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Friction: an essential component of MBD|

Robotics. Prehensile manipulation is not possible without friction. In
some devices friction is used as an active element ( for example
cheap, nonprehensile manipulators).

Virtual Reality: The lack of it would substantially reduce the
believability of ascene.

The Coulomb Friction Model isthe widely used model for static and
dynamic friction.

Unfortunately, Friction creates mgor difficultiesin setting up a
consistent model.




(Model Requirements and Notations|

MBD system : generalized positions ¢ and velocities v.
No interpenetration @) (¢) > 0, 1 < j < nsotal-
Compressive contact forces at a contact.

Joint constraints O (q) =0, 1 < i < m.

Coulomb friction, for friction coefficients (7).
Satisfaction of acceleration based Newton laws.

Dynamic parameters: mass M (q), external force k(t, ¢, v).

|mpact resolution.




Normal velocity: v,
Normal impulse:c

(Contact Model |

e Contact configuration described by the (generalized) distance
function d = ®(q), which is defined for some values of the
Interpenetration. Feasible set: ®(q) > 0.

e Contact forces are compressive, ¢,, > 0.

e Contact forces act only when the contact constraint is exactly
satisfied, or

®(g) is complementary toc,, or ®(q)c, =0, or ®(q) L c,.




Tangent Plane

¢, 1ISthe normal impulseand 5 = (ﬁl,ﬁg)T IS the tangential impulse;
In generalized coordinates, ¢ (Newton-Euler world coordinates):
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(Coulomb Friction Model |

e The contact forceliesina( circular) conein 3D, or ||3|| < pcn,
where 1 isthe friction coefficient.

e When dliding exists at a contact, the tangential force is opposed to the
dliding velocity, or

EvTﬁ(q)E subject to Hgngcn.

[ = argmin

e \We have that the tangential velocity at the contact is vy such that

g

ur| = A = —UTIA)(Q)W

For given ¢,, and v, the frictional impulse maximize dissipation over all
feasible frictional contact impulses.




(Discretized Friction Model |

e d;( GC) is the column corre-
sponding to t(«a;), a; € [0, 7],
= 1,2,...,1, D(q) =
|d1,do, ...d].

Polygonal cone approximation to
the Coulomb cone ( 3D).

To each tangential direction we
attach a force g, > 0, ¢+ =
1,2,...,l. Wedenoteby g =

(517527 <. 75l)'

The frictional constraints be-
come

B = argminBzOvTD(q)[? subject to HB‘ ‘1 < ey,




[Complementarity Formulation of Frictional Constrai nts]

Continuous Cone: 3 = argmingva)(q)E subject to HEH < Ucy,.

Discretized Cone: 5 = argmingzovTD(q)E subject to HE‘ ‘1 < UCn.

Optimality Conditions: There exists a Lagrange multiplier A > 0 such
that

Xe + DTy >0 complementaryto >0
pe, —el >0 complementaryto A >0

Heree = [1,1,...,1]Y. The Lagrange multiplier A ~ |vr|, the
approximations approaches equality as the polygone approaches the
circular cone.




(Acceleration Formulation)

p

-y <n<j>(q)c£3'> +D9(g)

1=1...m
compl.to ¥ >0, j=1...p

3 = argmin;;, v  D(q)Y 39 subject to ‘ ‘<M(‘7) @) i=1...p

3

We use the Coulomb Friction model, nondiscretized. In 2 dimensions the
polygonal model and the Coulomb Friction model are equivalent.




_m |=2

16
0=72
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16(cos 6 - ucos 6sin 6) = -2
u=0.75

cos(0)

sin(0)

Constraint: np > 0 (defined everywhere).

(L + L (cos?(0) — psin() cos(6)))

L
2

Painleve Paradox: No classical solutions!




| Approaching Frictional Inconsistency |

Asssume that the system has a classical solution. Formulate the Euler
method, half-explicit in velocities, with polyhedral approximation to the
friction cone. Linearize the geometrical constraints.

M (v — o0y — Zy(i)cl(j) _ Z (nDcd)+ DWRUW)Y = hk
i=1

jEA
PO it — 0, 1= 1..m
p) =@ 1 >0 compl.to ¥ >0, jeA
o) = \0el) 4 pUTHHL > compl.to BY) >0, je A
¢ = pDel) — e@" 30) > compl.to A9 >0, jec A

Here v = VOO ) = V&), 1 isthetime step. The set A consists
of the active constraints. Forces are replaced by impulses!




(Matrix Form of the Integration Step)

I D) | [ Mo — bk |

0
0
0
0




Linear Complementarity Problems (L CP)]

s=Mz+q,s>0,2>0,s'2=0.

e Examples: Linear and Quadratic Programming.

e Important classes of matrices: PSD (z? Mz > 0, Vz) and
copositive (zX Mz > 0, Yz > 0).

e L CP'sinvolving copositive matrices do not have a solution in general.

e Let M becopositive. If, z > 0 and 27 Mx = 0 implies¢”z > 0,
then the L CP has a solution that can be found by Lemke’s algorithm.




(Theorem)

Consider a(mixed) LCP of the form

M —F )
; >0

TS _
If M is a positive definite matrix, N acopositive matrix (x > 0=z Nz >0)
then the above L CP hasasolution. Lemke's algorithm will always find a
solution A of the LCP obtained by eliminating « and y. A solution (x, y, \) of
the original L CP can be recovered by solving for x and y in the first two rows of

themixed LCP.

The time-stepping method is guaranteed to have a solution!




| Accommodating Stiffness)

e The scheme isbased on an explicit Euler scheme and as such cannot
accomodate stiffness well (such as systems with very large damping
or elastic forces).

e A stiff method should also accomodate the case where there are no
contacts and joints. So it should also apply to

dq
dt
dv

dt

v,

M(q) k(q,v).

e However, we are still interested in an explicit scheme since otherwise
the scheme for the case including contacts would translate into a
nonlinear complementarity problem.




(Example of arun on a stiff problem|

|dentical objects, of mass 1 and with i = 0.4.

Initial distance between objectsis 3.

An External force F' = 20cos(t) acts on the object in the | eft.
Time step 0.05, integration interval 10.

The damper exertsaforce Fp = 6§ (—21 + @2) on the first object and
— F'p on the second object.




Resultsfor § = 20

Linear implicit method, damping=20

Euler method, damping=20




(Resultsfor ¢ = 100, noteinstability]

Linear Implicit Method, damping=100
\

Euler, damping=100
\




Linearly Implicit Schemes)

q(n+1) — q(n) +h ,U(n+1)7
U(n+1) — ,U(n)

h

()

k (q(”),v<”>) +hV,k (q<n>, U(n)) (1)

v,k <q<n>, v<n>> <U<n+1> B U@)) |

or, after solving for v("+1),
¢t = g 4 p (D)

M (¢") o™ + bk (¢, 0™) = Yk (0,00 ) o]




(Well-posedness of the method |

Define:
M =M (q™) = h2 Vg (g™, 0 ) = bV, k (¢, 0]

Stiff method: replace in the Euler formulation M by M (k by E)!

To ensure consistency by applying the theorem, it will be essential to
have M = 0 and not only invertible.

If k(q,v) = —=VU(q) — I'(v), where I'(v) is adamping-type force,
then near an equilibrium point one could expect V,,U (¢) = 0 and
V.,I'(v) = 0.

However, positive definiteness of M cannot generally be ensured for
moderate values of A when the linear system has elgenvalues with a
large negative real part.




[ Damping and elastic forces)

Most stiff forcesin rigid multibody dynamics originate in springs and
dampers attached between two points of the multibody system.

For that case, we have k(t, q,v) = ks(t, q,v) + ki(t, q,v), where

s(t,q,v Z%¢( g q¢(l) 25 qu(”) <qu(j)T(Q)v>

Here~v;, 7 =1,...,n, arespring constantsand ¢, j = 1,...,ns arethe
damper constants. ¢(*)(q) and %) (¢) describe distances between pointsin
the system. k1 (¢, q, v) are the nonstiff forces.

We can then approximate, for the purpose of the linearly implicit method

Vok (,0,0)) & = S 2:Va0 ) V46 (a),
Vk (ta q, U)) ~ Zyil 5qu¢(j)(9)vq¢(j) (Q)




Linearly Implicit LCP)

I D) | I Mo — hk |

M =M+h Y72 7 Ved(@)Ved" (@) + h 372, 8:Vah(q) V" (g) = 0.




Properties of thelinearly implicit scheme]

e The scheme continues to be well defined for any valuesof A: the LCPis
solvable.

Asd — oo, and v — oo the solution to the linearly implicit LCP approaches
the solution of the nonstiff LCP that has the additional equality constraints
Vq¢(i)(q(l))Tv(l+1) — —hqb(i)(q(l)) and qu(j)(q(l))v(lﬂ)(q) — 0,
whenever the limit system has a pointed friction cone. Stiff links behave like
joints, for large stiffness parameters!

T
Denoting & = (v(l) + khM (¢") "1k (¢, q(l),v(l))) , we have

el T . 2
oD M (gD +3 <¢<z> (qu))+th¢<z>(q<z>)TU<l+1>) <
1=1

2

Ny
+@" Mg+ > 7 (¢ (¢"))
=1

This ensures the stability of the linear model, asin the unconstrained case.




Collision Assumptions|

e The collision within a system of bodies consists of

* Compression Phase: interpenetration is prevented by compression
Impulses from each constraint involved in the collision (even
joints).

* Decompression Phase: A proportion of ¢; ( elasticity coefficient)
from the normal compression impulse is restituted to the system

by each contact constraint ®; ( Poisson hypothesis).
Interpenetration is prevented by decompression impul ses.

e The compression/decompression phases following an imminent
Interpenetration detection are simultaneous for all the bodies
Involved.




[Impact Model: Compression Phase|

Collision are instantaneous. Since we have aforce-velocity approach,
compression can be interpreted as aregular time-step with h = 0. Same

solvability results apply.

Zymc()

I/(i) ve =0,

()" e > (),
p@eel@) — o) geli) >

p 1(n(j)cf1(j) _|_D(j)ﬁ0(j)) —0

j:

1=1..m
C%(j) > (),
ﬁc(j) > (),
A\¢U) > 0,

compl to j=1.p
g=1.p

7=1.p

compl. to

compl. to




[Impact Model: Decompression Phase)

Poisson Hypothesis " = ", e;n i)

M (vt — ) — Zy(i)cg(i)_ p 1(n(j)cﬁ(j) +DUV)grl)y = Fr
i=1

j:

pO = : 1= 1..m
n@" yt >0, compl to U >0, j=1.p
A*Wel) 4 pUIT,+ > compl. to AU >0, j=1.p
p@erl) e@" gzl > ¢ compl. to AP0 >0, j=1.p




[Decompron Solution for a Particular Case]

[ Assumptions|

e (a) The contacts are frictionless.

e (b) All new contacts generated by collision have the same elasticity
coefficient € .

e (c) The elasticity coefficients characterizing the other contacts are
lessthane, e; <€, 1 <5 <p.

e (d) The pre-collision velocities satisfy the contact constraints exactly,
(n)(g)) v~ =0.




Solution and Properties)

e (a) Just the compression phaseissolved by LCP.
e b)vr =(14+e)w°—v, i) = (€ — ei)cfz(i).

e (O vt Muvt < v~ Mo, thekinetic energy does not increase after
the collision (desirable, but not guaranteed for other cases).

e (d) This decompression resolution can be used as a general strategy
where computational efficiency is required.




(Algorithm)

v =" q=q° time = 0;
while (time < T)
qnew = q + hv;
Find (Vnew, Guy én, B, \) € L(v, hEk) (k a (g, v), therest at gnew);
iIf (no collision detected between time and time + h)
time =time+ h, ¢ = Qnew, V = Unew,
else
Estimate the collision datatimenew, gnew and v
Find (v¢, &5, &5, B¢, A¢) € L(v™, 0);
Find (v, &%, ¢, 3%, %) € L(v¢, F7)) (orvT = (14 e)v —v7);
time = timenew, v = v, qd = Qnew:
end if
end while




(L CP contact list]

e Theinitial point isassumed to be feasible for all constraints.

e At each regular (non-collision) step the contact list consists of the
union of the set of contacts that the L CP has decided to maintain
(v, = 0) at the previous step with the set of contacts that exhibit
interpenetration (®*(q) < 0).

e When acollision is detected (®*(q) changes sign from -+ to —), the
contacts for which impact is imminent are added to the contact list.

e The decompression phase uses the same contact list asthe
compression phase.




(Conclusions)

We present a complementarity-based model for multi-rigid body with
contact and friction that is guaranteed to be solvable for the most
common types of stiff forces.

The model is based on a discretization of the friction cone and can be
as close to the Coulomb model as desired.

Stiffness is accomodated by means of alinearly implicit scheme for
the case of damping forces. Inthe limit, stiff links behave like joints.

If the mass matrix M (¢")) is constant and the elastic forces are
linear, then the velocity stays bounded at all times. This recovers the
analogue of the stability result for differential equations.

These conclusions were validated with several ssimulations, where
PATH was used to solve the LCP.




(Futurework )

Higer order schemes between collisions and discontinuities.
Extrapolation is atractive since it comes with a minor loss of stability
and it adapts very well to this context.

Alternative friction models, that solve convex subproblems, while
maintaining most physical properties of this model. We are currently
working on a mixed penalty complementarity framework.

Interface this approach with enhanced geometrical approaches that
compute signed distance functions and feasi ble configuration fast.

If aprojection is used, how can energy balance be maintained?

Can afixed timestep scheme be used, which solves only one L CP per
Iteration?




(Simulations for the cannonball arrangement, h=0.05

Problem | Bodies | Contacts 1| CPU time(s)
10 21 | 0.2 0.04
10 21 | 0.8 0.03
21 52 | 0.2 0.28
21 52 | 0.8 0.20
36 93 | 0.2 0.81
36 93 | 0.8 0.82
55 0.2 2.10
55 0.8 2.07
0.0 0.80
0.2 174.29
0.8 FAIL
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