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INTRODUCTION 

  
Polynomial approximations are arguably the most 

common representation of uncertainty [2]. Such 
approximations are computed by either local Taylor 
expansions, e.g., first-order derivatives, or by fitting the 
approximation at well-chosen sample points, e.g., 
collocation or surface response methods [4,6]. In this 
work we present a hybrid approach, where the polynomial 
approximation is computed based on function and 
derivative information at sample points in the uncertainty 
region. This approach is shown to efficiently approximate 
both the distribution and the major global sensitivity 
effects of the target functional.  
 
UNCERTAINTY QUANTIFICATION 

 
Our generic model with uncertainty is a system of 

algebraic-differential equations 
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For example, the temperature field T  in a reactor core is 
described by neutron transport, coolant flow, and heat 
conduction equations that include various parameters  
such as thermo-physical parameters and cross sections. 
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The variables  characterize the 

model state. The expressions for the dependence of 
intermediate physical parameters on 

the state of the model include experimental errors 
.  
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The dependency of the experimental errors on 

the state of the model is described by a set of stochastic 
parameters, or uncertainty quantifiers ),...,,( 21 m  . 

as described in Equation (8). For a given merit function 
 the task is to find the influence of uncertainties 

in the parameters on the uncertainty of the output. We 
express an output as the function of parameters 
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and use  a polynomial approximation as a surrogate (an 
approximation) for the full model. 
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Stochastic Finite-Element Method 
 

The stochastic finite-element method (SFEM) [2] is a 
generalization of the deterministic finite-element method 
incorporating stochastic variables into deterministic 
relationships. A basis of multivariable polynomials }{ i  

is used to approximate the merit function. The  

coefficients  in the expansion ix 
i

iixJ )(


are found 

by matching (“collocating [6]”) both function and 
derivative information  

 


i

k
ii

k xJ )()( )()(      (4) 

j

k
i

i
i

j

k

d

d
x

J





 )()( )()(




   (5) 

at the sample points . The first-order derivative 
information may be obtained with an eventually 
negligible computational overhead [3]. The number of 
sample points required to find the same coefficients is 
decreased by a factor of m+1, compared with the 
approaches that do not match derivative information [2,4].  
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Sensitivity Information and Basis Truncation  
 
 The relative importance of each component of 
 in the model is measured by 
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Here is the marginal expected value, defined as  ][ iJE
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where )( i  is  the set of all possible values of 

uncertainty, with the value i  fixed. 

 
To reduce the number of polynomials in the 

basis }{ i , the variables of high importance are allowed 

higher polynomial degrees, within a given number of total 
polynomials, resulting in a truncated basis. 
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APPLICATION OF THE METHOD 
 
We apply the method to a simplified steady-state 

model for a coupled neutronics and thermo-hydraulics 
problem in a seven pin configuration [5], with uncertainty 
in the material properties. The thermo-hydraulic model is 
three-dimensional heat conduction and convection 
equation, and the neutronics model is one-dimensional, 4-
group diffusion equation. The intermediate parameters  
are: heat conductivity in fuel and coolant, specific coolant 
heat, heat transfer coefficient, and 4-group microscopic 
cross-sections. All of these have temperature-dependent 
uncertainty, approximated by an expansion 
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in terms of Chebyshev polynomials . Depending 

on the maximal experimental error, the expansion (8) 
includes 1-3 terms, resulting in 38 uncertainty quantifiers. 
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We use uncertainty range information from [1] to 

create a probabilistic model for the uncertainty 
coefficients   with uniform distribution that satisfies all 

the constraints in [1]. A surrogate model  for the 

functional 

)(ˆ J

)(J  is obtained from (4), (5). We used an 

SFEM basis of total degree at most 2, truncated by the 
above procedure. As a functional )(J  we choose the 

maximum centerline temperature.  
 

RESULTS 
 

Table I presents the maximum fuel centerline temperature 
distributions determined with three sampling methods: 
Monte Carlo, linear approximation and SFEM. The 
calculation of the uncertainty using Monte Carlo took 100 
samples. The SFEM model and the linear approximation 
required an effort equivalent to 10 and 1 samples 
correspondingly. Compared to the Monte Carlo results, 
the error range in 1-norm is 10 degrees K for linear 
approach and less than 0.5 K for SFEM. Sensitivity 
calculations presented in Table II for the fuel heat 
conductivity show that SFEM model faithfully reproduces 
the sensitivity (6) of the full model with respect to the 
most important parameters.  
 
CONCLUSIONS 

 
We conclude that SFEM approaches with 

collocation using first-derivative information can improve 
(by a factor of 10) the uncertainty prediction of linear 
approach.  

In addition, the sensitivities (6) are also 
accurately captured. This leads to the ability of far more 

accurate uncertainty calculation without the need for 
higher-order sensitivity implementations.  
 
 
Table I. Performance of SFEM model: maximal 
centerline temperature, K. 

 

 Random 
sampling 

Linear 
approximation 

SFEM 

Sample size 100 1 10 
Range  2237 – 

2460  
2227 – 
2450 

2237 – 
2459 

St. deviation 59.05 59.12 58.96 
 
Table II. Sensitivities of the model, (6).  
Note: evaluations of the marginal expected values 
required 8550 full solutions of (1), (2) for the full model, 
and 15200 evaluations of the surrogate (3); the latter 
needed only 10 full solutions of (1),(2). 

 

 Full model SFEM model  
Kfuel 3876.01   

0005.02    

6097.03   

 

4090.01   

0017.02    

3 0.5893   
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