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SUMMARY

We present two methods for efficiently sampling the response (trajectory space) of multibody systems
operating under spatial uncertainty, when the latter is assumed to be representable with Gaussian
processes. In this case, the dynamics (time evolution) of the multibody systems depends on spatially
indexed uncertain parameters that span infinite dimensional spaces. This places a heavy computational
burden on existing methodologies, an issue addressed herein with two new conditional sampling
approaches. When a single instance of the uncertainty is needed in the entire domain, we use a Fast
Fourier Transform technique. When the initial conditions are fixed and the path distribution of the
dynamical system is relatively narrow, we use an incremental sampling approach that is fast and has
a small memory footprint. Both methods produce the same distributions as the widely used Cholesky-
based approaches. We illustrate this convergence at a smaller computational effort and memory cost
for a simple nonlinear vehicle model. Copyright c© 2009 John Wiley & Sons, Ltd.

key words: uncertainty quantification, Gaussian process, dynamical system, fast Fourier transform,

conditional sampling

1. INTRODUCTION

Uncertainty quantification is relevant in a broad spectrum of science and engineering problems.
It has been studied for decades with a wide spectrum of methods and techniques that are
gradually improving in accuracy, efficiency, and robustness. This paper focuses on the efficiency
and robustness attributes of algorithms used to investigate the dynamics of multibody system
operating under spatial uncertainty. The equations that govern the time evolution of a
multibody system can be expressed in the form (see, for instance, [1])

q̇ = L(q)v
M(q)v̇ = fA (t,q,v) , (1)
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where q =
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R6nb are generalized velocities, and nb represents the number of bodies in the system. The
matrix M(q) is the generalized mass matrix, and fA (t,q,v) represents the vector of generalized
applied forces. Often times, additional nonlinear algebraic constraints Φ(t,q) = 0 must be
satisfied by the generalized coordinates q leading to a set of differential algebraic equations
(see, for instance, [2]). For each body i, its orientation is then described by a set of three Euler
angles, εi ∈ R3, following the 3-1-3 local rotation sequence (see, for instance, [1]). The rate
at which each body changes its orientation is captured by the local angular velocity ω̄i ∈ R3.
The location of each body is uniquely determined by a position vector ri = [xi, yi, zi]T that
specifies where the body-fixed centroidal reference frame is located. The translational velocity
of the body is simply ṙi, where an overdot represents time differentiation. Since for each body
i there is a locally nonsingular matrix B(εi) such that ω̄i = B(εi)ε̇i, the operator L(q) that
relates the time derivative of the level-zero generalized coordinates to the level-one generalized
coordinates is generally not the identity matrix. Although many sets of generalized coordinates
can be used to capture the dynamics of a multibody system, note that the equations of motion
in (1) draw on the so-called absolute, or Cartesian, representation of the attitude of each
rigid body in the system. Also note that for brevity, this summary of the multibody dynamics
problem focused on the rigid body case. Equation (1) also captures the dynamics associated
with multibody systems comprising flexible bodies, with the caveat that the set of generalized
coordinates is richer to capture the deformation modes associated with each flexible body (see,
for instance, [3]).

Ground and air vehicles are two of the most common examples of systems leading to a
multibody dynamics problem. For instance, the uncertainty in the response of a ground vehicle
might stem from a friction coefficient that is insufficiently known at the tire/road interface, or
might be the result of uncertainty in the road profile (elevation). In other words, the uncertainty
permeates the equations of motion through the force term fA (t,q,v). The force fA depends
on the location q, and at this location uncertainty enters the problems through an uncertain
friction coefficient, road profile, etc.

In an abstract framework, we are interested in characterizing the spatial uncertainty effects
on a dynamical system

ẋ = f(x, t, η(x)), (2)

subject to a given set of initial conditions. Note that an initial value problem that draws on
(1) can always be recast as in (2). The function f(x, t, u) is the intrinsic function that dictates
the dynamics of the system; it is a known function obtained as the outcome of a mathematical
modeling stage that is not of interest here. The quantity η(x) is a stationary random variable
indexed by the space variable x. The following problem is of interest:

Characterize the distribution of the trajectory (random variable) x(t) at
a given time t or for a collection of times t1 < t2 < . . . < tN . (3)

If (2) represents the equations of motion of a vehicle, η(x) can be the uncertain road elevation
or friction coefficient. The same formalism can be applied to differential algebraic equations
with virtually no change. For simplicity, the presentation is restricted to the case of ordinary
differential equations (2), which in a stochastic framework is more rigorously reformulated as

ẋ = f(x, t, η(x, ω)), (4)
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 3

where ω is an element of the event space Ω. The solution of (4) leads to a trajectory x(t, ω),
which is thus a random variable. An example of a quantity of interest is Eω [x(T, ω)], the
expected state at a time T . The key to efficiently solving the stated problem is to sample η(x, ω)
efficiently, that is, produce a sample function η(x, ω1) for a given event ω1 ∈ Ω and for any x. To
simplify the notation, we state merely that η(x) and x(t) are random variables, and we do not
explicitly denote their dependence on ω. Note that (2) is not a stochastic differential equation;
rather, it is an ordinary differential equation with state-dependent uncertain parameters.

An overview of uncertainty quantification methods commonly used can be found in [4].
Probably the most widespread technique draws on random sampling methods, such as Monte
Carlo and Latin hypercube sampling [5, 6]. Reliability methods can be computationally less
intensive than sampling methods [7]. Their increased efficiency is the result of the fact that the
entire surface response is updated by any given sample information. This update can be carried
out by mean value [7], global Gaussian process [8, 9], and other approaches [10]. Polynomial
chaos expansion (PCE) methods construct a polynomial surface response approximation
[11, 12, 13]. They use either a nonlinear projection Galerkin method [11] or a collocation
approach [13] to obtain the polynomial approximation. PCE methods have generally been
impaired, however, by a relatively low dimension of the uncertainty space that they can span
[13]. The other methods are in principle applicable independent of dimension. Nonetheless,
their efficiency tends to degrade with the increasing dimension of uncertainty spaces if one
uses the implementations presented in the above references.

Kriging and its variations, co-kriging and kriging with regression, are example of the
developing nature of spatial uncertainty [14, 15, 16]. These ”hybrid methods” were introduced
to address accuracy and robustness concerns, capable of extending to less-structured data (i.e.
nonstationary, nonhomogeneous). However, the methods require the solution of small kriging
systems at each sample point or the solution of a large system, using global dual kriging
simulation. These methods are suitable for data interpolation of small sample sets from large
data sets but cannot be extrapolated without encountering significant computational effort.
Gaussian processes, as presented in [17] and applied in [18], provide an accurate and versatile
methodology for interpolating spatial data. Unfortunately, the Gaussian processes framework
traditionally suffers from numerical instability and excessive storage requirements because of
the matrix operations it employs.

Some traditional methods for spatial uncertainty calculations, such as white-noise methods
and spectral methods, fare much better than kriging with respect to runtime yet suffer from
accuracy and robustness issues. Examples of the former, based on homogeneous random
processes, are explained in [19, 20]. While these methods model a large class of problems and
may be useful in design and simulation, they are nonetheless not appropriate for situations
where the spatial variation has large areas of coherence that are inhomogeneous, a common
occurrence in real-life applications. Another original approach is discussed in [21], where the
use of traditional spectral methods is supplemented with covariance spectrum phase values
conditioned from data. However, the methodology is plagued by accuracy limitations typically
associated with spectral methods. The accuracy of these methods is dependent on the number
of harmonics used and can quickly become hard to implement and manage. Likewise, spectral
techniques cannot easily accommodate rapid variations in the properties of the surface, which
is a well-known side effect of the Gibbs phenomenon, thus presenting robustness concerns.

Growing problem complexity and solution resolution have led to creative approaches for
conditioned problems, that is, solution methods that gain efficiency in lieu of robustness,
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and sometimes accuracy. These methods still provide informative results that can be used
in industry applications. One common approach is regimenting the data space to a lattice
and sampling from the prior. In this case, the samples are not conditioned on the local
deviation from the prior model. The benefit of this simplification is that the covariance
matrix is Toeplitz and can be sampled from by leveraging fast Fourier transforms (FFT)
[22]. Another perspective gaining wider acceptance is the sparse-grid assumption introduced
by Stein in [14]. Stein leverages compact support kernels to limit the training data set size
required for statistically accurate and consistent interpolation. This is especially useful in
conjunction with high-frequency data sets, where correlation decays rapidly to nearly zero.
Stein, however, does not couple sparse grid theory with conditional sampling to allow for truly
dynamic interpolation, as we do in Section 4.

The first method proposed herein, periodic fold sampling (PFS), imposes one condition
and one assumption in order to conduct the entire Gaussian process based methodology in a
matrix-free fashion. The condition is that the data is provided on a lattice. The assumption is
that the space is periodic, which reflects in the autocorrelation function. This assumption was
tried and found to introduce few problems away from boundaries when working on large grid
spaces. We present the specifics of each PFS step conducted in the frequency domain: data
organization and data augmentation, estimation of hyper-parameters, computation of posterior
distribution characteristics, and multivariate Gaussian sampling. We explain how FFTs are
used to map between the time and frequency domains. We note that FFT approaches have
been used to sample from prior distributions [23] but not, as far as we know, from the posterior
distribution. We show in conjunction with PFS the convergence of the resulting sample mean
and covariance to the respective values computed with traditional Gaussian processes, as in
[18].

The second method proposed, the incremental Gaussian process approach (IGPA), works
on subdomains to localize the data interpolation. Data does not need to be interpolated all
at once on the entire problem space but rather can be interpolated incrementally only in the
proximity of the region of importance. In this approach the computational effort is invariant to
problem size. For IGPA, we describe the incremental approach justification in detail, including
a discussion of the implementation process, formal proofs, and numerical results.

1.1. Application Example

To illustrate the performance of the proposed methods, they will be used to quantify the
uncertainty in the behavior of a simple vehicle model running over a flat road that has a given
distribution of the tire/road friction coefficient at a set of learning points provided on a two
dimensional grid. The specifics of this simulation are detailed in [18], but the essentials are
discussed here. First, a model for the friction coefficient distribution is required; studies in
geostatistics suggest that the squared exponential is a representative correlation function for
Gaussian random processes [23] that is suitable to be used. In order to address the natural
bounds of ice (between dry friction µd and ice friction µs), a phase parameter φ is used:

φ = − ln
(
µd − µ
µ− µs

)
∈ (−∞,∞). (5)

Note that the phase parameter is an infinite-dimensional random variable indexed by a
spatial variable. Next, given a set of points x1, x2, . . . xM in space, denote by φ1, φ2, . . . , φM
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Figure 1. Bicycle model used in numerical validation [24].

the random variables that represent the phase parameters at those locations. Modeling the
phase parameter as a Gaussian process means that the vector Φ = (φ1, φ2, . . . , φM ) has both
a prior and a posterior multivariate normal distribution. The posterior distribution can be
determined from well-established statistical considerations applicable for any multivariate
normal distribution. The key attribute of Gaussian random processes is that the prior
distribution can be generated from a bivariate function, the covariance function, and a
univariate function, the mean function. Herein we consider an exponential covariance function
with hyperparameters θ2 = {γ, αx1, αx2}, and a linear mean function with hyperparameters
θ1 = {a0, a1, a2} [17]:

m(x; θ1) = a0 + a1x1 + a2x2, (6)

k(x, x′; θ2) = exp

(
−
[

(x1 − x′1)
αx1

]2/γ

−
[

(x2 − x′2)
αx2

]2/γ
)
. (7)

The vehicle model used, shown in Figure 1, has an open-loop steering system set to execute a
constant radius turn without any axial forces applied. The model has three degrees of freedom:
those associated with the longitudinal motion Vx, lateral motion Vy, and yaw Ωz. Three input
functions determine the behavior of the model: steer angle δf and the front and rear wheel
road adhesion coefficients µf and µr, respectively. The governing equations are as follows:

m(V̇x − VyΩz) = −Fyf sin δf
m(V̇y + VxΩz) = Fyr + Fyf cos δf

IzΩ̇z = l1Fyf cos δf − l2Fyr
Ẋ = Vx cos Θz − Vy sin Θz

Ẏ = Vx sin Θz + Vy cos Θz

Θ̇z = Ωz.

(8)

The constitutive equations for the forces acting on the tires, Fyr and Fyf , are of form
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6 K. SCHMITT, M. ANITESCU AND D. NEGRUT

F = ψ(x, df , φ, ν) where x = (X,Y,Θz, Vx, Vy,Ωz), df is the steering angle input, φ is
the uncertain parameter in this study and ν contains tire/vehicle material and geometry
parameters [24]. Note that after dividing with the inertial terms m, I and solving for V̇x, V̇y,
and Ω̇z in (8) the problem is cast in the standard form defined by (2). The function f is
determined from the function ψ above that defines the tire forces F . The stochastic parameter
η in (2) represents the friction phase parameter φ.

2. GAUSSIAN PROCESS DESCRIPTION OF SPATIAL UNCERTAINTY

Gaussian processes represent a versatile approach for simulating infinite-dimensional
uncertainty. By definition, a spatially distributed random variable η(x) is a Gaussian process
with mean function m(x; θ1) and correlation function k(x, x′; θ2) if, for any set of space points
X = {x1, x2, . . . , xM}

η(X) =


η(x1)
η(x2)

...
η(xM )

 ∼ N (m(X; θ1),K(X,X; θ2)) . (9)

For m ∈ RM and K ∈ RM×M , N (m,K) in (9) is the M–variate normal distribution with mean
m and variance K, with

m(X; θ1) =


m(x1, θ1)
m(x2, θ1)

...
m(xM , θ1)

 , K(X,X ′; θ2) =


k(x1, x

′
1; θ2) k(x1, x

′
2; θ2) · · · k(x1, x

′
N ; θ2)

k(x2, x
′
1; θ2) k(x2, x

′
2; θ2) · · · k(x2, x

′
N ; θ2)

...
...

...
...

k(xM , x′1; θ2) k(xM , x′2; θ2) · · · k(xM , x′N ; θ2)

 ,

where X ′ = {x′1, x′2, . . . , x′N}, and θ1 and θ2 are the hyperparameters of the mean and
covariance functions.

As in reference [17], we employ a Bayesian point of view in dealing with uncertainty. The
hyperparameters θ1 and θ2 are obtained from a data set η(D) at nodes D = {d1, d2, . . . , dM}.
The posterior distribution of the variable η(S) at node points S = {S1, S2, . . . , SN}, consistent
with η(D), is N (f∗,K∗) [17], where

f∗ = K(S,D; θ2)
[
K(D,D; θ2) + σ2

NIM
]−1

(η(D)−m(D; θ1)) +m(S; θ1) (10)

K∗ = K(S, S; θ2)−K(S,D; θ2)
[
K(D,D; θ2) + σ2

NIM
]−1

K(D,S; θ2). (11)
Here IM represents the identity matrix of dimension M , and we have included the modification
to the posterior distribution that is brought about by the noise in the data with variance σ2

N .
The key issues in simulating from this posterior model are (a) how to obtain the

hyperparameters from data and, (b) how to sample from N (f∗,K∗), especially in the case
where M is very large. The classical approach is to do a Cholesky factorization of K∗, a costly
order O(M3) operation.

To simplify the notation, we will use the same symbols for a vector of random variables
as for the vector of locations to which these variables are attached: for example, η(D) → D,
and η(S) → S, the use of which will become clear from the context. In addition, we will not
explicitly represent the dependence of m(·) and k(·, ·) on the hyperparameters θ.
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 7

2.1. Hyperparameter Estimation

Before training the posterior and sampling from it, the hyperparameters must be estimated to
evaluate the prior. A commonly used method for the estimation of the hyperparameters from
data is maximum likelihood estimation [17]. The method relies on the maximization of the
log-likelihood function. In the multivariate Gaussian with mean m(θ) and covariance matrix
K(θ) case, the log-likelihood function assumes the form

log p(y|θ) = −1
2
WTK(θ)−1

W − 1
2

log |K(θ)| − M

2
log 2π (12)

where W = y−m(θ) and y is the observed data. Here |A| denotes the determinant of a matrix
A. In the case of spatial uncertainty, the dependence on the hyperparameters θ appears by
means of the spatial coordinates x.

In the example in Section 1.1, we have that θ = {θ1, θ2, σn}. The gradients of the likelihood
function can be computed analytically [17]:

∂

∂θ1j
log p(y|θ) =

1
2

tr
(

(K(θ)−1W (K(θ)−1W )T −K(θ)−1)
∂K(θ)
∂θ1j

)
(13a)

∂

∂θ2j
log p(y|θ) = −

(
∂

∂θ2j
m(θ)

)T
K(θ)−1W (13b)

∂

∂σn
log p(y|θ) =

1
2
σntr

(
K(θ)−1W (K(θ)−1W )T −K(θ)−1

)
. (13c)

Here, tr(A) denotes the trace of a square matrix A, the sum of its diagonal entries.
It can be proven that the gradient of K(θ) with respect to any hyperparameter maintains a

periodic matrix structure. This fact suggests that all evaluation inside the trace operator can
be done in the frequency domain after K and ∂K

∂θ1j
are diagonalized with FFT. Nonetheless,

since the conditional sampling part of our procedure is far more time consuming, we use the
FFT-based direct diagonalization only for its matrices.

To determine the hyperparameters, we use the MATLAB fsolve function. This function
implements a quasi-Newton approach for nonlinear equations. We apply it to the nonlinear
equations (13) obtained from the optimality conditions of maximizing the likelihood function.
Using an optimization approach instead would have resulted in the need to compute the
objective function at multiple points. This involves the evaluation of the determinant |K(θ)|,
which is currently not known to be possible in a matrix-free setting. Note that (13) can be
evaluated in matrix-free fashion by using conjugate gradient techniques for linear systems that
are equivalent to the application of K−1 by using an FFT approach. Although a matrix-free
approach for MLE has not been implemented in this paper, this is a major roadblock for using
optimization approaches for large problems of the type we intend to solve in the future. We
have thus decided to carry out the MLE procedure by a nonlinear equations approach in order
to test its feasibility.

2.2. Conditional Probability Decomposition

The two methodologies presented in this paper hinge on conditional sampling with Gaussian
processes; that is, both data and previous samples are used when training new data sets. In
statistical notation, this is captured by the following condition:
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8 K. SCHMITT, M. ANITESCU AND D. NEGRUT

P(S1, S2|D) = P(S2|S1, D) ∗P(S1|D), (14)

whereD is the observed data space, S1 is the data space for the first iteration, and S2 is the data
space for the second iteration. The motivation behind this “divide and conquer” approach is
twofold. First, the aggregate of all conditional simulations is sometimes more efficient to carry
out than one comprehensive simulation. Second, the memory requirements of a successive
conditioning approach can be much reduced compared to the all-at-once approach. Note that
the conditioning procedure can be applied recursively to result in as small a dimension of the
variable to be sampled as needed, provided that the parameters of the conditional distribution
can be efficiently determined.

The equality (14) can be expressed with probability densities by using the multivariate
Gaussian distribution joint probability density function [17]:

p

((
S1

S2

)
|m1,Σ1

)
= p(S2|m2,Σ2) ∗ p(S1|m3,Σ3) (15)

p(x|m,Σ) = (2 ∗ π)−n/2|Σ|−1/2 exp
(
−1

2
(x−m)TΣ−1(x−m)

)
, (16)

where x ∈ Rn. The aggregate covariance matrix Σ1 and the conditional covariance matrices
Σ2 and Σ3 are defined in equation (34) of the Appendix. This result will be taken advantage
of in PFS and IGPA.

3. A SPECTRAL APPROACH: PERIODIC FOLD SAMPLING

The question that motivates PFS is as follows: how can one conduct high-fidelity interpolation
and avoid the bottleneck of large matrix storage and computation without compromising
accuracy and robustness? A satisfactory answer is produced if two assumptions regarding (a)
the spatial distribution of the training input data, and (b) input data periodicity are made.
Sampling can then be carried out efficiently following a regimented strategy called folding .

In terms of (a) above, PFS is applied strictly to learning data initially provided on a
lattice. This assumption certainly reduces the applicability of the methodology. Still, countless
applications exist where data is compiled this way. Small-scale data collection in custom lab
experiments, for instance, is one area where lattice data collection is readily achievable. Another
important application of PFS is in satellite-collected data because the range of satellites makes
their data collection flexible and adaptive. Note that although the paper focuses on the two-
dimensional methodology, little alteration is required to extend the methodology to higher
dimensional spaces.

Assumption (b) above reflects in the expression of the covariance function. Unlike in (7),
the covariance function is selected to be periodic:

kp(x, x∗) =


∏l
s=1 exp

(
−
[
|xs−x∗s |
αs

]2/γ)
|xs − x∗s| < Ls/2∏l

s=1 exp
(
−
[
Ls−|xs−x∗s |

αs

]2/γ)
|xs − x∗s| > Ls/2,

(17)
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D2 D4
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D1 S11 D3 S13
−→

D2 S12 D4 S14

S22 S24 S26 S28

D1 S11 D3 S13

S21 S23 S25 S27

Figure 2. Pictorial representation of first two iterations of PFS.

where l is the number of dimensions, x is a point in the first data set, x∗ is a point in the second
data set, Ls is the dimension respective domain length, and αs is the dimension respective
characteristic length-scale. Because this class of periodic matrices is an algebra, the periodic
assumption ensures that the Gaussian processes-computed posterior covariance matrix in (11)
will also be periodic. This periodic nature will allow us to diagonalize the matrix with FFT.
It should be pointed out, however, that any Gaussian process can be approached in a periodic
framework on a domain that is extended twice in each direction [22]. The approach proposed
and based on (17) does not need a larger domain, but runs the risk of resulting in non-positive
definite covariance matrices for fine grids [14]. We have not run into this scenario for any of the
grid sizes that we have considered. In the end, the salient feature of PFS is that it can be applied
in both cases; i.e., when condition (b) really holds, or when one forces this assumption and
accepts the risk of corrupting the accuracy of the results, a risk which decreases exponentially
fast away from the domain boundary.

The periodic assumption has been used in a broad range of research and applications fields
to achieve significant efficiency gains. The aspect that adversely impacts this approach is the
Gibbs phenomenon: the correlative misrepresentation of sample points near the boundary,
especially those within two characteristic length-scales of the boundary. Points near the
boundary are predicted to have large correlation with boundary points on opposite sides of the
space, which is certainly false unless the space is innately periodic (spherical or cylindrical,
for instance). In natural distributions, this drawback is critical only if the inspected space
is on the order of the characteristic length-scale, which is rarely the case. In this situation,
less sophisticated regression methods can be used to predict data. It is important to note the
erroneous nature of our method near the boundaries, however, so that information is drawn
only from accurate samples and simulations are conducted away from the boundaries.

The regimented sampling strategy required by PFS, introduced above as folding , is done
iteratively. Each iteration folds or shifts the sample points from the existing data points by
half a resolution length; thus, each iteration doubles the sampled space. Subsequent iterations
then use the previously interpolated data to learn from. This strategy is illustrated in Figure
2. Figure 3 shows in detail the direction and magnitude of each consecutive shift; each time
the direction of shift is rotated by −π/2, and the shift magnitude is reduced 50 percent. The
conditional nature of sampling was discussed in detail in Section 2.2. The fold method of
sampling ensures that the K12 covariance matrix will be square and FFT diagonalizable as
proven and leveraged in Section 3.1.

Formally, a series of increasing grids of data, ΓD, Γ1, Γ2, . . ., Γn, is considered. The data
vector D is provided on ΓD, and obtaining sample vectors S1 on Γ1, S2 on Γ2, . . . , Sn on Γn
is becomes the problem of interest. The approach proposed relies on an iterative use of the

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 33:1–34
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10 K. SCHMITT, M. ANITESCU AND D. NEGRUT

Figure 3. Direction and magnitude of the iterative shift.

conditional probability density formula (14):

p (S1, S2, . . . , Sn|D) =
n∏
i=1

p (Si|D,S1, S2, . . . Si−1) . (18)

Due to the spiral-like spatial dependence described in Figure 3, a Markov chain-like
simplification of p((Si|D,S1, S2, . . . Si−1)) to p((Si|D,Si−1)) or other variants is generally not
possible, except for very particular cases of processes, such as the white noise process. The
product rule allows for incremental sampling. Starting from D, sampling occurs for sets Si
of increasing index i conditionally on the preceding sample values. A key observation is that,
for Gaussian processes, the conditional distribution is algebraically easy to obtain based on
equation (34) in the Appendix.

We note that

dim(Si) = dim(D) +
i−1∑
j=1

dim(Sj), i = 1, 2, . . . , n, (19)

which results in the vectors to the left and right of the conditional symbol having the same
size. Consequently, a conditional sample can be easily calculated by using FFT techniques. It
is quite possible that the FFT approach can work in some form even when (19) does not hold,
but this remains to be investigated. Finally, note that this sampling approach is not suitable for
computing realizations at ad hoc locations because only coordinates (N1sx/2n, N2sy/2n) are
interpolated, where n is the number of fold iterations, sx and sy are the respective dimension
observed data resolutions, and N1 and N2 are positive integers.

3.1. Matrix-Free Computation of Posterior Distribution Characteristics

Designing an efficient method for sampling the conditional distribution p (Si|D,S1, S2, . . . , Si−1)
requires an effective recursive conditioning method in (18), which becomes the objective of
this section. Herein, subscript 1 refers to the coordinates of the observed and simulated data
set, Γ1 = {D,S1, S2, . . . , Si−1}, and subscript 2 refers to the half-resolution shift of those
coordinates, Γ2 = Si. With this block notation, the prior distribution is

(Γ1,Γ2) ∼ p(D,S1, S2, . . . , Si) ∼ N
((

m1

m2

)
,

[
K11 K12

K21 KW

])
.

Reference [17] presents a time-domain framework for computing the Gaussian posterior
distribution characteristics from the observed data y incorporating measurement noise σn,
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 11

using the prior mean, (6), and the prior covariance matrix, (7). This results in p(Γ2|Γ1) ∼
N (f∗,K∗), where

f∗ = m2 +K21KW
−1(y −m1) ∈ RN (20a)

KW = K11 + σ2
nID ∈ RM×M (20b)

K∗ = K22 −K21KW
−1K12 ∈ RN×N . (20c)

Here M is the number of observed and currently simulated data, and N is the dimension of data
vector to be sampled. Note that, in this notation, ID is the identity operator when reduced to
the D subblock of Γ1, and it is 0 otherwise; it is not the identity matrix of dimension M . The
matrix blocks are obtained from the covariance function as K11 = k(Γ1,Γ1), K12 = k(Γ1,Γ2)
and K22 = k(Γ2,Γ2). Note that (20) is a condensed version of (10) and (11), where the
subscripts qualify which variate is on which covariance matrix axis.

The operations involved above, matrix inverses and matrix products, lead to excessive
runtimes. Furthermore, storage capabilities begin to falter when the number of sample points
N is in the neighborhood of 104 because of the N2 entries in the covariance matrices.

Our method emulates the framework outlined above, maintaining its robustness and
accuracy, but draws on two assumptions introduced in Section 3 to conduct all expensive
operations in the frequency domain. It is based on the key observation that all covariance
matrices, K11, K12, and K22 (herein called the shift covariance matrix), are FFT
diagonalizable; that is, Ka = Q ∗ Da ∗ Q′, where Da is a diagonal matrix and a is one of
the pairs 11, 12, 22, and W . Q is a unitary matrix such that Q = F(IN ), where F is FFT
over the space bearing the uncertainty. In a two-dimensional space, FFT is defined as (using
the array indexing from 0)

{xlq}
F→
{
x̂lfqf

}
; x̂lfqf

∆=
1
N2

N−1∑
l,q=0

xlqe
−i( 2π

N llf+ 2π
N qqf)

 , ∀lf , qf = 0, 1, . . . , N − 1. (21)

In the following, we denote by D the set of either data grid points or data random variables
and by Da a diagonal matrix identified by its subscript a. Note that N need not be the same
in both the l and q variable, but the proofs are carried out under this assumption for algebraic
convenience.

The matrices K11, K12, and K22 are periodic matrices. If the spatial dimension is one, they
are circulant matrices. In two dimensions, they satisfy the following property, described by a
generic matrix K, indexed by the grid index pairs

Klq,l′q′ = u ((l − l′)modN, (q − q′)modN) , l, l′, q, q′ = 0, 1, . . . , N − 1. (22)

Here u is a function defined on {0, 1, . . . , N − 1} × {0, 1, . . . , N − 1}. In particular, for
l, q = 0, 1, . . . , N − 1, K11,K12, and K22 satisfy (22) for

u11(l, q) = u22(l, q) = k

(
lLx
N

,
qLy
N

)
, u12(l, q) = k

(
(l + 0.5)Lx

N
,
qLy
N

)
.

Recall that we take the covariance function k to be periodic over a rectangle of dimension
Lx×Ly. We consider only an x-shift, but the y-shift conclusions follow as well by the ensuing
argument. The matrix KW can also be represented as in (22) using

uW (l, q) = u11(l, q) + σ2
nδ((l)modND, (q)modND), l, q = 0, 1, . . . , N − 1,
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12 K. SCHMITT, M. ANITESCU AND D. NEGRUT

where δ(l, q) = 1 if l = 0, q = 0, and it is 0 otherwise.
It remains to prove that matrices with the structure described by (22) can be diagonalized by
FFT. While this result is straightforward for covariance matrices such as K11 and K22 [23], we
are not aware of a similar proof in the Gaussian process literature based on the representation
(22). The latter is central to PFS since it shows that K12 is also diagonalizable by FFT.

The proof proceeds by considering next the FFT basis vectors; i.e., the FFT transform of
the columns of the identity matrix. They are, up to a scaling parameter,

V lf ,qf =
{
v
lfqf
l,q

}
l,q

; v
lfqf
l,q = e−i(

2π
N llf+ 2π

N qqf), ∀l, lf , q, qf = 0, 1, . . . , N − 1.

Here the variables l, q index the entries in the FFT basis vector whereas lf , qf index the vectors
themselves. We then have that[
KV lfqf

]
lq

=
N−1∑
l′,q′=0

Klq,l′q′v
lfqf
l′q′

(22)
=

N−1∑
l′,q′=0

u ((l − l′)modN, (q − q′)modN) , e−i(
2π
N l′lf+ 2π

N q′qf)

= e−i(
2π
N llf+ 2π

N qqf)
N−1∑
l′,q′=0

u ((l − l′)modN, (q − q′)modN) e−i(
2π
N (l−l′)lf+ 2π

N (q−q′)qf)

= e−i(
2π
N llf+ 2π

N qqf)ψ(lf , qf ) = ψ(lf , qf )vlfqfl,q ,

for all lf , qf , l, q = 0, 1, . . . , N − 1. Here,

ψ(lf , qf ) =
N−1∑
l,q=0

u(l, q)e−i(
2π
N llf+ 2π

N qqf). (23)

Therefore,
KV lfqf = ψ(lf , qf )V lfqf , ∀lf , qf = 0, 1, . . . , N − 1.

This shows that the matrix K is indeed diagonalizable by the FFT basis vectors and that
ψ(lf , qf ) are its eigenvalues and, thus, its diagonal entries in that basis. Note that the diagonal
elements will be real for K11 and K22 because of their symmetry but they will likely be complex
for K12 because of the Lx

2N shift.
At this point, a framework for direct diagonalization follows easily. The elements of the FFT

diagonal of the covariance matrix, Da, where a is either 12/22/W , can be generated directly by
using (23), as opposed to constructing Q first. This direct diagonalization is necessary because
the generation of the unitary matrix Q and the computation of the product Q′KQ represents a
substantial bottleneck for large values of N . The subscript notation used for the time-domain
covariance matrices is recycled for the directly diagonalized matrices D22, DW , and D12. With
this, all of the expensive operations in (20a) can be conducted in the frequency domain after
direct diagonalization with (23). The adjustment to the posterior mean f̂ is computed in the
frequency domain and then mapped back to the time domain with a two-dimensional inverse
FFT and added to the posterior mean:

f∗ = m2 + f̂ ∈ RN (24)

f̂ = F−1(D21DW
−1Ŵ ) ∈ RN

DW = D11 + σ2
nIM ∈ RN×N ,
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 13

where Ŵ = F(y −m(x)).
The FFT diagonal of the covariance matrix can be used for sampling and thus does not have

to be mapped into the time domain. This fact has significant efficiency implications because
large matrix products and inverses in posterior computation are avoided. Likewise, there is no
need for taking large matrix square roots when sampling from N (f∗,K∗) (20):

D∗ = D22 −D∗21DW
−1D12 ∈ RN×N . (25)

3.2. Matrix-Free Multivariate Gaussian Sampling

Sampling from a multivariate Gaussian distribution matrix such as N (f∗,K∗) is a
mathematically simple but computationally expensive operation as it requires a large matrix
square root of K∗. In the time domain, a Cholesky decomposition of the covariance matrix is
taken, and the upper triangular matrix L1/2 is multiplied by a vector of standard normals u.
This procedure brings in the O(N3) computational effort for kernels that are not compactly
supported.

The posterior distribution sampling can be done more efficiently in the frequency domain
by first creating ũ = F(u) where u ∼ N (0N , IN ) and simulating

S∗ = f∗ + f̂∗ ∈ RN (26)

f̂∗ = F−1((D∗)1/2ũ) ∈ RN .
The Cholesky decomposition is avoided entirely, leading to substantial efficiency gains,
especially when Monte Carlo simulation is employed to compute trends and errors in dynamic
simulations. Numerical results reported in Section 5 demonstrate the accuracy of the proposed
approach. Since this methodology is based entirely on FFT operations, it has a theoretical
computational effort bound of O(NlogN), compared to the O(N3) bound of the conventional
Cholesky-based approaches.

4. INCREMENTAL GAUSSIAN PROCESS APPROACH

The conditional sampling methodology discussed in the Appendix, in combination with (18),
allows for an approach where small grid spaces (subspaces) are interpolated dynamically at
runtime throughout a simulation. This can replace the all-at-once (or everywhere) sampling
at pre-simulation stage, allowing for constant computational effort regardless of problem size.

To simplify the discussion, it is assumed that the interest is in the distribution of states
associated with the multibody system at equally spaced time intervals; i.e., the probability
density function of the states x1(∆t), x1(2∆t), . . ., x1(n∆t) (x1 is used in this section to
denote the state of the dynamical system to avoid confusion with the spatial variable x used
in the Gaussian process description). The initial configuration x0 is given, and the uncertain
interaction of the system with the environment is captured by η in (2). The latter quantity has
a Gaussian process prior distribution (9) and its simulation must be conditioned on measured
data D at a small number of sites. Using the conditional probability rule (18) yields

p(x1(∆t), x1(2∆t), . . . , x1(n∆t)|x0, η) =
n∏
i=1

p(x1(i∆t)|x1((i−1)∆t), x1((i−2)∆t), · · · , x1(∆t), x0, η).
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14 K. SCHMITT, M. ANITESCU AND D. NEGRUT

Given the functional random variable η and x1((i − 1)∆t), x1(i∆t) can be evaluated by
integrating the differential equation (2) for one time step ∆t. This leads to a Markov-chain
behavior where the conditional distribution depends only on the previous state, that is,

p(x1(i∆t)|x1((i− 1)∆t), x1((i− 2)∆t), · · · , x1(∆t), x0, η) = p(x1(i∆t)|x1((i− 1)∆t), η).

Therefore, the following holds:

p(x1(∆t), x1(2∆t), . . . , x1(n∆t)|x0, η) =
n∏
i=1

p(x1(i∆t)|x1((i− 1)∆t), η)

Assume that the function f defining the time derivative of x1 in (2) is bounded in norm
by FB . Then, over the interval [(i − 1)∆t, i∆t] the dynamic system will stay in the ball
B(x1((i − 1)∆t), FB) with probability 1; here B(a, r) denotes the ball of radius r centered
at a. This implies that only values of η inside B(x1((i− 1)∆t), FB) are needed for computing
p(x1(i∆t)|x1((i− 1)∆t), η). Therefore,

p(x1(∆t), x1(2∆t), . . . , x1(n∆t)|x0, η) =
n∏
i=1

p(x1(i∆t)|x1((i−1)∆t), {η(x)|x ∈ B(x1(i− 1)∆t, FB)}).

(27)
This suggests the following strategy for sampling from the distribution of x1(∆t), x1(2∆t),

. . ., x1(n∆t) conditional on η and x0. For each i = 1, 2, . . . , n, simulate η in B(x1(i−1)∆t, FB)
conditional on the data D. Numerically integrate (2) for one step ∆t starting at x1((i−1)∆t),
return x1(i∆t), and continue with the next i. For complex multibody systems, it might be
difficult to estimate the bound FB . We therefore advance the simulation until we arrive within
ε of the edge of the currently simulated subspace. Then we resample and restart the simulation.
The caveat is that the control points – the points where the simulation is restarted – are no
longer equally distributed in time. We note, however, that the justification for (27) can be
immediately adapted to accommodate that case.

Based on the previous discussion, a particularly attractive option is the use of a compact
kernel. This results in a sparse prior Gaussian process covariance matrix, which has favorable
consequences in the computation of the gradient in the training phase (13). It can also be
leveraged in the conditional simulation phase, but this has not been exploited here, since,
pursuant to (27), the sample size in the incremental simulation is much smaller than in Section
3.

A family of piecewise polynomial covariance functions with compact support that guarantee
positive definiteness in RD is suggested in [17, Ch. 4.2]. In the R2 case relevant herein,

k(r) =

{
(1− r

α )j+1 r < α

0 r > α,
(28)

where r =
√
x2

1 + x2
2, α defines the compact threshold (and is the direct source of ε), and

j quantifies the function smoothness. For the convergence study carried out in section 5 a
compact kernel was needed that approximated the baseline γ-exponential correlation function
well. Some trial and error was used to select the hyperparameters for both covariance functions
to achieve likeness. If γ = 2 in (7), and j = 3 in (28), then likeness is achieved when
α = 5 ∗ αx1 = 5 ∗ αx2 . Two like kernels are shown in Figure 4, which displays the scenario
αx1 = αx2 = 2.5 and α = 12.5. Note that the compact kernel decays to zero at r = α.
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 15

Figure 4. Exponential vs. compact kernels. Figure 5. Pictorial representation of IGPA.

Finally, IGPA, the second sampling procedure proposed, is implemented as follows. Imagine
a vehicle traveling in uncertain space. For the vehicle model considered, values of η are needed
only at the tire/terrain points of contact; thus, only data values as stipulated by (27) within FB
need to be used for training the interpolation. Since it would be computationally expensive
to interpolate with Gaussian processes for each integration step, we instead interpolate on
subdomains large enough to accommodate the simulation for several time steps; this strategy
is presented pictorially in Figure 5.

As previously pointed out, an a priori bound on FB in (27) is hard to obtain. We thus
resample as soon as the trajectory comes within ε of the edge of the simulated domain. An ε
value of about 1/8 of the diameter of the kernel support was found to provide a good bound.
Note also that the proof (27) was carried out with the end trajectory point at the center of
the new sampling domain. The only change needed for the proof to hold in general is that the
trajectory stay for ∆t inside of the newly sampled domain. A heuristic was used whereby the
new sampling domain had the starting state at about ε of the boundary with the velocity vector
pointing inside, which was found to still capture the distribution correctly for the considered
vehicle simulation.

5. NUMERICAL RESULTS

The numerical results presented validate the methodologies introduced in this paper in
conjunction with the nonlinear vehicle model discussed in Section 1.1. In principle, any
statistics that draws on states associated with a system described by an initial value problem
such as (3) can be solved using these methods. The statistics reported herein are for the
final time tN as well as whole trajectory statistics, x(t); t ∈ [t0, tN ]. The convergence studies
illustrate the accuracy of the methods, while the effort vs. problem-size plots demonstrate
the gains obtained in terms of runtime and storage. Some validation results are carried on the
Gaussian process φ(x) alone, without dynamics simulation, in order to validate the equivalence
of the sampling methods.
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16 K. SCHMITT, M. ANITESCU AND D. NEGRUT

(a) Stationary data: γ = 4, αx = αy = 1.5, a0 = 1,
a1 = a2 = 0.

(b) Nonstationary data: γ = 4, αx = αy = 1.5, a0 = 3,
a1 = a2 = 0.1.

Figure 6. Cross validation CDF comparison.

5.1. Validation of Hyperparameter Estimation

A leave-one-out cross-validation procedure was used to verify the hyperparameter estimation
method. To start, data was generated from known hyperparameters and then divided into ten
distinct training and testing sets. The training sets were used to estimate the hyperparameters,
and the resulting posteriors were compared to the test set data. Since the test data φ ∼
N (φ̂,Σ), where φ̂ and Σ are the mean and covariance matrix predicted from the training set,
for each test, the expected behavior of the prediction method was demonstrated by confirming
that

(φ− φ̂)TΣ−1(φ− φ̂) ∼ N (n,
√

2n) (29)

This is the case since v = Σ−1/2(φ− φ̂) ∼ N (0, I) ∈ Rn, and therefore vT v ∼ χ2
n. Equation

(29) then follows based on the central limit theorem, where n is the sample size.
The estimation stage was verified using two different sets of hyperparameters. For each

hyperparameter test there were ten cross-validations, generating ten Z-scores. The resulting
CDFs for the Z-scores are plotted against the expected CDF (given infinite cross-validation
tests) in Figure 6 to qualitatively validate the results of the estimation stage.

5.2. Validation of the Spectral Approach

For the spectral approach leading to the PFS method, we investigate only the sampling of
η(x) itself and not the multibody dynamics simulation. Once sample surfaces consistent with
the Gaussian process prior are obtained, simulations can be done by virtually any engineering
package followed by postprocessing of the sampling trajectories. Such an approach was followed
in [18, 25], where three dimensional nonlinear dynamics of two vehicle models was simulated
in the commercial multibody dynamics package ADAMS [26]. The contribution of this work is
in the sampling efficiency accompanied by the proof of the fact that the method is consistent
with the state prior. This part will be validated by numerical examples below.
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5.2.1. Validation of Diagonalization and Diagonal Equivalence To demonstrate the
diagonalization property (23) numerically, a diagonalization-by-FFT error operator Ψ is
defined by using the MATLAB diag function convention:

Ψ(K) = ‖Q′KQ− diag (diag(Q′KQ)) ‖. (30)

As a first check, at each iteration the priors K11 and K22 should be equal because of the
PFS sampling strategy; the nonhomogeneity of the data is not factored in until the posterior.
Results in Table I confirm this (see the ‖K11 −K22‖ column). Second, the diagonalizable-by-
FFT property of K11, K22, and K12 is confirmed by results reported in last two columns.

Table I. Verification of Covariance Matrix Structure

Iteration ‖K11 −K22‖ Ψ(K22) Ψ(K12)

1 0 .0003e-10 .0001e-10
2 0 .0027e-10 .0010e-10
3 0 .0079e-10 .0036e-10
4 0 .0275e-10 .0466e-10
5 0 .1943e-10 .1351e-10
6 0 .4960e-10 .7803e-10

To leverage the operations in the frequency domain, the FFT diagonal must be mapped
without producing the unitary matrix Q. This is accomplished by using the explicit formula
for the diagonal entries in the FFT basis, (23). An operator Γ is used, where

Γ(Ka) = ‖Q′KaQ−Da‖, a = 22, 12,W, (31)

to show in Table II the equivalence of the directly and indirectly derived diagonals for different
iterations. Specifically, the table compares the directly and indirectly diagonalized matrices,
using (31), to demonstrate their equivalence for seven fold iterations.

Table II. Verification of Equivalence of Directly Diagonalized Matrices

Iteration Γ(K11) Γ(K22) Γ(K12)

1 .0133e-13 .0133e-13 .0022e-13
2 .0178e-13 .0178e-13 .0266e-13
3 .0155e-13 .0155e-13 .0355e-13
4 .0355e-13 .0355e-13 .0375e-13
5 .2842e-13 .2842e-13 .0711e-13
6 .3553e-13 .3553e-13 .4263e-13
7 .5684e-12 .5684e-12 .5969e-12

5.2.2. Convergence Study of Spectral Approach To verify accuracy, the mean vector and
covariance matrix computed from the sampled data generated by PFS are compared with
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18 K. SCHMITT, M. ANITESCU AND D. NEGRUT

the mean and covariance posteriors computed with traditional methods. In the latter case, all
samples are computed at once. The plots in Figure 7 show the normalized error of computed
posterior covariance matrices (compared to a Cholesky-derived covariance matrix derived
with 1000 samples) as a function of samples, k. Mathmatically, the dependent quantity is
‖Σ1000 − Σk‖ where the subscript represents sample size. Both methods converge at an
approximate rate of 1/

√
N . The plots in Figure 8 show the normalized error of computed

mean vectors (compared to a Cholesky-derived mean vector derived with 1000 samples) as a
function of samples, k. Mathematically, the dependent quantity is ‖m1000−mk‖. Again, both
methods converge at an approximate rate of 1/

√
N .

(a) Stationary, high-frequency data: γ = 4, αx = αy =
1, a0 = a1 = a2 = 0.

(b) Non-stationary, low-frequency data γ = 4, αx =
αy = 3, a0 = 0.5, a1 = a2 = 0.1.

Figure 7. Comparison of PFS derived covariance matrix convergence and Cholesky derived covariance
matrix convergence.

(a) Non-stationary, low-frequency data: γ = 4, αx =
αy = 3, a0 = 0, a1 = a2 = .5

(b) Stationary, high-frequency data: γ = 4, αx = αy =
1, a0 = 1, a1 = a2 = 0

Figure 8. Comparison of PFS derived mean vector convergence and Cholesky derived mean vector
convergence.
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EFFICIENT SAMPLING OF SPATIAL UNCERTAINTY 19

5.3. Dynamic Simulation

In vehicle simulation, as the tire rolls over terrain, tire/road interface information is needed
not only at a discrete set of locations (the nodes of a lattice, for instance), but at an infinite
number of locations. Starting with information at a very limited number of points, sample
road realizations can be generated on a fine grid. An additional interpolation step is needed to
generate information at offgrid locations. In this context, spline interpolation has been used
in this work to provide tire/road friction coefficient information at offgrid locations.

Two friction coefficient realizations are shown in Figure 9. In both, Gaussian processes with
PFS sampling are used to interpolate the data, refining the space 24-fold; one realization is
shown for both data sets. The first data set is stationary with high frequency, and the second is
nonstationary with low frequency. The resulting refinements were computed in approximately
0.4 seconds.

(a) γ = 4, αx = αy = 3, a0 = a1 = a2 = 0. (b) γ = 4, αx = αy = 5, a0 = 0, a1 = a2 = 0.06.

Figure 9. Two scenarios and corresponding grid refinements.

For each posterior sample, a cubic spline χ is used to make predictions outside the N -node
grid. During the simulation, η at offgrid locations is interpolated allowing for the computation
of trajectory at all points at any time. Specifically, a Monte Carlo approach is used to produce
the multibody dynamics statistics through simulation.
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At points away from the evaluation grid it is evident that the field function χ(η)
approximated by splines no longer obeys the Gaussian process model; it is only an
approximation of it. One can show, however, that, in the limit of the evaluation grid spacing
going to zero, the results of the simulator converge to those that would be obtained if proper
Gaussian process sampling had been employed at the points required by the integration
procedure. This convergence is due to the fact that almost any sample χ surface is smooth
[17]. This convergence is illustrated numerically in [18].

5.3.1. Convergence Study of IGPA The incremental approach is validated numerically with
a convergence study of the vehicle trajectory x(t). It is expected that as the number of
Monte Carlo samples, N , increases, the trajectory statistics will converge regardless of which
method is used for interpolation. Figure 10 shows the [N = 500] mean rotational velocity
of the vehicle predicted with full grid interpolation and with IGPA interpolation. Figure
11 shows the relative error of the IGPA predicted mean trajectory as compared with a
[N = 1000] mean rotational velocity predicted with full grid interpolation, with N varying
for IGPA. Figure 12(a) displays the norm of the deviation vector; the error decays at a rate of
1/
√
N . Figure 12(b) shows the Kolmogorov-Smirnov statistic (KSS) comparing the distribution

of x(tN ) predicted by [N = 1000] full grid interpolation, with the trajectory distribution
predicted by different N IGPA interpolation. With F as the cumulative distribution function,
KSS = max (F (x1)− F (x2)) is a minimum distance estimation used to compare empirically
derived cumulative distribution functions. For N sufficiently large, the convergence rate for
the KSS is 1/

√
N , which validates IGPA as a method that draws on (27).

Figure 10. Mean rotational velocity predicted by full grid interpolation and IGPA interpolation:
N = 500.

5.4. Efficiency Comparisons

The plot shown in Figure 13 demonstrates the computational efficiency of PFS in terms
of runtime and memory storage. PFS runtime starts lower and displays slower growth
rate than that of traditional methods conducted in the time domain. Moreover, PFS
demonstrates reduced storage requirements. Traditional methods implemented in MATLAB
became impractical at eight iterations or approximately 9,000 data points; this requires the
storage of matrices with over 81 × 106 entries. In the frequency domain, all information is
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Figure 11. Relative error of IGPA predicted mean rotational velocities, for varying N , as compared
with [N = 1000] full grid interpolation prediction.

(a) Convergence of trajectory error x̂(t)− x(t). (b) Convergence of KSS at x(tN ).

Figure 12. Convergence studies for IGPA predicted trajectories. [N = 1000] full grid interpolation
trajectory prediction is used for convergence target.

contained in the FFT diagonal values, so the largest storage is proportional to N instead of
N2.

The plot shown in Figure 14 demonstrates the significant computational gains achievable
with IGPA for long simulations. The simulation shown is that of a vehicle executing a constant
radius turn, with longer simulation times leading to larger problem spaces. Note that the times
given in this plot are for a single realization; the incremental method is less useful when Monte
Carlo simulation is applied because new realizations require completely fresh simulations as
opposed to a single Cholesky decomposition for all realizations as with traditional methods.
As shown before, the traditional method exhibits exponential growth in runtime and storage
with increasing problem size. It is shown that IGPA has a nearly linear growth in runtime
with simulation time because of the constant size of the posterior grids.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 33:1–34
Prepared using nmeauth.cls



22 K. SCHMITT, M. ANITESCU AND D. NEGRUT

Figure 13. FFT methodology for periodic data shown to be several orders faster than traditional
method. The traditional method reaches a memory limit after eight iterations.

Figure 14. Runtime of traditional method and incremental approach shown as a function of simulation
time. The traditional method reaches a memory limit after ten seconds in this simulation.

6. CONCLUSIONS AND FUTURE WORK

The paper introduces two sampling methods, the periodic fold sampling (PFS) and the
incremental Gaussian process approach (IGPA), for handling spatial uncertainty in applied
multibody dynamics analysis. We prove that the methods correctly sample from the underlying
Gaussian process. The methods have both small computational costs and low memory
requirements and as such are suitable for large-space and fine-grid spatial uncertainty sampling.
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PFS (based on an FFT approach) is effective for interpolation and quantification of spatial
data provided on a lattice. With only a periodic data assumption, reflected in the covariance
matrix, and a conditional sampling regiment, PFS can do all the steps of traditional Gaussian
processes in the frequency domain. Fast Fourier transforms are employed to map between
the frequency domain and time domain when needed. Each step in this method – conditional
sampling, hyperparameter estimation, computation of posterior with noise incorporated, and
multivariate Gaussian sampling – is proven analytically and verified with numerical results.
The computational effort to sample a vector of length n is O(n log n) as opposed to O(n3)
effort of the Cholesky-based approach. PFS is limited by the fact that the data provided must
reside on a regular grid. Nonetheless, the approach can benefit uncertainty quantification in
many areas of mechanical engineering with infinite-dimensional uncertainty subspaces that
have smooth realizations. These include contact mechanics and boundary roughness effects in
continuum and fluid dynamics.

In IGPA, the method dynamically updates small interpolation spaces in proximity of the
location of interest and thus avoids large grid interpolation completely. A Markov chain
justification underlines the technique, whose implementation was discussed in detail and
validated by means of a compact kernel Gaussian process simulation.

The most important metric presented in this paper is the plot of effort vs. number of samples.
It demonstrates that PFS leads to substantial efficiency gains, especially when the sample set
is large. Unless special precautions are taken, traditional methods implemented in MATLAB
run out of memory between 5,000 and 10,000 sample points. PFS should be able handle up to
107 sample points. For IGPA, the Gaussian process interpolation effort is negligible compared
to the integration. This leads to a linear relationship between considered length of analysis
and actual simulation duration.

With only a few restrictions, the methods proposed combine the accuracy and reliability
of Gaussian processes with the speed achievable with spectral or white-noise methods.
Furthermore, the restrictions imposed are not severe, making PFS and/or IGPA usable in
nearly all analysis scenarios. Their speed and accuracy should prove relevant in industry
applications such as vehicle dynamics and nuclear reactor simulation. Finally, this work opens
up several research opportunities. Since IGPA relies on a balance between grid size and the
number of small grid interpolations required over an entire simulation, an optimal subdomain
selection is anticipated to further improve the efficiency of IGPA. Research should also focus on
the multi-variate spatial uncertainty problem both from ”how” and ”how faster” perspectives.
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APPENDIX

A proof is provided below that demonstrates that

p

((
S1

S2

)
|m1,Σ1

)
= p(S2|m2,Σ2) ∗ p(S1|m3,Σ3), (32)

for

p(x|m,Σ) = (2 ∗ π)−n/2|Σ|−1/2 exp
(
−1

2
(x−m)TΣ−1(x−m)

)
, (33)

where m is the posterior mean vector, Σ is the posterior covariance matrix, x is the sample,
and n is the number of elements in the sample.

The expressions involved in this multiplicative equality lead to three parts of the proof: (1)
the scalar, (2) the determinant scalar, and (3) the exponential equalities. Separately, the proof
below will demonstrate that each of these equalities holds.

1. Numeric Scalar Equality.

(2π)−n1/2 = (2π)−n2/2 ∗ (2π)−n3/2,

which follows from n1 = n2 + n3. QED
2. Determinant Scalar Equality.

We must prove that |Σ1|−1/2 = |Σ2|−1/2|Σ3|−1/2, which can be shown to be identical to
the equality |Σ1| = |Σ2||Σ3|. From [17], the posteriors are

Σ1 = k(Ω1,Ω1)− k(Ω1, D)
(
k(D,D) + σ2

nI
)−1

k(D,Ω1) (34a)

Σ2 = k(S2, S2)− k(S2,Ω2)
(
k(Ω2,Ω2) + σ2

nID
)−1

k(Ω2, S2) (34b)

Σ3 = k(S1, S1)− k(S1, D)
(
k(D,D) + σ2

nI
)−1

k(D,S1), (34c)

where Ω1 =
(
S1

S2

)
and Ω2 =

(
D
S1

)
. Next, define

A =

 k(D,D) + σ2
nI k(D,S1) k(D,S2)

k(S1, D) k(S1, S1) k(S1, S2)
k(S2, D) k(S2, S1) k(S2, S2)

 (35)

B =
[
k(D,D) + σ2

nI k(D,S1)
k(S1, D) k(S1, S1)

]
(36)

C = k(D,D) + σ2
nI. (37)

Schur’s determinant formula states that

det
[
A11 A12

A21 A22

]
= detA11 · det (A22 −A21A11

−1A12). (38)
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When using the Schur formula while solving for one of the right-hand side terms, we call
it the inverse Schur formula. It then follows that

Σ1 =
|A|
|C|

, Σ2 =
|A|
|B|

, Σ3 =
|B|
|C|

. (39)

Finally,

|A|
|C|

=
|A|
|B|
∗ |B|
|C|

(40)

|A|
|C|

=
|A|
|C|

.

QED

3. Exponent Equality.
The following notation is introduced:

A = x1 −m1 =
(
Y1

Y2

)
− k(Ω1, D)k(D,D)−1YD (41a)

B = Σ1 (41b)

C = x2 −m2 = Y2 − k(S2,Ω2)k(Ω2,Ω2)−1

(
YD
Y1

)
(41c)

D = Σ2 (41d)
E = x3 −m3 = Y1 − k(S1, D)k(SD, SD)−1YD (41e)
F = Σ3 (41f)

Note that boldface is used to distinguish from other variables previously used in this
proof; specifically, note the difference between D for data and D, and the difference
between A for the matrix in (35) and A. For clarity, measurement noise is not included
in this portion of the proof which can be shown to hold even when σn 6= 0. With the
notation introduced, the hypothesis concerning the exponents in (32) is

ATB−1A = CTD−1C + ETF−1E. (42)

Result α. Taking the inverse Schur with respect to B, yields

−ATB−1A =
det
[

B A
AT 0

]
.

det B
(43)

Taking the inverse Schur with respect to k(D,D) yields

det B =
detA

det k(D,D)
(44)

det
[

B A
AT 0

]
=

det


· · · YD
· A · Y1

· · · Y2

YD
T Y1

T Y2
T YD

T k(D,D)−1
YD

 .
det k(D,D)

(45)
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In what follows an empty matrix block will be denoted by ·. From (43-45),

−ATB−1A =

det


· · · YD
· A · Y1

· · · Y2

YD
T Y1

T Y2
T YD

T k(D,D)−1
YD

 .
detA

(46)

Result β. Using the Schur complement of
(

D 0
0 F

)

CTD−1C + ETF−1E = −

det

 D 0 C
0 F E

CT ET 0

 .
det D · det F

(47)

Result γ. Taking the inverse Schur with respect to k(D,S1) of D and inverse Schur with
respect to k(D,D) of F yields

det D =
detA

det k(Ω2,Ω2)
, det F =

det k(Ω2,Ω2)
det k(D,D)

, det D · det F =
detA

det k(D,D)
. (48)

Result δ. First, execute a row transformation, then an inverse Schur with respect to
k(D,D), then a Schur with respect to k(Ω2,Ω2):

det

 D 0 C
0 F E

CT ET 0

 = det

 F 0 E
0 D C

ET CT 0

 (49)

=
1

det k(D,D)
· det


k(Ω2,Ω2) · 0 YD
· · 0 Y1

0 0 D C
YD

T Y1
T CT YD

T k(D,D)−1
YD


=

1
det k(D,D)

· det k(Ω2,Ω2) ·
[

D C
CT Ξ

]
,

where

Ξ = YD
T k(D,D)−1

YD −
(
YD
Y1

)T
k(Ω2,Ω2)−1

(
YD
Y1

)
. (50)

Taking the inverse Schur with respect to k(Ω2,Ω2), k(Ω2,Ω2) cancels out, to yield

det

 D 0 C
0 F E

CT ET 0

 = − 1
det k(D,D)

· det


· · · YD
· A · Y1

· · · Y2

YD
T Y1

T Y2
T YD

T k(D,D)−1
YD

 .
(51)

Combining Results α, β, γ, and δ proves (42). QED
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