λ3 = 0 (14a)
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where the kernels K31 and K33 for this problem satisfy the condition

K31 = K11 K33 = K31 (14b)

Equations 13a and 14a represent a set of non-linear integral equations that are solved through standard techniques

[2]. However, these equations were derived under the assumption that there is no deformation of the domains. This

assumption is eliminated if a more general interpolation algorithm is considered. Thus, Eq.11 is replaced by

ρ2(r, t) = ρ2(Φ(r0, t)) ≈ 1
2
(
ρ1(Φ(r0, t) − T) + ρ3(Φ(r0, t) + T)

)
(15)

where the deformation Φ that depends on the position r0, of the point in the undeformed (material) frame, and time

is as defined in section 2.1. The optimality condition ∇ρ1E1 = 0 leads to the following integral equation:

5
3
CF ρ

2
3
1 − 4

3
Cxρ

1
3
1 +

∫
D1

ρ1(r′)
||r− r′||dr

′ +
∫

D2

ρ2(r′)
||r − r′||dr

′ +
∫

D3

ρ3(r′)
||r − r′||dr

′ −
M∑

A=1

ZA

||r − r′|| + λ1 = 0 (16)

A change of integration variable is performed to take the integration back to the undeformed domains:

∫
D1

ρ1(r′)
||r − r′|| dr′ =

∫
D0

1

ρ1(Φ(r0 ′, t))
||Φ(r0, t) − Φ(r0′, t)|| |F(r0′)| dr0′ (17a)

∫
D2

ρ2(r′)
||r − r′|| dr′ =

∫
D0

2

ρ2(Φ(r0 ′, t))
||Φ(r0, t) − Φ(r0′, t)|| |F(r0′)| dr0′

=
∫

D0
2

0.5(ρ1(Φ(r0′ − T, t)) + ρ3(Φ(r0′ + T, t)))
||Φ(r0, t) − Φ(r0′, t)|| |F(r0′)| dr0′ (17b)

∫
D3

ρ3(r′)
||r − r′|| dr′ =

∫
D0

3

ρ3(Φ(r0 ′, t))
||Φ(r0, t) − Φ(r0′, t)|| |F(r0′)| dr0′ (17c)

Therefore, the optimality condition for any point r0 assumes the form of an integral equation:

5
3
CF ρ

2
3
1 (Φ(r0, t)) − 4

3
Cxρ

1
3
1 (Φ(r0, t)) +

∫
D0

1

ρ1(Φ(r0′, t))K11(r0′, r0)dr0′ (18a)

+
∫

D0
3

ρ3(Φ(r0′, t))K13(r0′, r0)dr0′ −
M∑

A=1

ZA

||Φ(r0, t) − Φ(R0
A, t)|| + λ1 = 0

where the kernels K11 and K13 are defined as

K11(r0′, r0) =
|F(r0′)|

||Φ(r0, t) − Φ(r0′, t)|| +
0.5 |F(r0′ + T)|

||Φ(r0, t) − Φ(r0′ + T, t)|| (18b)

K13(r0′, r0) =
|F(r0′)|

||Φ(r0, t) − Φ(r0′, t)|| +
0.5 |F(r0′ − T)|

||Φ(r0, t) − Φ(r0′ − T, t)|| (18c)

(18d)
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Similarly, writing the optimality condition of Eq.10 for domain D3 leads to the following integral equation that

must hold for any r0 in the undeformed domain D0
3:

5
3
CF ρ

2
3
3 (Φ(r0, t)) − 4

3
Cxρ

1
3
3 (Φ(r0, t)) +

∫
D0

1

ρ1(Φ(r0′, t))K31(r0′, r0)dr0′ (19a)

+
∫

D0
3

ρ3(Φ(r0′, t))K33(r0′, r0)dr0′ −
M∑

A=1

ZA

||Φ(r0, t) − Φ(R0
A, t)|| + λ3 = 0

where the kernels K31 and K33 satisfy

K31(r0′, r0) = K11(r0′, r0) K33(r0′, r0) = K31(r0′, r0) (19b)

Note that Eqs.18 and 19 are similar to Eqs.13 and 14. The equations corresponding to the undeformed case are

obtained by setting |F(r0′)| = 1, and Φ(r0, t) = r0 everywhere in D0
1 ∪ D0

2 ∪ D0
3. These two conditions effectively

indicate that none of these domains experiences any deformation.

Finally, the expression of Φ(r0′, t) has not been provided explicitly and most likely can not be. This deformation

field actually depends parametrically on the positions RA of the nuclei at time t; i.e., Φ = Φ(r0′, t;RA), but this

dependency was not made explicit to keep the notation simple. Unlike in the traditional Finite Element method,

where the material obeys homogeneity and in many cases anisotropy assumptions, for the electronic problem this is

not the case. Thus, it is not immediate how the mesh can be refined beyond the nuclear level, and if the integrals in

Eqs.19a and 19a actually require in terms of Φ(r0′, t) a level of accuracy beyond what a nuclear mesh can provide.

2.3 Electronic density reconstruction

The process of electronic density reconstruction is referred to as fluctuation reconstruction. The objective is to

develop efficient tools that compute the solution to the electronic structure problem up to higher order terms

O (F)2 + O (∇0 F). This is equivalent to carrying out the first step of the classical homogenization technique

(A REFERENCE HERE WOULD BE HELPFUL).

For simplicity, assume that two identical rectangular domains of linear size a are separated by a vector La (1, 0, 0),

where L is an integer. These reference domains Dr
1 and Dr

L+1, have electronic densities ρ1 and ρL+1, respectively,

that might have been computed using an elaborate DFT method. The goal is to reconstruct the density in the domain

between the two given rectangular domains (the shaded region in Fig.1). In what follows, a vector T = a (1, 0, 0) is

introduced to simplify the notation, and by definition Tk = kT.
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Figure 2: Fluctuation reconstruction.

The potential generatefd by the total charge in the system is

V (r) =
∫

ρ(r′) + ρA(r′)
r − r′

dr′.

In our computations it is important to consider separately the potential that is generated by electronic density outside

a given domain D, whose complement is D̄, that is,

V ext(r; D) =
∫

D̄

ρ(r′) + ρA(r′)
r − r′

dr′ +
∫

D

ρA(r′)
r − r′

dr′, r ∈ D.

For solving the electronic problem, we may consider that the effect of the nuclei from the domain is also a part of an

“external” potential, which explains the last term in the previous expression.

Clearly,

V (r) = V ext(r; D)′ +
∫

D

ρ(r′))
r − r′

dr′.

2.3.1 The near periodicity assumption and interpolation approach

In the following, we will make the assumption that the external potential and the electronic density is nearly periodic,

at least in the direction or in the subspace in which we do the reconstruction. For that assumption to be reasonable,

one may imagine that the domain depicted in Figure 2 is embedded in a crystal, that is sufficiently large or that is

sufficiently large in the horizontal direction and periodic across. or that the end domains Dr
1 and Dr

L+1 are sufficiently

far away from the boundary of the crystal. In addition, we assume that the “periodicity defect” is slowly varying in

space on the scale of the domains.

This assumption is typical in homogenization theory, and, for an observable W (x), it means that it can be

expressed as W (x) = f(x
b , x

a ). Here f(y, z) is a function that is periodic in z with a vector period T̂ = O(1) and

that is well-behaved in y, that is, ∂f
∂y = O(1). An example of such function is ysin(z). Here a is the characteristic
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length scale of the fluctuations (the “microscale”, or a measure of the domain Dr
1 in our case, such as its diameter),

whereas b is the “macroscale” length scale, (in our case, the entire crystal or nanoparticle) and a � b.

As a result of our representation of W (x), we have from the intermediate value theorem that, for any integer k

the following holds:

∣∣∣W (x + kT̂a) − W (x)
∣∣∣ =

∣∣∣∣∣f(
x + kT̂a

b
,
x + kT̂a

a
) − f(

x

b
,
x

a
)

∣∣∣∣∣ =

∣∣∣∣∣f(
x + kT̂a

b
,
x

a
) − f(

x

b
,
x

a
)

∣∣∣∣∣ = O(
ka

b
)

By a similar argument, the following also holds for nearly periodic W (x)

(
1 − k−1

L

)
W (x) + k−1

L W
(
x + LaT̂

)
) − W

(
x + (k − 1)aT̂

)
= O((La

b )2), k = 1, 2, . . .L + 1

Therefore, the nearly periodic assumption for V ext(r; D) implies that the external potential has the following two

properties

∣∣V ext(r + Tk1−1; Dk1) − V ext(r + Tk2−1; Dk2)
∣∣ ≤ O(

(k1 − k2)a
b

) ≤ O(
La

b
), ∀r ∈ Dr

1, 1 ≤ k1 < k2 < L + 1, (20)

and

(
1 − k−1

L

)
V ext(r; D1) +

(
k−1
L

)
V ext

(
r + TL; Dr

L+1

)− V ext (r + Tk−1; Dk) = O(
(

La
b

)2
)k = 1, 2, . . . L + 1, r ∈ Dr

1

In the following, we asses the error of reconstructing the electronic density in the domains Dr
k, k = 2, . . . , L by

interpolation between its values in domains Dr
1 and Dr

L+1. The reconstruction rule is the following:

ρ̂ (r + Tk) ≈ ρ̂ (r + Tk) =
(

1 − k

L

)
ρ1 (r) +

k

L
ρL+1 (r + TL) , k = 2, . . . L, r ∈ Dr

1 (21)

where we have denoted

ρ1 (r) = ρ(r), ρL+1 (r + TL) = ρ (r + TL) r ∈ Dr
1

to emphasize the fact that the reconstructed density depends only on the density values

Theorem 1 Assume that the external potential is nearly periodic. Then the error in the optimality conditions of

the electronic structure problem is

O

((
La

b

)2
)

+ O((ρ1r − ρL+1 (r + TL))2)
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Proof To be continued. A consequence of the potential near periodicity is a periodicity in the value of the

electronic density, which translates into

|ρ(r) − ρ(r + TL)| � 1 (22a)

The value of the electronic density is approximated through interpolation:

Note that this approach can accommodate high cusps in the electronic density.

MIHAI, WHY DO WE HAVE THIS DISCUSSION HERE? I WOULD EITHER MOVE IT

(GIVEN THE STRUCTURE OF THE DOCUMENT, DOES IT MAKE SENSE TO PUT IT SOME-

WHERE ELSE?) , OR DELETE IT FROM HERE... Assume now that we have some local optimality

conditions, that I define in operator terms. That would certainly work for OFDFT and localized Kohn-Sham.

Θ(ρ1(r), V (r)) = 0, Θ(ρ2(r), V (r + La (1, 0, 0))) = 0

Then, we use standard interpolation theory, and the assumption that the functional that defines the optimality

conditions for the energy is well behaved (without assuming that the solution itself is well behaved). An example of

such functional is provided above. We obtain that

Θ(ρ1(r), V (r)) = 0, Θ(ρ2(r), V (r + La (1, 0, 0))) = 0, r ∈ 


Using standard error analysis, we obtain that

Θ
(
ρ̂
(

k
Lr +

(
1 − k

L

)
(r + La (1, 0, 0))

)
, V (r + ka (1, 0, 0))

)
=

Θ
(

k
Lρ1(r) +

(
1 − k

L

)
ρ2(r), k

LV (r) +
(
1 − k

L

)
V (r + La (1, 0, 0))

)
+ O

(
|V (r + La (1, 0, 0)) − V (r)|2

)
=

O
(
|V (r + La (1, 0, 0)) − V (r)|2

)
+ O

(
|ρ1(r) − ρ2(r)|2

)
, r ∈ 


... DOWN TO HERE

The proposed interpolation-based approach has certain limitations and is not expected to always work well. In

this context:

1. The reconstructed density might display discontinuities at the interface between neighboring domains. This

situation only arises when the periodicity assumption is violated. However, the purpose of the investigation

is to consider periodic structures with small defects that are periodic almost everywhere. For the purpose of

generating just the field, I can show that the above estimate is accurate.
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2. MIHAI, YOU START SAYING PERTURBATION, BUT THEN YOU SORT OF MEAN DE-

FORMATION. I’D SAY LET’S USE DEFORMATION THROUGHOUT THIS LIST ITEMThe

density should be reconstructed in this fashion only away from major perturbations. In that case, we use a

macro scale mesh to define the deformation. For reconstructing density, we map back to the undeformed mesh

and we reconstruct there by interpolation. That is necessary since the density has very sharp peaks, that would

not satisfy the smallness assumption above otherwise PLEASE REFER BY EQUATION NUMBER TO

WHAT SMALLNESS ASSUMPTION YOU MAKE REFERENCE. After which we used the same

deformation description to go back to the deformed domain

3.

4. DO WE STILL NEED THIS HERE?Of course, this will result in domains that are not rectangular

boxes. I hope that it is not a problem for Kohn Sham.

2.4 Potential reconstruction

At any point we will use only the densities in a small number of domains explicitly. The density will be recomputed

in the rest of the space by interpolation. In the end, the total field is obtain by superposition, where the subscripts

refer to the specific regions.

V (r) = VQC(r) + VKS(r) + VKS,Interp

Although the Kohn sham interpolated and the quasi continuum regions can be quite extended, the density in those

regions is truly represented only via a set of the densities in a small set of domains, perhaps only fundamental cells

that are eventually allowed to deform as the crystal relaxes.

So, we have the following

VKS,interp(r) =
J∑
j

∫
C

ρo
j(r

′)Kj(r, r′)dr′

VQC(r)=

I∑
i

∫
C

ρi(r′)Ki(r, r′)dr′

where the Kernels Ki(r, r′), Kj(r, r′)are obtained from the interpolation operator and the kernels of the usual

electrostatic fields.

1. Computing them may be the principal task outside running DFT itself.

2. It may be useful to change variables to undeformed domain.
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3. It may be useful to compute the total field at once to get the fast decay effect Dieter Wolf was

talking about, as opposed to computing separated electronic and nuclei. If not, the field of the

nuclei is computed by some multipole like expansion.

Therefore at every point there is an external interaction potential, that depends only on the computational boxes.

V (r) = V (r, ρ1, ρ2, . . . ρP , ρA)

3 The Extended DFT Problem

This would be Tool 3: Emily Carter and Ortiz, combined with our density interpolation. Applies for the cases

where one can use only local quasi continuum, away from major distortions. This would essentially replace the old

Tool1, provide that we extended it for Kohn Sham, where the reconstruction of the density in the infinite crystal is

done with our interpolation, should such a Reconstruction be needed near special boundaries where I can not apply

periodic boundary conditions.

One of the ideas that seems possible to explore is to run the infinite crystal computation only a few times and then

use table lookup and interpolation to compute the derivatives of the energies with respect to well selected positions

of the nuclei.

3.1 The coupled non-linear problem and the optimization framework

In the following, we will use the notion of quasi continuum to describe a situation where small deformations are

described with respect to a macro scale mesh. That description can be either via a finite element or by some sort of

local spectral method. Of course, one would like to try finite element first.

We will use a set of models of increasing complexity.

1. Kohn Sham

2. Kohn sham in small domains with interpolation of density

3. Quasi continuum deformation with either Tool 1 or Tools 3 combined with interpolation to calculate the local

change in density. Note, however, that tool 1 and tool 3 apply only when I allow the system to deform, they

are irrelevant for the electronic density problem un the undeformed domain.
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4. What density reconstruction buys you is the possibility to compute the field of the deformed quantity in the

Kohn sham region without assuming periodic boundary conditions.

3.2 Cross-domain Kohn-Sham DFT

I am assuming here that Kohn Sham interacts only through the external potential.

For any of the p domains, I will have a local value of the energy, function of the external potential, that I will

minimize, Note that the external potential does depend upon the density in box p, because of the

interpolation.

Therefore, I will have to solve a system of coupled nonlinear equations.

∇ρpEp(ρp,ρA,V (ρ1,ρ2, . . . ρP )) = 0, p = 1, 2, . . . P

How I solve it depends on how I encapsulated the solver.

1. If all I am provided is : given external potential, compute the self-consistent ρP , for a given domain that

solves the minimization problem then I have to solve the method using nonlinear Gauss-Seidel. The

convergence of which is tricky and needs some sort of diagonal dominance. For large domains,

it seems impossible.

2. But I can improve the rate of convergence of that doing the following. Assume that Ep(ρp,ρA,V (ρ1,ρ2, . . . ρP )) =

Ep(ρp,ρA,) + V (ρ1,ρ2, . . . ρP )), p = 1, 2, . . . P , and that V is a linear functional, and I can compute its action

on any vector. I can therefore create an iterative method that accommodates the entire dependence on ρp, by

some nonlinear GMRES

3. If the method can provide the self-consistent derivatives for a given density, then I can do a nonlinear GMRES

kind of approach directly.

4. Note that the same approach applies orbital free density functional theory as well.
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3.2.1 The charge balancing and self-consistency problem

If there is a measure of charge equilibration Φ(q1, q2, . . . qp), then I can solve the following constrained problem.

min Φ(q1, q2, . . . qp)

∇ρpEp(ρp,ρA,qp, V (ρ1,ρ2, . . . ρP )) = 0, p = 1, 2, . . . P

P∑
p

wpqp = N

where wp are the weights of each domain depending on the interpolation weights.

But a very promising idea is the use of a Lagrange multipliers. The total local energy and the respective nonlinear

equations become.

Ep(ρp,ρA,V (ρ1,ρ2, . . . ρP ), λ) = Ep(ρp,ρA,) + V (ρ1,ρ2, . . . ρP )) + λ
∫

Dp

ρ, p = 1, 2, . . . P

∇ρpEp(ρp,ρA,qp, V (ρ1,ρ2, . . . ρP ), λ) = 0, p = 1, 2, . . . P

P∑
p

wp

∫
Dp

ρ = N

3.3 The reduced optimization problem

It is interesting to see that we have reduced the optimization problem to a nonlinear equation, which is difficult to

reconstruct back to an optimization problem. We illustrate this difficulty in the context of the quasi continuum’s

method applied to potential methods. The quasi continuum method appears in two flavors.

3.3.1 The local method

In the first one, a total energy is computed by using finite elements and numerical quadrature at the node points.

With this formulation, the total energy is computed following a numerical quadrature based on a finite element mesh

whose triangles are much larger than the distance between two consecutive atoms.

E ≈
∑

wkEK(F )

where wk are appropriate weight parameters, whereasEk(F ) is is the energy associated with a small domain

around the quadrature point Pk. HereF is the deformation of the crystal under consideration, which is assumed to

vary on a scale that is much larger than the distance between two consecutive atoms. The energy Ek(F )is computed

by using the Cauchy-Born approximation of local linear deformation, followed by embedding the small domain in an

infinite crystal and computing its share of energy from a periodic calculation.
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Subsequently, the total energy is minimized as a function of the deformation, which is typically represented by

the same element as the numerical quadrature that led to the energy approximation.

One of the advantages of the local approach is that the computation of the energy in one domain is independent

of the energy in any other domain, and due to the periodicity assumption, one can consider only one fundamental

cell over which the computation is done, and such the computational effort is tremendously reduced. The natural

extension of this method uses density functional theory instead of potentials to predict the amount of energy, which

leads to a truly ab-initio calculation.

In terms of disadvantages, the method deals very poorly with surfaces and special areas, such as the defect areas.

Which led to the nonlocal method.

3.3.2 The nonlocal method

In this method, several representative atoms {Rb}b∈�are chosen, and the deformation F is again represented on a

mesh that lives on a much larger scale than the fundamental cell of the original crystal. After which one solves the

following problem

P (Rb, F ) = 0, b ∈ �

Where P is the force acting at the respective atom, as a function of the deformation. So, in this case, one solves a

system of coupled nonlinear equations, rather than an optimization problem. We also note that, if there are long

range interactions than the force at a representative atom may depend on the force at a different representative atom,

but the way it is implemented in the work of Ortiz and co-authors one assumes that the potentials are truncated

which results in to representative atoms interacting only through the macro scale mesh. A different variation calls

for using an average of the force at atoms around the representative atom being equal to zero as opposed to the force

at the representative atom being equal to zero.

3.3.3 Open issues

1. The mesh of the deformations does not have to be centered at the representative atoms, in effect, it may even

be a bad idea since the nodes are the place of the largest distortion in the initial configuration of the crystal.

2. An interesting question is the situation where the number of representative atoms is over determined compared

to the numbers of degrees of freedom of the mesh. First order logic would suggest that this would result in more
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robust With a modest increase in the computational cost. It is clear that if too few representative atoms are

chosen than the problem will suffer a degeneracy, whereby the minimal energy will correspond to a continuum

of deformations that can be obtained by deformation one from the other.

3. Is it possible to obtain the appropriate optimization problem that correspond to the couple nonlinear equation,

without having to explore all the atomic nodes?

4. Can one use splines to represent the deformation and such avoiding the large distortion in the crystal at the

junction of two different elements?

3.4 A comparison of the coupled nonlinear equations vs. the optimization methods

In the limit there should not exist any difference between the tow methods. In an abstract formulation, we have the

following problem.

min
x1,x2

f(x1, x2)

Where we assume that the variables x1 correspond to the representative atoms whereas x2 correspond to the rest

of the atoms. The quasi continuum method is based on the observation that one expects at the solution to have

x2 = T (x1) where T (x1) is the interpolation mapping, which can in principle be replaced by any slowly varying

mapping. The mapping can be a function of the representative atoms, which corresponds to an interpolation based

on the mesh whose nodes are the representative atoms, but it can depend on a different mesh, with fewer nodes than

the number of representative atoms.

Based on this observation, one can formulate the nonlinear equation

∇x1 f(x1, x2), x2 = T (x1)

which will provide the same solution as the original problem. However, the problem is an equilibrium problem with

equilibrium constraints rather than a minimization problem.

However, it immediately results using the chain rule that the optimization problem

min
x1

f(x1, T (x1)),

has the same solution as the previous two, provided that the reduced Hessian is positive definite, which should be

true if the original Hessian was positive definite, and the interpolation mapping is full rank. This observation presents
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the advantage that one solves an optimization problem as opposed to a system of nonlinear equations, and one has

a better global convergence safeguards for the situation, which should help for the case when there are many local

minima to avoid the points that do not have the correct inertia of the Hessian.

The problem with this observation is that one should construct this total energy function without exploring all

atoms, if at all possible, eventually by using only the interpolation mesh.

Theorem 2 Assume that the solution x∗ = (x∗
1, x

∗
2)of the original optimization problem satisfies‖x∗

2 − T (x∗
1)‖ � 1,

therefore the multiscale ansatz is not perfect, it is merely very good. Then the solution x̃1of the nonlinear equation

and x̂1of the reduced optimization problem satisfy

‖x∗
1 − x̃1‖ = O(‖x∗

2 − T (x∗
1)‖2) ‖x∗

1 − x̂1‖ = O(‖x∗
2 − T (x∗

1)‖2)

Proof 1 To be determined.

Note that our main research thrust: Determining appropriate expressions of the energy function that result in an

optimization problem as opposed to a coupled nonlinear equation. We are interested in the case where the interactions

in the matter account for electronic effects via density functional theory, either Kohn-Sham or Orbital-Free.

The essential step is ”the reconstruction of the fluctuation”, that is using Tools like Tool2 to reconstruct the

electronic density when necessary, especially around regions of interest, such as defects or surfaces.

Following an interpolation approach like Tool 2, that is built on top of a discretization that uses only small

computational domains, this means that the total electronic density will be written as

ρ(r) =
nD∑
k

∫
Dk

KDk
(r, r′, F )ρ(r′)dr′

The rationale behind in this ansatz is the same as the one exposed in Tool 2, and while it naturally comes by for

electronic density, it may also be worth pursuing for nuclear charge density as well. The key is in the computation

of K(r, r′, D), which includes the interpolation aspect.

If the density ρis the total charge density ρtot, then we have the electrostatic interaction energy to be simply

Eelectrostatic = 1
2

∫∫ ρ(r)ρ(r′)
r−r′ drdr′, with an eventual small correction to do away with the equivalent of the self

interaction energy of a nucleus, which would contain a square of a delta functional. Otherwise, one writes a different

formula for ρA,
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the nuclear (atomic) charge density.

If one has to compute the field with the total density ρ = ρtot, however, then the formula

V (r) =
∫ ρ(r′)

|r−r′|dr′ is an exact formula, though it will have singularities at the atomic positions. Computing with

the total energy density has the advantage of using charge neutrality or nearly charge neutrality, coupled by the

near periodicity that holds for small deformations of the crystal to result in the fast decay with the distance between

regions of the effects of one region on a different region.

However, the interaction terms do not contain all the energy in density functional approaches. We have that

EDFT (ρ, ρA) = T [ρ] + Exc[ρ] + Eelectrostatic[ρ, ρA]

Here, T is the kinetic energy, whereas Exc is the exchange energy.

The problem is that the total kinetic energy is very difficult to evaluate over a large domain. If one uses kohn

sham, then the computation of the kinetic energy would be about as difficult as minimizing all the energy using kohn

sham itself with the density represented everywhere as opposed to small boxes.

We therefore look for interpolation approach is again, where we can write

T [ρ] + Exc[ρ] ≈
nD∑
k

wk (T [ρ] + Exc[ρ])r∈Dk

Working with the electrostatic energy followed by the density reconstruction, we obtain, in the end the following

expression for the total energy

EDFT =
nD∑
k

ŵkEid
Dk

(ρ,ρA, r ∈ Dk) +
nD∑
k

nD∑
k′>k

ŵk,k′Edd
Dk,Dk′ (ρ, ρA, r ∈ Dk;ρ, ρA, r ∈ Dk′)

All the terms in the sums are also dependent on the deformation F . Here Eid is an inter domain energy whereas

Edd is an inter-domain energy, that is computed based on the energy reconstruction outlined above.

3.5 Directions of research

3.5.1 The coupled nonlinear problem

The research topics are presented above.

3.5.2 The general optimization approach

1. Comparison between coupled nonlinear and optimization problems

20



2. Properties of the Hessian’s and gradients of the reduced problems compared to the original problem.

3. Proof of the result of the perturbation theorem outlined above.

3.5.3 The fluctuation reconstruction and equivalent optimization problem

1. Constructing the appropriate fluctuation reconstruction operatorsK(r, r′, F ). The interpolation part is some-

what clear, but it would be ideal if the approximation somehow would result in something continuous, which

direct interpolation does not provide.

2. The appropriate use of the reference crystal for interpolation.

3. Efficient computation of the Edd
DkDk′ This is possibly the single most important item in terms of efficient

implementation. In the local quasi continuum approach with density functional theory of Ortiz and Carter,

this part does not exist and is truly repackaged together with the inter-domain terms, so their computational

effort in this part is the zero which is tough to beat. However I can imagine ways of changing variables in

the respective intervals back to the reference crystal, where the computation is similar to the one for the

periodic case except that in addition one has a small perturbations that is due to the deformation and to the

interpolation. Since that effect is slow on the scale of one crystal cell, one simple idea would be to use only the

rectangular elements of a reasonable aspect ratio in the interior change variable’s with respect to the crystal

undeformed configuration and precompute the operators KDk
(r, r′, F ), and their subsequent effect on Edd

4. Determining appropriate parameterization for which we can use an interpolation like approach to reconstruct

the kinetic energy outside the computational domains Dk. For orbital free DFT that is certainly possible,

following an error estimation which is similar to the one presented for Tool number two.

5. How to do interpolation that results in continuous density, or even density with continuous derivatives.

4 Nanostructure shape investigation

The equilibrium configuration of a nanostructure is provided by that distribution of the nuclei that minimizes the

energy

Etot = Ee + Enn (23)
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The assumption made is that the kinetic energy of the nuclei is zero, and that Ee is the electronic ground-state

energy for the considered nuclear distribution. Therefore, following the Born-Oppenheimer assumption, the electronic

energy depends parametrically on the position of the nuclei, through the dependence of the electronic density on the

nuclei position:

Ee = T [ρ(r)] + EHar [ρ(r)] + Exc[ρ(r)] +
∫

ρ(r)Vext(r; {RA}) dr (24)

where T [ρ(r)] is the kinetic energy functional, EHar [ρ(r)] is the electron-electron Coulomb repulsion energy, Exc[ρ(r)]

is the exchange and correlation energy, and Vext(r; {RA}) is the ionic potential, which parametrically depends on

the distribution of the nuclei {RA}. The explicit dependency of T [ρ(r)] and Exc[ρ(r)] on the density ρ(r) is typically

not available and consequently it is approximated in some fashion, which is not an issue of concern in this document.

According to the Kohn-Hochenberg theorem [11], the electronic density is such that it minimizes Ee subject to the

charge conservation constraint of Eq.2b.

Theorem 3 Consider the optimization problem

min
{RA}

Etot = Ee + Enn

subject to the constraint that for a nuclear configuration {RA} the energy Ee is the electronic ground energy, and the

electronic density ρ̂ that realizes this electronic ground energy additionally satisfies the charge constraint equation of

Eq.(2b). Under these assumptions, the first order optimality conditions for the optimization problem are

FK =
∂Eext

∂RK
+

∂Enn

∂RK
= 0 (25)

where FK is interpreted as the force acting on nucleus K, and by definition

Eext(r; {RA}) = −
M∑

A=1

∫
ρ̂(r)Vext (r; {RA}) dr = −

M∑
A=1

∫
ZAρ̂(r)
|r − RA| dr (26a)

Enn =
1
2

M∑
A=1

M∑
B=A+1

ZAZB

RAB
(26b)

Proof 2 The proof relies on the calculus of variations. Since ρ̂(r) is determined to minimize the electronic energy,

there is a parametric dependency of this value on the ionic position: ρ̂(r) = ρ(r; {RA}). Applying the chain rule, the

optimality conditions for Etot will read
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δEe

δρ

∂ρ

∂Rk
+

∂Ee

∂Rk
+

∂Enn

∂Rk
= 0 (27)

where Rk is the position of an arbitrary nucleus k.

Based on the Hochenberg-Kohn theorem, the optimality conditions for minimizing the electronic energy as a

functional of the electronic density lead to

δEe

δρ
+ λ

δg

δρ
= 0 (28)

where λ is the Lagrange multiplier associated with the constraint

g[ρ] = 0 (29)

that the electronic density must satisfy. For the problem at hand the charge conservation equation results in g[ρ] =

∫
ρ(r) dr − Ne. Based on Eq.(29), the variation of ρ(r) with respect to Rk must satisfy

δg

δρ

∂ρ

∂RK
= 0

Multiplying Eq.(28) from the right by ∂ρ
∂RK

leads to δEe

δρ
∂ρ

∂RK
= 0, which substituted back into (27) yields the optimality

condition stated in Eq.(25).

Therefore, for each nucleus K in the system, Eq.(25) leads to the condition

∫
ρ̂(r)

r − RK

||r − RK || 32 dr +
M∑

A = 1

A �= K

ZA
RA − RK

||RA − RK || 32 = 0 (30)

Remarks:

1. The key observation is that once the electronic density is available, the equilibrium conditions of Eq.(30) can be

imposed right away. It is irrelevant if the electronic structure computation is done with KS-DFT or OF-DFT;

also note that there is no need to know the explicit dependency of the energy Ee on the electronic density ρ(r).

2. As suggested in [15], the one-atom conditions of Eq.(25) can be replaced by cluster conditions, an alternative

that will be explored in the future.
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3. Due to the presence of the electronic density ρ(r) that displays very pronounced cusps in the vicinity of nuclei,

the integral in Eq.(30) must be evaluated using special techniques [3, 22]. This computational aspect is central

to the overall algorithm and it will be detailed in a separate document.

When a local quasicontinuum approach is used, the condition of Eq.(30) is only imposed for repnuclei ; the position

of all the atoms in the system is then expressed in terms of the position of the repnuclei. The repnuclei become the

nodes of an atomic mesh, and interpolation is used to recover the position of the remaining nuclei. If the atomic

mesh is denoted by �n, τ is an arbitrary cell in this mesh, V(τ) represents the set of the nodes associated with cell

τ , and ϕL is the shape function associated with node L, then the condition of Eq.(30) is approximated as

∫
ρ̂(r)

r− RK

||r − RK || 32 dr +
∑

τ∈Cn

∑
α∈τ

Zα

∑
L∈V(τ)

RLϕL(Rα) − RK

|| ∑
L∈V(τ)

RLϕL(Rα) − RK || 32 = 0 (31)

This effectively reduces the dimension of the problem from 3 M (the (x, y, z) coordinates of the nuclei), to 3 Mrep,

where Mrep is the number of nodes in the atomic mesh (the number of repnuclei). The sum in Eq.(31) is most likely

not going to be the simulation bottleneck (solving the electronic problem for ρ̂ is significantly more demanding), but

fast-multipole methods [1, 10, 17] or Ewald summation [5, 6] can be considered to speed up the summation.

Denoting by Pi, i = 1, . . . , Mrep, the position of the representative nucleus ni, the set of non-linear equations of

Eq.(31) can be grouped into a non-linear system that is solved for the relaxed configuration of the structure:

f1(P1,P2, . . .PMrep) = 0

f2(P1,P2, . . .PMrep) = 0

· · ·

fMrep(P1,P2, . . .PMrep) = 0

(32)

Finding the solution of this system is done by a Newton-like method. Evaluating the Jacobian information is

straightforward but not detailed here.

5 Proposed Computational Setup

The overall problem statement is as follows: a material of an arbitrary atomic structure (in the sense that it doesn’t

have to be mono-atomic or crystal) is provided in an initial structure (configuration). The interest is to determine
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the electronic density distribution for the given nano-structure as well as its final structure (configuration). Due

to the assumption that the kinetic energy of the nuclei is zero, basically the problem solved corresponds to a zero

Kelvin temperature situation. Extending it to non-zero temperature it’s not treated in this document, but should

most likely follow an approach similar to the ones proposed by Car-Parrinello [4], or Payne, et. al [16].

At a very high level, the solution of the problem emerges as a two step approach. First compute the electronic

structure, using reconstruction reconstruction techniques of sections 2 and 3. The second step is concerned with

repositioning the nuclei in order to relax the overall structure to a final configuration. This is done as explained in

this document, and has the following sub-steps:

1. Evaluate the integral of Eq.(31), and when necessary its partial with respect to Pi

2. Evaluate the double sum of Eq.(31), which is based on a partitioning of the structure, and when necessary,

evaluate its partial with respect to the position of the representative atoms

3. Carry out Newton step to update the positions Pi of the Mrep representative nuclei.

4. Go back to a) if not converged

5. Compare the final configuration with the one used in the electronic structure computation. If no significant

change, then it means that the problem is solved, the most recent electronic structure computation and current

configuration are the solutions to the problem.

Remark: The proposed approach is limited by the accuracy in the electronic density ρ(r). The sensitivity of the

solution of the non-linear system of Eq.(32) with respect to ρ(r) needs to be further investigated. The end goal of

the proposed method is to compute (A) the electronic structure and (B) the nanomaterial structure. Most likely (B)

is going to be less sensitive.

5.1 Potential Computational Studies

1. Consider a slab which is periodic in two directions, and which has 15 to 20 fundamental cells in the third

direction. Study either the relaxation of the surface or the situation were a molecule of a different kind is at

the surface.
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2. Used a cube, where the book is done with the Ortiz and Carter quasi continuum with periodic boundary

conditions, but near the corners we do density reconstruction and electronic structure computation with void

boundary condition.

3. The study of an inner defect with quasi continuum outside a box, and fluctuation reconstruction plus density

functional computation with void boundary conditions inside.

4. Repeat the computation of Ortiz and Carter by using tabulated kohn sham plus a methodology like the one

outlined above to do minimization as opposed to coupled nonlinear equations.

5.2 Conclusions

• It is not totally clear what is the effect of the inner boundary of the domain. It seems rational to assume that

if the functional is a functional only of the density and not its derivatives we are in good shape. However, for

forms that also included the gradients of the density something else may need to be done.

• The computation can be done for an arbitrary number of domains

• As mentioned above, one could possibly use buffers towards the end of the domain and use only the rest of the

density for reconstruction in the gaps, this will reduce the effect of the boundary layers.

• Formally, the last couple system of nonlinear equation is applies for the kohn sham approach as well. It is an

instance of the couple kohn sham equation above.

• The nonlinear equation approach can be considered to be an extension of the nonlocal quasi continuum ap-

proach.
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A A domain decomposition approach

B Software Implementation Details

At one of our model layers we consider OF-DFT formulations of the energy functional. Such formulations are useful

for two reasons. First, they will provide reasonably accurate solutions in certain configurations, with all the need

to going all the way down to a more computationally difficult Kohn-Sham description, which makes them excellent

choices for guiding a systematic optimization approach toward finding the energy minimum.

A second aspect important for our research is the fact that they are an ideal test case for the various strategies of

replacing the discrete atomic distribution with a continuum, as well as for characterizing the effects of the electronic

structure mesh over the quality of the minimum.

Since for such explicit functional forms we can explicitly compute the energy, subject to the discretization error of

the electronic density, we will carry out explicit comparisons between the function and derivative computations with

this functional form as opposed to a coarse graining strategy. For the study of the discretization error, we will adapt

and extend existed approaches for dealing with the singularity in the potential functions and numerical quadrature

time, as well as to estimate the electronic mesh discretization error.

Among the coarse graining techniques that we will investigate are

• The resulting integral formulation based on small perturbations matching of the dispersion operator for the

infinite lattice.

• By extending the quasi continuum small perturbations analysis of Kunin to finite domains. For the case over

rectangular boxes, that is fairly straightforward by considering a continuum description that is the sum of

a trend to match respective boundary conditions, and a periodic function. In effect, this idea goes all the

way back to recent multiscale techniques of Hou and Enqvist. Subsequently, a quasi continuum is created by

requesting that the continuum description match the district description at the nodal points. Than a unique

extension can be imposed by similarly restricting the district we are frequencies to the appropriate domain,

given by Shannon’s theorem.

• Extending the similar analysis to arbitrary but smoothly bounded domains. One naturally extension here is

to use the eigenvalues of the Laplace operator, that correspond to the discrete Fourier basis for that anger
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domains, and carry out a similar analysis. Of course, this comes at the cost of complicating the interpolating

problem, but other minimum error criteria will be pursued instead of collocation, which is what results in the

interpolating conditions.

• We will use a near field far afield decomposition, based on a nuclear density representation in the far field.

For interaction potential’s, the local computation under the Cauchy-Born hypothesis will be very similar to

the work of Ortiz, but we will study its extension to functionals like the one above as well as to other model

reduction hypotheses.

• Using the quasicontinuum energy density in an interior domain coupled with explicit atomic representation in

the outside. This will lead to an integral equation that is exact in the case of truncated potentials.

B.1 Numerical Approach

Two meshes are used to find the unknown spatial distribution of electronic density, and the position of the nuclei

{RA}. The nodes of the first mesh are denoted by ℵρ, and the associated tetrahedrons by �ρ. The second mesh

has nodes ℵN , and tetrahedrons �N . The basis functions used for interpolation on both meshes are going to be

piecewise linear, and denoted by φ and φ̂ for the electronic density and nuclei position, respectively. In general, for

a tetrahedron τ ∈ ℵρ, �(τ) represents the set of four vertices of the tetrahedron; likewise, for a point of location r,

�(r) provides the set of four vertices of the tetrahedron that in the undeformed initial configuration contains in its

interior the point of location r. This comes handy in identifying the set of basis functions that contribute to the

value of ρ(r):

ρ(r) =
∑

d∈�(r)

ρdφ(r|rd) (33)

Technically, the nodes of the electronic density mesh can be chosen arbitrarily. However, for the nuclei mesh the

nodes coincide with the positions of a subset of nuclei that are in what called representative nuclei. Using a notation

similar to the one introduced for the electronic density

RA =
∑

M∈�̂(A)

RM φ̂(RA|RM ) (34)

The set of unknowns was reduced the electronic densities ρd, d ∈ ℵρ, and the position of the representative atoms

RM , M ∈ ℵN . It remains to express the energies of Eq. 8 in terms of these unknowns, and to search for that set
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of unknowns that minimizes the expression of the total energy. To this end, the value of the total energy and its

derivative with respect to the new set of unknowns are required.

The original problem

min
ρ(r),RA

E subject to
∫

ρ(r) dr = Ne (35)

is thus reformulated as

min
(ρd,d∈ℵρ),(RM ,M∈ℵN )

E subject to
∫

ρ(r) dr = Ne (36)

Evaluation of the potential E and its derivatives is discussed in sections B.1.1 through B.1.5.

B.1.1 Function and derivative evaluation for Ene

Ene [ρ, {RA}] =
M∑

A=1

∫
ZA ρ(r)
|RA − r| dr (37)

≈
M∑

A=1

∑
τ∈�ρ

∫
τ

ZA

∑
d∈ℵρ

ρdφ(r|rd)

|r −∑M∈ℵN
RM φ̂(RA|RM )| dr

=
M∑

A=1

ZA

⎡
⎣ ∑

τ∈�ρ

∑
d∈�(τ)

ρd

∫
τ

φ(r|rd)
|r −∑M∈�̂(RA) RM φ̂(RA|RM )| dr

⎤
⎦

B.1.2 Function and derivative evaluation for the Coulomb energy J

J [ρ] =
1
2

∫ ∫
ρ(r) ρ(r′)
|r − r′| dr dr′ =

1
2

∑
τ∈�ρ

∫
τ

ρ(r)

⎡
⎣ ∑

τ ′∈�ρ

∫
τ ′

ρ(r′)
|r − r′| dr′

⎤
⎦ dr (38a)

≈ 1
2

∑
τ∈�ρ

⎡
⎣ ∑

d∈�(τ)

ρd

∫
τ∈�ρ

φ(r|rd)

⎛
⎝ ∑

τ ′∈�ρ

∑
d′∈�(τ ′)

ρd′

∫
τ ′

φ(r′|r′d)
|r − r′| dr′

⎞
⎠ dr

⎤
⎦

For a given tetrahedron r defining

s(r) =
∑

τ ′∈�ρ

∑
d′∈�(τ ′)

ρd′

∫
τ ′

φ(r′|r′d)
|r − r′| dr′ (38b)

the approximation of J [ρ] becomes

J [ρ] ≈ 1
2

∑
τ∈�ρ

⎡
⎣ ∑

d∈�(τ)

ρd

∫
τ∈�ρ

φ(r|rd)s(r) dr

⎤
⎦ (38c)
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B.1.3 Function and derivative evaluation for the Exchange energy K

K [ρ] = −Cx

∫
ρ

4
3 (r) dr (39)

= −Cx

∑
τ∈�ρ

∫
τ

ρ
4
3 (r) dr

≈ −Cx

∑
τ∈�ρ

∫
τ

⎡
⎣ ∑

d∈�(τ)

ρdφ(r|rd)

⎤
⎦

4
3

dr

B.1.4 Function and derivative evaluation for the kinetic component T

T [ρ] = CF

∫
ρ

5
3 (r) dr (40)

= CF

∑
τ∈�ρ

∫
τ

ρ
5
3 (r) dr

≈ CF

∑
τ∈�ρ

∫
τ

⎡
⎣ ∑

d∈�(τ)

ρdφ(r|rd)

⎤
⎦

5
3

dr

B.1.5 Function and derivative evaluation for nucleus-nucleus interaction potential Vnn

Vnn ({RA}) =
M∑

A=1

M∑
B=A+1

ZA ZB

rAB
(41)

≈
M∑

A=1

ZA

[
M∑

B=A+1

ZB

|∑M∈�̂(RA) RM φ̂(RA|RM ) −∑M∈�̂(RB) RM φ̂(RB|RM )|

]

B.2 Splitting/averaging and space reduction for efficient evaluation of energy func-

tionals

In an explicit electron density formulation two levels of approximation will be employed to speed up energy functional

evaluation. The first approximation stems from the averaging techniques used to evaluate long range interaction.

The second comes from integral evaluation through quadrature rules.

In regards to the averaging aspect of the proposed approach, consider the form of the inter-nuclear interaction

potential
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Vnn ({RA}) =
M∑

A=1

M∑
B=A+1

ZA ZB

rAB
(42)

The three dimensional space is partitioned in volumes that span the whole set of nuclei. In what follows, a set of

cubes �A serves this purpose. The previous sum is equivalently formulated as

Vnn ({RA}) =
1
2

∑
τ
(1)
A ∈�A

(
∑

τ
(2)
A ∈ �A

τ
(2)
A ∈ N (τ (1)

A )

+
∑

τ
(2)
A ∈ �A

τ
(2)
A /∈ N (τ (1)

A )

)
∑

α∈τ
(1)
A

∑
β ∈ τ

(2)
A

β �= α

V (R̃α, R̃β)ZαZβ (43)

Here τ
(1)
A and τ

(2)
A represent two arbitrary volumes (or cells) containing nuclei that are generically denoted by α and

β. Likewise, N (τ (1)
A ) denotes the set of all volumes (cells) τ

(2)
A that are neighbors of the volume τ

(1)
A . The concept of

neighbor is central to the splitting of the atomic volumes. Thus, the interaction between nuclei living in neighboring

cells is treated exactly. Approximations are employed to speed up the computation of the interaction between nuclei

that live in non-neighbor cells. Finally, note that in general a nanostructure might be subjected to applied forces in

which case it experiences displacement and or deformation. A tilde˜ is used to mark the displaced location of the

nuclei.

Based on Eq. (43) the following approximation is employed for non-neighbor interaction:

V nonloc
nn ({RA}) =

1
2

∑
τ
(1)
A ∈�A

∑
τ

(2)
A ∈ �A

τ
(2)
A /∈ N (τ (1)

A )

∑
α∈τ

(1)
A

∑
β ∈ τ

(2)
A

β �= α

V (R̃α, R̃β)ZαZβ

≈ 1
2

∑
τ
(1)
A ∈�A

∑
τ

(2)
A ∈ �A

τ
(2)
A /∈ N (τ (1)

A )

V (R̃
C(τ

(1)
A )

, R̃
C(τ

(2)
A )

)Z(τ (1)
A )Z(τ (2)

A ) (44)

The total cell charge Z(τ (1)
A ) is obtained by summing up the charge of each nucleus in the volume τ

(1)
A . For the

results reported below, the position R̃
C(τ

(1)
A )

considered was the geometric center of the volume τ
(1)
A . Alternatively, it

can be defined as the charge center of the volume by considering an averaging of the position of the nuclei weighted

by their charge.
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The proposed method to evaluate the nucleus-nucleus interaction replaces the individual each-to-each evaluation

with many-to-many averages in the case of long range interaction. In addition to splitting and averaging, a second

efficiency improving factor considered is the reduction of the number of states. Rather then considering the position

of all the nuclei (M of them) only a subset of nuclei is considered. These can be physical or ghost ”reference”

nuclei used to represent the position of any other nucleus in an associated atomic control volume. Thus, for a cubic

volume, only the eight nuclei at the vertices of the volume are added to the set of states associated with the problem.

Therefore, casting the computation of V nonloc
nn ({RA}) in the form

V nonloc
nn ({RA}) = V nonloc

nn ({RA}) + V loc
nn ({RA}) (45)

the term V nonloc
nn takes advantage of both the lumping/averaging and state dimension reduction factors, while the

V loc
nn only leverages the latter.

The splitting/averaging and dimension reduction are used for CPU gain for the computation of the mixed potential

Ene as well. Starting with the definition

Ene [ρ, {RA}] =
M∑

A=1

∫
ZA ρ(r)
|RA − r| dr (46)

a three dimensional electronic density mesh is used to evaluate Ene [ρ, {RA}]. Mesh refinement will be employed for

improved accuracy in energetically intense regions, but unlike the volumes associated with the nuclei splitting, the

electronic density mesh is not deforming during simulation. A local-nonlocal splitting of the functional of Eq. (46)

leads to:

Ene [ρ, {RA}] = E(nonloc)
ne [ρ, {RA}] + E(loc)

ne [ρ, {RA}] (47a)

where

E(loc)
ne [ρ, {RA}] =

∑
τ∈�τ

∑
d∈V(τ)

ρd

∑
τA ∈ �A

τA ∈ N (τ)

∑
α∈τA

Zα

∫
τ

Φd(r)
|r − R̃α|

(47b)
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E(nonloc)
ne [ρ, {RA}] =

∑
τ∈�τ

∑
d∈V(τ)

ρd

∑
τA ∈ �A

τA /∈ N (τ)

∑
α∈τA

Zα

∫
τ

Φd(r)
|r− R̃α|

(47c)

In Eqs. (47b) and (47c) the shape functions Φd associated with each of the vertices d of a volume τ in the

electronic density mesh �τ , are used to express the electronic density at any arbitrary point r as

ρ(r) =
∑

d∈V(τ)

ρdΦd(r) (48)

where V(τ) represents the set of vertices associated with the electronic density cell τ .

As mentioned at the beginning of this section, a second level of approximations comes into play when various

combinations of quadrature formulas are employed to numerically evaluate the integrals in Eqs. (47b) and (47c).

Although not detailed here, similar integrals associated with the expression of kinetic, exchange, and Coulomb

functionals T , K, and J , respectively [12] must be evaluated by numerical quadrature. For the purpose of this

discussion using the midpoint quadrature rule [19] on a uniform three dimensional cubic mesh, Eq. (47c) leads to

E(nonloc)
ne [ρ, {RA}] =

∑
τ∈�τ

s̄ρ(τ) ‖τ‖
∑

τA ∈ �A

τA /∈ N (τ)

Z(τA)
|rC(τ) − R̃C(τA)|

(49)

In Eq. (49), s̄ρ(τ) =
∑

d∈V(τ) ρd, ‖τ‖ represents the volume of the electronic cell τ ∈ �ρ, and rC(τ) and R̃C(τA)

represent the centers of the cells τ and τA, respectively.

B.3 Simulation Results

For the test case of a bcc crystal with 100,000 nuclei placed in a uniform three dimensional electronic density

distribution, the partials of Ene [ρ, {RA}] with respect to the position of the nuclei present in the nanosctructure are

displayed in Fig. (3). No splitting/averaging or state reduction are employed and the only errors come in this case

through the quadrature-based evaluation of the integral. The figure displays the magnitude of ∂Ene

∂R̃A
at the location

of each nucleus. The same quantities are displayed in Fig. (4) for the case when both splitting/averaging and state

reduction are considered. Notice that the size of the partials increases, as a subset of ”representative” nuclei should

carry information for a whole set of nuclei that are not directly present in the problem.
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Figure 3: Magnitude of derivatives ∂Ene

∂R̃A
. No splitting/averaging or space reduction.
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. With splitting/averaging and space reduction.
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