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(Nonsmooth multi-rigid-body dynamics]

Nonsmooth rigid multibody dynamics (NRMD) methods attenopt t
predict the position and velocity evolution of a group ofidigarticles
subject to certain constraints and forces.

e Non-interpenetration, contact

e collision (mentioned, but not emphasized).
e joint constraints

e adhesion

e Dry friction — Coulomb model

e global forces: electrostatigyravitational

B These we cover in our approach.




Applications that use NRMD]

e Civil and Environmental Engineerirl@ock dynamics, Masonry
stability analysis. Concrete response to earthquake goldsan,
Avalanches.

e Materials Processinfjumbling mill design (mineral ore). Drug
manufacturing design. Granular materials (TRISO nucleal f
manufacturing).

e Physically-Based SimulatioGaming. Interactive virtual reality.
Robot simulation and design.




Definition (L),

Two vectors are complementary if they are complementary

componentwise.

(Complementarity |

albsa,b>0,ab=0

The linear complementarity problem (LCP).
s=Mz+q,s>0,>0,s"2x=0.

Most familiar example: optimality conditions for quadratic

programming, M.
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Normal velocity: v

Normal impulse: cp

(Contact Model]

e Contact configuration described by the (generalized) ncsta

functiond = ®(q), which is defined for some values of the
Interpenetration. Feasible sét{q) > 0.

e Contact forces are compressivg,> 0.

e Contact forces act only when the contact constraint is éxact
satisfied, or

®(g) is complementaryo ¢,, or ®(q)c, =0, or®(q) L ¢,.




(Can © be differentiable everywhere?)

y

e Signed distancei »(q) = |y| — R — & is not differentiable
everywhere!

e Itis, however, differentiable over the sét,(¢q) > —e for any
e < R+ % We are OK if the infeasibility is not too large

e Our analysis works by assuming that the gap function (signed
distance function) is differentiable in a neighborhoodiaf feasible
set. This is true for smooth convex bodidgf & al, 1996).




(Coulomb Friction Model

e Tangent space generators(q) = [c/l\l(q),c/l\g(q)_ , tangent force
multipliers: 3 € R?, tangent forceD(q) (. _

e Conic constraints||3|| < uc,, whereu is the friction coefficient.

e Max Dissipation Constrainisi = argmiquC va)(q)B.

Polyhedral approximation:
{D@)8 | 18I| < pea} ~ {D(a)

whereD(q) = [d1(q), d2(q), - . . , dm(q)].




Strong Form |

1=1...m

compl.to ¥ >0, j=1...p

3 = argmin;,v" D(q)"’3Y  subjectto HB(” ‘1 <P s=1...p

M (q) : the PD mass matri¥(t, ¢, v) : external forceP'® (q) : joint constraints.

It is known that these problems do not have a classical sol@ven in 2
dimensions, where the discretized cone coincides withdtad tone:Painleve’s
paradox — no strong solutions

B unknowns




(A Painleve paradox examplg

=M =2 (Baraff)
16

9:722 w=0

16(cos@ -p cosB s ) = -2

u=0.75

-

cos(6)

sin(6)

Constraint np > 0 (defined everywhere).

ip = —g + fn (5 + g7 (cos*(0) — psin(6) cos(0)))
ipy, = —g — 1

— 1L
pP=T—3

Painleve Paradox: No classical solutions!
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[Time-stepping, the linear complementarity problem (LCP)

Euler method, half-explicit in velocities, linearizatiéor constraints.
Maximum dissipation principle enforced through optimattnditions.

m

M —p®) - Z (el Z (n<j)cg)+ DWBWY = h
i=1 jEA
ORI 0,
p) =@yt >0 compl.to %) >0, jeA
o) = \0el) 4 pUTHIHL >0 compl.to pY) >0, je A

v =vel, pl) =vel) h:time step, A: activeconstraints.
Stewart and Trinkle, 1996 (LCRJA and Potra,1997 (solvable LCP).

We use the same notation for impulses that replace follesnknowns




(Is the LCP solvable? )

i D) | I Mo — hk |

Yes, with Lemke, ifM is positive definite, MA & FP, 1997n addition collision
with compression-decompression can be modeled by W@tR the same matrix
and are also solvahle




(Energy Properties (Stability))

Assumptions
e The Mass matrix\/ is constant.
e The collisions do not increase the kinetic energy.
e The number of collisions is finite.

e The external force is inertial + at most linear growth:
k(t7 v, q) — fC(Q7 U) T kl (tv v, Q), Wherevac(Q7 U) — O!
k1 (2, q,0)]] < AL+ lgl] + [|v]]).

Thenv®-" is uniformly bounded.




[Significance and comparison with other method}?

The most popular competitors are “spring and dashpot” egqation
approaches, a.k.a compliance approaches. One integratestyxp
the regularization with time step in region of stability.

Compliance approaches are easier to implement, but thelyecan
slow, and the regularization parameter tuning may be vdfiguit.

That (and the finite termination) explains the popularitytef LCP
approach in gaming applications, where the variety of udees not
mesh well with the extra parameters in regularization apghes.

There is one industrial implementation (KARMA, the Epic Game
Unreal Engine subcomponent) and one open source (ql2.0th), b
seemingly with large number of users.




(Related Researcl

e Time stepping methods of this type originate with the work of
Moreay early 70’s, though most (all?) of those developments are
NLCPs, not guaranteed to be solvable, expressed in langifage
projections. The key here: work with optimality conditions (S & T
96).

Other LCP approaches use accelerations as primary vasiable
(Glocker and Pfeiffer, (1992), Baraff(1993), Pang and Rlan

(1996)) They need the existence of a strong solution, and an extra
derivative of the data, but work well in many applications.

Piecewise differential algebraic equation approache{JAaug et
al., 1988)create difficult nonlinear systems and can get stuck at
points of inconsistency.

e Differential variational inequalities (DAVINCI).




(About convergence of the scheme

e [or this class of time stepping methodstewart (1998proved
convergence to a Measure Differential Inclusion MDlhas-» 0, and
satisfaction of the Coulomb Friction law for one contactseveral
contacts at points of continuity of the velocity.

Note that one has to accommodatescontinuous velocitgdue to

Painleve paradoxes and collisions, though the strong famamms

dv
dt *

e \We use a similar technique for proving convergence of ouveon
relaxation method.




(Can the LCP approach be extended for|

Stiff systems ?

Constraint stabilization?

Fixed time step ?

Efficient computation of the subproblems?

while preserving the linearity, the solvability and the staplit

The “numerical analysis” of LCP time-stepping schemes rsedoy
exploiting the the stability of the solution of LCP with resy to

perturbations, as an extension to DAE approaches. We Oedbie
results.




| Acommodating stiffness

Define
M [M (q(”)) — h*V k (q(”), v(”)) — hV,k (q(”), v<”))} :

7 2 (qm), v<">) _ V. k (qm), v<n>) (™)

and replacé/w\ — M, in the LCP matrix and: — k in the right hand side
(linear implicit approach)Then

e If the external force is linear spring and damper, resulgraplem is
solvable LCP and the scheme is unconditionally staldl&é.& FP,

2002,
e Can extend to nonlinear spring and damper with small modiifica.




(Constraint stabilization: Linearization method

Projection methods are expensive. Our solution: enforoengérical
constraints by linearization.

V(¢ T > 0 = &) (¢D) 4 yh VB (¢ T > 0.

V@(q(l))TU(H_l) — ) — @(j)<q(l)) 4+ ’)/hZV(a<q(l)>T’U(l+1) —0.

Here~ € (0, 1]. v = 1 corresponds to exact linearization.




(Modified time-stepping scheme

m

M@t — M) — Z p (@) Z (el DWR@Y = n
i=1 jEA

T O )
(i)" ) 0+1 —
v Y n
q;(j)(Q)
h Y,
o) = \Del) 4 pUTHHL >0 compl.to AY) >0, je A

v

p) = p@7 Il > compl.to ¥ >0, jeA

Result If we start feasible the geometrical constraint infedsybi
max; ; {|©@|, @)~} is bounded above b§(h?), as opposed t®(h)
(MA, Andrew Miller and G.D.Hart, 2003)MA and G.D. Hart, 2004).




Elliptic body simulation |

Ellipse Simulation

2

0 1 1 1
-8 -6 -4 -2 0 2 4 6 8

We present ten frames of the simulation of an elliptic bocyt th dropped
on the table. There is an initial angular velocity3pfthe body has axes 4
and 8 and is dropped from a height&f




[Infeasibility behavior unstabilized versus stabilized mdaod]

Constraint infeasibility unstabilized
0.35 T T T T T

0.3
0.251-

o 02r

©

e 0151

0.1f

0.05

0

s s 10 12 1
Time
Constraint infeasibility stabilized

10
Time

We see that drift becomes catastrophic for the unstabimzeithod,
whereas remains in a narrow range for the stabilized method.
Constraint stabilization is accomplished!




(Constraint Stabilization )

e Despite the fact that we have the te%mhe scheme is still stable (for
h fixed but arbitrary).

e For solvability, we need a stronger conditiqgnointed friction cone
assumptionthough weaker than linear independence of constraintg.

e Note that in the case of DAE, even the postprocessing method
(Ascher, 1998pheeds one additional linear system (with same
matrix).

e The method was implemented@rasplt! a dynamical grasp
simulation tool by Andrew Miller at Columbia.

e The scheme can be modified to include partial elasticity @edns to
work fine, though we did not prove the same stability resiita (
(2003).




 Defining the active set

Moreau No backtracking and
A={je{12,. .. .pHeW(g) <0}

Original LCP methodSameA with backtracking.

The stabilized method\No backtracking and

A= {j e {1,2,...,p} @YW (q) < e}

Key. Because velocity is uniformly bounded, the effective\actet
In the second case, is asymptotically the same with the oioedye
due to

Aoy + @ > 0.

Our method can progress with fixed time stenich is highly
desirable for dense groups of bodies.




Solving the LCP, h=0.05, PATH (Lemke)
Problem | Bodies | Initial Contacts| u | Average CPU time (s)
1 10 21 | 0.2 0.04
2 10 21 | 0.8 0.03
3 21 52 | 0.2 0.28
4 21 52 | 0.8 0.20
5 36 93 | 0.2 0.81
6 36 93 | 0.8 0.82
7 55 146 | 0.2 2.10
8 55 146 | 0.8 2.07
9 210 574 | 0.0 0.80
10 210 574 | 0.2 174.29
11 210 574 | 0.8 MAXIT
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Solving the LCP)

Questionis it possible to obtain an algorithm that has modest comept
complexity and approach large scale problems?

e Lemke’s methodhfter reduction to proper LCP works, but for larger
scale problems alternatives to it are desirald&TH Works well for
tens of bodies, most of the time, and very well for up to 20
bodies—OK for gaming

Interior Point method®vork for the frictionless problemgince
matrices are PSDbut their applicability to the problem with friction
depends on the convexity of the solution set.

Is the solution set of the complementarity problem convesdi-
practical experience, this is the key property that separdtard”
problems from “easy” problems.




(Nonconvex solution sef

Force Balance

2?21 @ — hmg — 0.

ue) >0 L A >0, j=1,2,...
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(Nonconvex solution sef

The following solutions
1. P = =) = %, oD = =9 =,
AL = 2\B) = \6B) = A2 = \@) = \(6) =1
(1) _ 3 _ (5 _n (2 _ (4 _ (6) __ hm
2.cn’ =cn =cn =0,cn = =cp = 57,

AL = \G) = \6B) =1 N2 = \&) = \(6) —,

The average of these solutions satisfigs = g A0 = 1 for
j=1,2,...,6,which violate

ued) >0 L AV >0, j=1,2,...,6,

The average of these solutiotisat both inducer = 0, violates,
¥ >0 1L A® >0

For anyu > 0 the LCP matrix is naP* matrix, polynomiality unlikely.




(The convex relaxation

_ 4 .

L
5 | >0,
L - L - - 5\ - L -
The LCP is actually equivalent to a QP—-but is the method awyggé
fixed point iteration approach based on the above was proveaiiverge
for small . and pointed friction cone A and G.D.Hart, (20040)




 Defining the friction cone (no joints)]

The total friction cone:

FC(q) = {ijl,z ..... D) 4 gD 4 g

AN 2 : Ny
J(89)" + (89)" < w0

) ZOJ_CI)U)(Q):O,j:1,2,...7p}.

We have

FC(q) = > FCY)(q).

7=1,2,....,p, () (q)=0
Pointed friction coneif 0 € F'C(q) can be realized only by

=31 = P2 = 0.
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(Continuous formulation in terms of friction cone |

M% fC(Q7v)+k(Q7v)+p

dq
dt

P ?:1 pU(t).
P () FCU) (g(t))
o) (q) 0,
[pD || @) (q) 0, j=12,...,p.
However, we cannot expect even that the velocity is contisudso we
must consider a weaker form of differential relationship

V.




(Measure Differential Inclusions)

We must now assign a meaning to

M% _fc(Q7v) _k(t7Q7U) S FC( )

Definition If v is a measure anl () is a convex-set valued mapping, we
say that satisfies the differential inclusions

dv
— e K(t

If, for all continuousp > 0 with compact support, not identically O, we
have that




(Weaker formulation for NRMD |
Findg(-), v(-) such that

1. v(0) is a function of bounded variation (but may be discontingious

2. q(-) is a continuous, locally Lipschitz function that satisfies

. The measuréuv(t), which exists due te being a bounded variation
function, must satisfy, (wherg.(q, v) is the Coriolis and Centripetal
Force)

— fe(q,v) € FC(q(t))

L0 (g) >0,Vj=1,2,...




(Regularity Conditions: Friction cone assumptions

Definee cone

‘FC(g)= Y.  FcYg).
) (q)<e

Pointed friction cone assumptiod:K., K, andt(q,¢) €€ }/75((;) and
v(q,€) €° F/’E'*(q), such thatyq € R", andve € [0, €], we have that

o 1(q,6)Tw > K, ||t(g, €)|| |[w]|, Yw € FC(q).

o n(j)T’U(q, €) > ,u\/tgj) v(q, €) +t§j) v(q,€) + K7 |[v(g, )l
17=12,...,p.




[The new convergence result with convex subproblen)s

H1 The functions:9)(q), tgj)(q), téﬁ(q) are smooth and globally
Lipschitz, and they are bounded in the 2-norm.

H2 The mass matrid/ is positive definite.

H3 The external force increases at most linearly with thecsigl and
position.

H4 The uniform pointed friction cone assumption holds.
Thenthere exists a subsequence— 0 where

o ¢"(-) — q(-) uniformly.

e v (.) — v(-) pointwise a.e.

o dv"(-) — dv(-) weak * as Borel measures. in [0,T], and every suc
subsequence converges to a soluti@n), v(-)) of MDI. Hereg"
andv™* is produced by the relaxed algorithm




The convergence result

Mimics the similar result for the original schentetéwart,(1999)
Including decrease of energy ...

... but says nothing of the Coulomb Law.

In a regime with small tangential velocity it can be show tinat
difference of the two schemes is small.

In some sense, it is the natural integration procedure basdae
microscopic modeling of friction with a large time step.




Comparison between methods 3r x10° LCP algorithm versus optimization-based algorithm
*ﬂ,% 25} 18-
ﬁﬁ* . 16
il %ﬁ* 15F 12
150 ‘*ﬁ 1t % “T
n”ﬁ 0.5F s
*,:‘ o ] 4+
1 t;* 05 R e o
% 05 1 1;5 2 25 K -1 . ~ Yy = s . o 25 05 1 tﬁ"nse 2 25 3
Dropped particle Painleve example Sliding particle
_ 0.1 _ 0.1 _
K | hgllyQrp —VvLCP||, K | hgllyQrp —vLCP||,
0 5.6314784e-002 0 1.5736018e+000
1 1.7416198e-002 1 7.2176724e-001
No convergence, but
2 6.7389905e-003 2 1.4580267e-001
3 | 2.1011170e-003 3 | 9.2969637e-002 small absolute error.
4 7.6112319e-004 4 5.5543025e-003
5 2.6647317e-004 5 4.3982975e-003
6 9.2498029e-005 6 3.7537593e-003
7 3.2649217e-005 7 3.7007014e-004

36



(Granular matter

Sand, Powders, Rocks, Pills are examples of granular matter

The range of phenomena exhibited by granular matter is mdmes.
Size-based segregation, jamming in grain hoppers, buflalsdike
behavior.

There is still no accepted continuum model of granular matte

Direct simulation methods (discrete element method) altest
most general analysis tool, but they are also computatiooastly.

The favored approach: the penalty method which works with
time-steps of microseconds for moderate size configuration




(Brazil nut effect simulation |

i ' { ‘. 1 Y

v N N
i}Iil‘ 155 ‘r577~.|'
y / [ ¢ E j

Time step of 100ms, for 50s. 270 bodies.
Convex Relaxation MethodOne QP/step No collision backtrack
Friction is0.5, restitution coefficient i9.5.

Large ball emerges after about 40 shakes. Results in the zaliae
of magnitude as MD simulations (but with 4 orders of magnitude
larger time step).




Brazil nut effect simulations performance|

Time spent solving QPs
T T T

20 25 30
time

Number of active contacts
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A fuel microsphere.
Triple coated with
UO2 center.

There are about
400000 pebbles in the
reactor at one time




(The pebble bed nuclear reactot

One of the great hopes of achieving low maintenance pagsaé
reactors.

The fuel consists of tennis-ball-size pebbles filled Wit@s,

The fuel is in continuous motion and the fuel pebbles areseith
recycled or replaced.

Cooled with helium through the inter-pebble voids.
Prototype to be completed by 2015 by INL.

Initial simulation of loading withBogdan Gavrea, UMBC




In progress|
e Trapezoidal scheme, though fixed time-stepping propelitsis

e Nonsmooth bodies witHixed time step.

e Using projected gradient type approaches to accelerasothgon of
the quadratic program.
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(Conclusions and remarks

e \We have described recent progress in the use of hard caridinae
stepping schemes for multi-rigid body dynamics with cohgax
friction (NRMD).

e We have shown that we find solutions to measure differential
Inclusions by solving quadratic programs, as opposed to \w(th
possible nonconvex solution set.

e There remain quite a few challenges, but the large number of
applications that can be impacted are worth the investigati these
areas.




