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[Nonlinear Program (NLP)J

For f,g,h € C*(R"™)

minimize _gr f(x)

subject to hi(x) =0 i=1,...,r
Inequality Constraints Only

minimize _gr f(x)

subject to gi(z) <0 7=1,...m

1The results can be extended for equality constraints as long as V h;(x),

1 =1,...,r are linearly independent. Degeneracy: linearly dependent

@adients of active constraints.
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e Mangasarian Fromovitz CQ (MFCQ): The tangent cone to the
feasible set 7 (z*) has a nonempty interior at a solution z* or

Mangasarian-Fromovitz Constraint Qualiﬁcation] \

Jp € R™ ; such that V,g;(z*) p <0, j € A(z*).

e MFCQ accomodates constraint degeneracy: linearly
dependent active gradients.

e MFCQ holds < The set M(x*) of the multipliers satisfying KKT is
nonempty and bounded.

e The critical cone:
C={u€R"| V(@) u<0,jec Alz*), Vof(z*) u <0}

e If MFCQ) does not hold then
T(w,u) = {u € R", |;(2) + Vog; (@)Tu <0, j = 1,... ,m} may be
& empty x arbitrarily close to z*. Problem for SQP! (M) /
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/ (KKT conditions: First Order Conditions) \

The active set at a feasible x € R":
A(x) = {jl1 <j <m, gj(z) =0}

Stationary point of NLP : A point z for which there exists A > 0 such
that

)+ Y AVags(a) =

jEA(x)

The Lagrangian: L(z,)\) = f(z) + > 72, Ajgi(z) = f(2) + Mg(x).

Complementarity formulation for stationary point

0# M(z)={XNeR™"|A>0, V,L(z,\) =0, g(z) <0, ( z) =0}
KKT theorem: MFCQ = the solution z* of the NLP is a stationary

@)int of the NLP (multipliers exist). /
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[Second-order optimality conditions (SOC)]

Sufficient SOC: MFCQ and 36 > 0 such that Yu € C(z*)

T * T2 T * ~ 2
Loz (z*, Nu = V2 (f+ A > .
\oax (%, Au \hax (f 9)(@")u > 7 |[u]

(3 e M) T Laa(a™, Nu = u V2, (f + \Tg)(a")u > & ||ul)
Sufficient SOC imply Quadratic Growth:
max {f(z) — f(2%),01(2), 02(2), ., g (@)} > 0|2 — 2*||* > 0

MFCQ + Quadratic Growth = z* is an isolated stationary point
and certain SQP algorithms will achieve at least local linear

convergence (M) J
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1.
2.

. Choose «

[(guinea pig) L., SQP algorithm near x*j

SQP: Sequential Quadratic Programming.

Set k = 0, choose z°.

Compute d* from

minimize Vi@*)Td+ 1d"d
g;(x*) + Vg, (x*)Td <0, j=1,...,m.

k¥ using Armijo for the nondifferentiable merit function

¢(x) = f(x) + cp max{go(x), g1(x),...gm(x),0}, cp > 0, and set
gkt = gk 4 ok gk

. Set k = k + 1 and return to Step 2.
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[Unbounded Lagrange Multiplier Set Approachj

min, f(z) subject to g;(z) <0, i=1,2,...m.
MFCQ doesn’t hold = SQP may fail because of empty linearized

constraint set. However, if we assume:

e There exists a Lagrange Multiplier \* at x*, but the Lagrange
Multiplier set may be unbounded.

e The quadratic growth condition holds
maX{f(aj) - f(x*)agl(x)agQ(x)a s ,gm(lb')} >0 HZC N QZ*H2

e f, g are twice continuously differentiable.

e Note that quadratic growth is the weakest possible
second-order condition! J

N
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[The modified L; nonlinear program: main result]

min, ¢ f(z) +¢>.;" ;¢ subject to gi(x) < ¢, >0, i=1,2,...m.
For ¢ > ¢ > ||\*|| at (z*,0,0,...,0) we have

e The Lagrange multiplier set is nonempty and bounded (MFCQ).

e The quadratic growth condition is satisfied.

e The data of the problem are twice differentiable.

have at least local linear convergence (M)

N

x* is an isolated stationary point and certain SQP algoritms will

~
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/ [The L elastic modej \

(NLP) (NLPC1)
ming,  f(x) ming upw f(@)+ & (ehu+ el (v+w))
sbj. to  g(xz) <0 sbj. to  g;(x) <w;,i=1,2,...m,
h(z) =0 —v; < hj(z) <wj,j=1,2,...7
u, v, w > 0,

Here e, = ones(m, 1), e, = ones(r, 1).

If NLP does not satisfy MFCQ then
NLPC: Find the solution (2% ,u’,v%  w’). of (NLPC1) by SQP.
If “(uéz,véz,wéz)“ = 0, then z% solves. Stop.
otherwise Increase ¢ and return to NLPC.

N
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[The L elastic modej

e The method is initialized when MFCQ is detected not to hold when

either
— The multipliers are too large.

— The linearized constraint set is infeasible.

e Quadratic Growth 4+ Nonempty Lagrange Multiplier Set =

the elastic mode stops with finite c.

e SNOPT implements the L; elastic mode.

N /
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[Mathematical Programs with Complementarity]

[Constraints, MPCCJ

minimize,, f(x)
subject to g(x) <0
h(x) =0
Fri(x) <0 k=1...n,
Fio(x) <0 k=1...n,
Compl. constr. Fpi(x)Fre(x) =0 k=1...n,

Equivalent formulation replaces the equality constraints by (1)

() Fro(z) <0, k=1,2,... K or (2) S, Fro(@)Fra(x) < 0. (M)

/
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[The Tightened Nonlinear Program at a solution x*]

Due to the complementarity constraints, MPCC cannot satisfy MFCQ. But
other NLP connected to it can.

TINLP Complementarity constraints are dropped and all active
Fy; € Ac.(x*) constraints that are part of complementarity pairs are
replaced by equality constraints.
(TNLP) min,  f(x)
subject to  g;(x

12
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[Sufﬁcient Conditions of KKT stationarity of MPCC]

Assume that the tightened nonlinear program TNLP satisfies the strict

MPCC, or
1. VoF4 (%), and V h(z*) are linearly independent.

2. There exists p # 0 such that Vo F} (¢*)p =0, Vh' (z*)p =0,
Vgl (x*)p <0, for 1 € A(z*).

3. The Lagrange multiplier set of TNLP at z* has a unique element.

Then the Lagrange multiplier set of MPCC is not empty. The
elastic mode will solve the generic MPCC with a finite penalty

parameter.

N

Mangasarian-Fromovitz constraint qualification SMFCQ at a solution x* of

/
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[Numerical Experiments with SNOPT]

Runs done on NEOS for the MacMPEC collection.

Q&INOS fails on half of these problems.

Problem Var-Con-CC Value | Status Feval | Elastic
gnashl14 21-13-1 -0.17904 | Optimal 27 | Yes
gnashld 21-13-1 -354.699 | Optimal 12 None
gnash16 21-13-1 -241.441 | Optimal 7 None
gnashl17 21-13-1 -90.7491 | Optimal 9 None
gne 16-17-10 0 | Optimal 10 Yes
pack-rigl-8 | 89-76-1 0.721818 | Optimal 15 None
pack-rigl-16 | 401-326-1 0.742102 | Optimal 21 None
pack-rigl-32 | 1697-1354-1 | 0.751564 | Optimal 19 None

~
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(Results Obtained with MINOS |

Runs done with NEOS for the MacMPEC collection.

~

Problem Var-Con-CC Value | Status Feval | Infeas
gnashl14 21-13-1 -0.17904 | Optimal 80 0.0
gnash1b 21-13-1 -354.699 | Infeasible 236 | 7.1EO
gnash16 21-13-1 -241.441 | Infeasible 272 | 1.0E1
gnash17 21-13-1 -90.7491 | Infeasible 439 | 5.3E0
gne 16-17-10 0 | Infeasible 259 | 2.6E1
pack-rigl-8 | 89-76-1 0.721818 | Optimal 220 | 0.0EO0
pack-rigl-16 | 401-326-1 0.742102 | Optimal 1460 | 0.0EO0
pack-rigl-32 | 1697-1354-1 N/A | Interrupted | N/A | N/A
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/ [Results for MPCC with special structure] \

(MPCC) (MPCC(c))
Ming 4 0 2 f(x,y,w,z) ming 4 w.c [z, y,w,z)+cC
sbj. to g(x) <0 sbj. to g(x) <0
h(x) =0 h(x) =0
F(z,y,w,z) =0 F(z,y,w,z) =0
Y, W <0 Y, W <0
(yrw=0) y?w <0 ylw <(

The elastic mode is used to relax only the complementarity constraints,
which are responsible for MFC(Q not holding. We can look at x as design
variables and y, w, z as state variables of a (parametric) variational

Qlequality. /
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/ [A global convergence result] \

e Assume that variational inequality satisfies mixed P property (LPR):

(Ay, Aw,Az) #0, V,FITAy+V,FTAw+V,FITAz=0=
37, such that Ay;Aw; > 0.

e Assume that the z constraints satisty MFCQ:
Vh(z) is full rank and Ju(z), Voh(z) v =0, g;(x) > 0 = V,g:(z) u <0,

Then (M)

e MPCC(c) satisfies MFCQ everywhere. An SQP with global
convergence (FilterSQP) will accumulate to a feasible
stationary point of MPCC(c).

e Any accumulation point of stationary points (z(c),y(c), w(c), z(c))
& of MPCC(c) as ¢ — ¢ is a feasible (stationary) point of MPCC/
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/ [What requires c to be large?] \

Consider a KKT stationary point x* of general MPCC, where for simplicity
I assume Fj 1 (z*) =0, Fi2(2*) <0, Vk.
« i
Vo f(z*) + Veg(z*)p+ Voh(z )X+ > Vo Fe1(2*) (1 + O Fr2(2*)) = 0
k=1
(i, A, 77) and (u, A, 7, 0) are Lagrange multipliers of TNLP and MPCC

respectively. Assume that

o V.ga(z*), Voh(x*), Vi F1(z*), Vk and V,F; o(x*) are linearly
independent.

o [ 9(z*) <0, Fi2(x*) = 0 (almost degeneracy), and Fy 2(z*) = —O(1),
for k > 2.

KClearly, |, A, || = O(V f(z*)), from LI assumption. /
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[What requires c to be large (continued)?}

There exists & feasible such that Fj 1(2) =0, F12(2) =0,
|z — 2| = O(=Fp2(z7)).

o £ > 0, then n =i, ¢ > || A, 0)l o0 = [1(s A )|, = O(V£(2*)).
c is small.

o If 71 <0, then 6; = jan ?%x) Since ¢ > 61, c may be very large

although the problem is well conditioned (though close to
complementary degeneracy).

N
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LWhat requires c large (continued)?j

However, in the last case, there exists a feasible direction wu, ||u|| = 1,from
7 such that Vf(Z)Yu = + O(||x — Z||) < 0. Then

e z* will be a local minimum of MPCC in some neighborhood.

e However, in some larger neighborhood of radius O(—F} 2(«*)) there

will be feasible points of lower value then x* !

f(& +tu) = f(2%) = f(T 4+ tu) = f(2) + f(Z) = f(z") <
th + O(|[Z — z||) + O(#* +||& — z||*) <0,

when —Fj, 1 (2*) small and ¢ sufficiently large. Such minima are not

interesting, thus one should avoid, increasing c aggresively!

N /
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[example]

min gy
subject to  Fi(z,y) = y — x° < 0
F(r,y)=y+1l—-c—(z—-1?% < 0
i (z,y)F2 (2, y) = 0

e Local minima: (0,0) and (1,¢ —1). Choose ¢ = 0.1.

e Starting point (—0.01,0.0001). General elastic mode with ¢ = 1000
converges to (0,0).

e Starting point (—0.01,0.0001). General elastic mode with ¢ = 10
converges to (1, — 1).

/
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[Example: continued]

feasible set of MPCC

|
o
—
T

1
o
ol

T

|
o
[op]
T

(0.5*eps,0.25*ep52)

-0.4 -0.2 0 0.2 04 0.6 0.8 1
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(Conclusions)

Mathematical Programs with Complementarity Constraints may create
difficulties for some SQP algorithms by generating infeasible

subproblems.

Nevertheless, the use of a penalty approach (elastic mode) can

accomodate these cases in an efficient manner.

A global convergence result holds for MPCC originating in parametric

P variational inequalities, when using the elastic mode.

For well conditioned MPCC, a large penalty parameter ¢ may force the

algorithm to stop in a very shallow minimum. The increase in ¢ should

/

not be very aggressive.
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