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[Constraint methods for Nonsmooth Rigid Body Dynamics .

e ... do not regularize nonsmoothness so do not suffer from the
associated type of instabilityput they are typically solving a more
complex problem, a variational inequality, LCP, NCP

Nonsmooth dynamics due toontact collision, and friction.

Simulate-detect-restafd.k.a. event-driven, hard particle) both in
acceleration formulation (Baraff 1993), (Pang et al. 1996)ocker

and Pfeiffer, 1992, partially elastic), and velocity-inhge
formulation (Anitescu, Potra 1997, partially elastic).

Fixed time step NCP (Moreau et al. ***, Jean 1999, Stewart and
Trinkle, 1995) andLCP (Anitescu and Hart, 2004, Stewart ***) ... to
mention a few references.



(How does one solve the subproblem)?

e In the work of Moreau, Jean et al., bgauss-Seidell iteration
following velocity elimination. Works well for many repad
situations, but theoretical complexity and guaranteedpatetion
unclear.

e In (Baraff, Anitescu et al., Stewart et al.), by Lemke’s methbat
has finite termination following velocity elimination.

Issues we pursue
e \What can we say about the complexity of solving the LCP?

e Can we define schemes that retain good convergence pradautie
have a reasonable complexity?
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Normal velocity: 4

Normal impulse: cp

(Contact Model]

e Contact configuration described by the (generalized) ncsta

functiond = ®(q), which is defined for some values of the
Interpenetration. Feasible sét{q) > 0.

e Contact forces are compressivg,> 0.

e Contact forces act only when the contact constraint is éxact
satisfied, or

®(g) is complementaryo ¢,, or ®(q)c, =0, or®(q) L ¢,.




(Coulomb Friction Model |

e Tangent space generators(q) = [c/l\l(q),c/l\g(q)_ , tangent force
multipliers: 3 € R?, tangent forceD(q) 3. _

e Conic constraints||3|| < uc,, whereu is the friction coefficient.

e Max Dissipation Constrainisi = argmimgH@C vTﬁ(q)B.

Polyhedral approximation:
{D@)8 | 18I] < pea} ~ {D(a)

whereD(q) = [d1(q), da(q), - . . , dm(q)].




Strong Form — DSEC]

() (7)
+D9(q)8") = k(t.q, 7]

1=1...m
compl.to ¥ >0, j=1...p

B = argmin;v" D(q)"’3)  subject to Hﬁ(” ‘ <uPel ) j=1.

M (q) : the PD mass matri¥;(t, ¢, v) : external forceP¥ (g) : joint constraints.

e Itis known that these problems do not have a classical sol@ven in 2
dimensions, where the discretized cone coincides withdtad tone:
Painleve’s paradox — no strong solutions justification for impulse-velocity

time stepping.

¢ In addition, time-stepping needs one less derivative.

B unknowns




[LCP Fixed time step scheme

Euler method, half-explicit in velocities, linearizatifor constraints.
Maximum dissipation principle enforced through optimattnditions.

M(?}l+1 o U(Z)) _ Z V(i)cl(/i) _ Z (n(j>cg)+ D(j)ﬁ(j)) — hk
i=1 jeA

T O )
(0)" 1 —
,U /y h Y,

. T d ) .
pU) = nU) > h(Q)’ compl.to ¢ >0, jeA

v

o) = \Wel) 4 pUTHHL >0 compl.to AY) >0, je A

Result, A & H, 2004 The LCP is solvablethe geometrical constraint
infeasibility is bounded above by (h?) and stabilized, (as opposed to
O(h)), and the numerical velocities sequence is uniformly bedind




So

ving the LCP, h=0.05, PATH (Lemke)

Problem
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(Solving the LCP ... |

e ... With Lemke’s methodloes not seem to scale well.

¢ Interior Point methods have not been proven to work in gétera
problems for which the solution set is not convex, as is tise ¢ar

frictionless problems.

e |s the solution set of the complementarity problem convesdirF
practical experience, this is the key property that separdiard”
problems from “easy” problems.
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(Nonconvex solution sel

Force Balance

2?21 ) (9)

ucg) >0




(Nonconvex solution sef

The following solutions
1. P =@ =) = %, oD = =9 =,
AL = 2\B) = \6B) =, A2 = \®) = \6) =1
(1) _ B3 _ (5 _n (2 _ (4 _ (6) _ hm
2.cn’ =cn =cn =0,cn =cn =cp = 57,

AL = \GB) = \6B) =1 N2 = \&) = \(6) —,

The average of these solutions satisfigs = g A0 = 1 for
j=1,2,...,6,which violate

ued) >0 L AV >0, j=1,2,...,6,

The average of these solutiotisat both induce = 0, violates,
¥ >0 1L A® >0

For anyu > 0 the LCP matrix is naP* matrix, polynomiality unlikely.
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(The convex relaxation

_ 4D .

L
5 | >0,
- - L - - 5\ - L -
The LCP is actually equivalent to a QP—-but is the method awggé
fixed point iteration approach based on the above was proveaiiverge
for small . and pointed friction cone A and G.D.Hart, (20040)




(Equivalent, Strongly Convex, Quadratic Program|

. | SN T_.
v+ = argmin, §vTMv + k075

| .y e
subject to nyCD(J)(q(l))JrVCI)(J) o+ pNd? B
jeA(gW,e), k=1,2,...,m),

For the case without equality constraints.




(The extension to circular cong

v+ = argmin;

1 T
?TM6+M”@

| D5 @] (1907 5) ()75’
subjectto VoY) v —p ty7 v+t v

rlpi (1) >0

I
je Al e).
(2)

e The scheme has the same stability properties, and usexigneal

friction cone.

e Quadratic Programs with Conical constraints, for whichsafe

doesexist.

e The problem can be extended to acommodath/aamicalfriction

coefficients.




(Microscopic interpretation |

e ltis “almost” as if we integrate with the exact reaction giuzy
frictionless asperities, mitigated by the proximity mochtfiion.

e The termy% acts as a controller, and keeps a nonzero gap to
accommodate the nonzero tangential velocity.
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 Defining the friction cone (no joints))

The total friction cone:

{Zj=1,2 ..... (j)n(J) + ﬁ(J) (7) 4 ﬁ(])t;‘j)

AN 2 : .
(89 + (89) < ue,

) ZOLQD(j)(q):O,j:1,2,...7p}.

FC(q) = > FCY)(q).

7=1,2,....,p, () (q)=0
Pointed friction coneif 0 € F'C'(q) can be realized only by

=B = P2 = 0.




(Continuous formulation in terms of friction cone |

M% fC(Q7v)+k(Q7v)+p

dq
dt

P () FCW(q(t))
o) (q) 0,
’{p(j)’|¢(j)(q) 07 j:]‘727"’7p'

V.

However, we cannot expect even that the velocity is contisudso we
must consider a weaker form of differential relationship




(Measure Differential Inclusions)

We must now assign a meaning to

M~ flqv)  k(t.q,v) € FC(q)

Definition If v is a measure anl () is a convex-set valued mapping, we
say that satisfies the differential inclusions

dv
— c K(t

If, for all continuousp > 0 with compact support, not identically O, we
have that




(Weaker formulation for NRMD |
Findg(-), v(-) such that

1. v(+) is a function of bounded variation (but may be discontingious

2. q(-) is a continuous, locally Lipschitz function that satisfies

. The measuréuv(t), which exists due te being a bounded variation
function, must satisfy, (wherg.(q, v) is the Coriolis and Centripetal
Force)

—k(t,v) — fe(q,v) € FC(q(t))

L0 (g) >0,V =1,2,...,p.




[Regularity Conditions: Friction cone assumption§

Definee cone
‘FC(q)= Y FCY)q).

) (g)<e

Uniformly pointed friction cone assumptioda: K., K}, and
t(q,€) €° fb(q) andv(q, e) €° F/’E’*(q), such thatyq € R", and
Ve € [0, €], we have that

o t(q,6)"w > K. |[t(q, €)]| ||w]|, Vw € FC(q).

o 10 0(g,€) = p /8 v(g,€) + 1 v(a, ) + K [lo(a. €]l
17=12,...,p.




[The new convergence result with convex subproblerﬁs

H1 The functions:9)(q), tgj)(q), tg”(q) are smooth and globally
Lipschitz, and they are bounded in the 2-norm.

H2 The mass matrid/ is positive definite.

H3 The external force increases at most linearly with thecsigl and
position.

H4 The uniform pointed friction cone assumption holds.
Thenthere exists a subsequence— 0 where

o ¢"*(-) — q(-) uniformly.

e v (.) — v(-) pointwise a.e.

o dv"(-) — duv(-) weak * as Borel measures. in [0,T], and every suc
subsequence converges to a soluti@n), v(-)) of MDI. Hereg"
andv”™* is produced by the relaxed algorithm




The convergence result

Mimics the similar result for the original schentstéwart,(1998)
Including decrease of energy ...

... but says nothing of the Coulomb Law.

In a regime with small tangential velocity it can be show tihat
difference of the two schemes is small.

In some sense, it is the natural integration procedure basdae
microscopic modeling of friction with a large time step.

We used the QP approach for the simulation of size-based
segregation of granular matter, 270 bodies with time stép©® ms,
for 50 seconds. We implemented a fixed time step restitutiodat)
described in (Anitescu, 2004)Granular matter still an unsolved
mystery, insofar continuum model.




Comparison between methods

T
% LCP method
Optimization method

LCP algorithm versus optimization-based algorithm

—— LCP method
Optimization method

Painleve example

Sliding particle

ok

h

hg llvQrp —YLCP

5.6314784e-002

1.5736018e+000

1.7416198e-002

7.2176724e-001

6.7389905e-003

1.4580267e-001

2.1011170e-003

9.2969637e-002

7.6112319e-004

5.5543025e-003

2.6647317e-004

4.3982975e-003

9.2498029e-005

3.7537593e-003

N~Njfojoa|b~AlW[IN|FP|O| X

3.2649217e-005

~N~Njolo|lh~|[lwWwW|IN|IRLR]|]O| X

3.7007014e-004

No convergence, but
small absolute error.
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(The pebble bed nuclear reactot

One of the great hopes of achieving low maintenance pagseaé
reactors.

The fuel consists of tennis-ball-size pebbles filled viit@-,

The fuel is in continuous motion and the fuel pebbles areseith
recycled or replaced.

Cooled with helium through the inter-pebble voids.
Prototype to be completed by 2015 by INL.

Initial simulation of loading withBogdan Gavrea, UMBC
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A fuel migfosphere.
Triple coated with
UO2 center.

There are about
400000 pebbles in the
reactor at one time




(Current Status]

We have implemented our scheme in three dimensions.

For solving the quadratic program, we have used and intpoort
approoachOOQPand one active set methd@QPD.

Both take about 20 hrs CPU time for 2000 pebbles.

The bottleneck ishot startingfor interior point andinsufficient
memoryfor the active set method, though the latter is very eficient
high density of pebbles.

We are currently investigating projected gradient appneac




(Primal hot starting active-set methods

. L T SN
o) = argmin; . EUTMU + kO 5+ CZ ¢V
j=1

. 1 o
subjectto (; + ECD(])(Q(Z)) + Vo) 54 ,u(])dg) v >0,

jeA(gW,e), k=1,2,...,m),
¢ >0, j=1,2,....p.

C> max ) = ¢ =0,7=1,2,...,p,
71=1,2,....p

We useC' = max{20mg,5max,;—1 2. ., cg)’(l)}, always worked.




[What are we hoping to accomplisa

To determine the steady-state statistics of the pebblelaison,
Including the two-point correlation function (2D equiliom, with Gun
Srijutongsiri).

Two point corelation function
35

Metropolis
reconstructed




(Conclusions and remarks

e \We have shown that we find solutions to measure differential

Inclusions by solving quadratic programs, as opposed to Wt
possible nonconvex solution set.

e There remain quite a few challenges (the most important efmis
computational efficiency in solving the subproblem), bt drge
number of applications that can be impacted are worth the
Investigation in these areas.

e Work is in progress for the simulation of the fuel behaviotha
pebble bed reactor.




Elliptic body simulation |

Ellipse Simulation

2

0 1 1 1
-8 -6 -4 -2 0 2 4 6 8

We present ten frames of the simulation of an elliptic bocyt th dropped
on the table. There is an initial angular velocity3pfthe body has axes 4
and 8 and is dropped from a height&f




In Progress

e Trapezoidal scheme, though fixed time-stepping propeitsis

e Nonsmooth bodies witHixed time step.

e Using projected gradient type approaches to accelerasothgon of
the quadratic program.




[Infeasibility behavior unstabilized versus stabilized mdaod]

Constraint infeasibility unstabilized
0.35 T T T T T

0.3
0.251-

o 02r

©

e 0151

0.1f

0.05

0

s s 10 12 1
Time
Constraint infeasibility stabilized

10
Time

We see that drift becomes catastrophic for the unstabihzethod,
whereas remains in a narrow range for the stabilized method.
Constraint stabilization is accomplished!




(Constraint Stabilization )

e Despite the fact that we have the te%mhe scheme is still stable (for
h fixed but arbitrary).

e For solvability, we need a stronger conditiqgnointed friction cone
assumptionthough weaker than linear independence of constraintg.

e Note that in the case of DAE, even the postprocessing method
(Ascher, 1998nheeds one additional linear system (with same
matrix).

e The method was implemented@rasplt! a dynamical grasp
simulation tool by Andrew Miller at Columbia.

e The scheme can be modified to include partial elasticity @edns to
work fine, though we did not prove the same stability restita (
(2003).




(Related Researcl)

e Time stepping methods of this type originate with the work of
Moreay early 70’s, though most (all?) of those developments are
NLCPs, not guaranteed to be solvable, expressed in langifage
projections. The key here: work with optimality conditions (S & T
96).

Other LCP approaches use accelerations as primary vasiable
(Glocker and Pfeiffer, (1992), Baraff(1993), Pang and Hlan

(1996)) They need the existence of a strong solution, and an extra
derivative of the data, but work well in many applications.

Piecewise differential algebraic equation approacheHJAaug et
al., 1988)create difficult nonlinear systems and can get stuck at
points of inconsistency.

e Differential variational inequalities (DAVINCI).




(About convergence of the scheme

e [or this class of time stepping methodstewart (1998proved
convergence to a Measure Differential Inclusion MDlhas-» 0, and
satisfaction of the Coulomb Friction law for one contactseveral
contacts at points of continuity of the velocity.

Note that one has to accommodatescontinuous velocitgdue to

Painleve paradoxes and collisions, though the strong famais

dv
dt *

e \We use a similar technique for proving convergence of ouveon
relaxation method.




(Can the LCP approach be extended for|

Stiff systems ?

Constraint stabilization?

Fixed time step ?

Efficient computation of the subproblems?

while preserving the linearity, the solvability and the staplit

The “numerical analysis” of LCP time-stepping schemes rseday
exploiting the the stability of the solution of LCP with resg to

perturbations, as an extension to DAE approaches. We bedte
results.




(Acommodating stiffness

Define
M [A4'(q(”)) — h*V k (q(”),v(”))-—-hY7vk (an),v(n))}7

7 2 (qm), v<">) _ V. k (qm), v<n>) (™)

and replace?/w\ — M, in the LCP matrix and: — k in the right hand side
(linear implicit approach)Then

e If the external force is linear spring and damper, resulgraplem is
solvable LCP and the scheme is unconditionally staldl&é.& FP,

2002,

e Can extend to nonlinear spring and damper with small modiibica.




(Constraint stabilization: Linearization method

Projection methods are expensive. Our solution: enforoengérical
constraints by linearization.

V(¢ T > 0 = oW (¢) 4 41 VB (¢ T > 0.

v@(q(l))TU(lH) — ) — @(j)<q(l)) 4 yhlV@(q(”)TU(l“) —0.

Here~ € (0, 1]. v = 1 corresponds to exact linearization.




(Is the LCP solvable?

I D) | I Mo — bk |

Yes, with Lemke, ifM is positive definite, MA & FP, 1997n addition collision
with compression-decompression can be modeled by WitR the same matrix
and are also solvahle




(Energy Properties (Stability)]

Assumptions
e The Mass matrix\/ is constant.
e The collisions do not increase the kinetic energy.
e The number of collisions is finite.

e The external force is inertial + at most linear growth:
k(t7 v, q) — fC(Q7 U) T kl (tv v, Q)i WhereUch(Q7 U) — O!
k1 (t, g, 0)|| < AL+ [lg[| + [[o]]).

Thenv®:" is uniformly bounded.




[Time-stepping, the linear complementarity problem (LCP)

Euler method, half-explicit in velocities, linearizatiéor constraints.
Maximum dissipation principle enforced through optimattnditions.

m

M — 0y - Z (el Z (n<j)cg)+ DWBWY = h
i=1 jEA
ORI 0,
p) =@yt >0 compl.to %) >0, jeA
o) = \0el) 4 pUTHHL >0 compl.to pY) >0, je A

v =vel, pl) =vel) h:time step, A: activeconstraints.
Stewart and Trinkle, 1996 (LCRJA and Potra,1997 (solvable LCP).

We use the same notation for impulses that replace folllesnknowns
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