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Estimating the solution of parametric equations

B Consider the parametric nonlinear equation

F(r,w)=0, x€R" weQCR™,
F:R"x R — R" a smooth function.

B Question: Can | compute (or at least, efficiently approximate) the solution
mapping Z(w) ?
B This is the essential step in uncertainty quantification, in cases where the

parameters (such as diffusion coefficients, cross-sections, etc) are known
only with some error or have a statistical distribution.

B Monte Carlo answer: Yes, if | sample enough. Use parameter PDF and
{wi}a 1= 17 27 . '7M = {i(w)z — F_l(oowi)}
Followed by “histogram” or other post processing.

B At each step | must solve the original problem for one parameter. It is a

nightmare if one has many parameters and/or each subproblem solve is
expensive




The stochastic finite element (SFEM) setup

The mapping Z(w) is approximated by a Fourier
type expansion with respect to a basis of poly-
nomials, orthogonal with respect to the proba-
bility density function (PDF) of w Py(w), P1(w), ... Pr(w)
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By |Pi(w) Pj(w)] =6;5, 0<d,j<K
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. T his stochastic interpretation is the origin of
the name polynomial chaos




The stochastic finite element (SFEM) answer ... that has
nothing stochastic in it

Take zg,x1 ...z € R". We define the spectral

K
approximation z(w; xg, x1,...zx) = Y. z;P;(w).
i=0

SFEM defines the coefficients from Galerkin
projection condition:

Fy (F (#(w; 2,27, ... 2% ),w) P(w)) =0p, k=0,1,...,K

B This results in a system of nonlinear equations, which is K+1 times larger
than the original system of equations.

B Once the system is solved, the distribution X(@)can be sampled with
Monte Carlo without solving any additional systems of nonlinear
equations. So sampling is decoupled from the most computationally
expensive part, which is deterministic.

B As shown in my previous talk, the computational savings can be
tremendous over regular Monte Carlo, if instance problem solves are
expensive.




SFEM issues

B Convergence of the method or well posedness of the resulting nonlinear
equations is virtually NEVER analyzed in Spanos, Ghanem, and co-
authors, unless the SFEM equation itself is linear.

B [n the case of optimization problems, it is inconvenient to start with an
optimization problem and end with a system of nonlinear equations, since
a lot of solver capability is lost (not to mention stability).

B We attempt to resolve these issues in this work.

B [n addition, the number of polynomials of a given degree increase
exponentially with the dimension of the parameter space, so how to
chose them wisely is an important issue not addresed here; nonetheless
it is a problem that plagues all SFEM approaches, so we will concentrate
on the first two issues.




The scalar product

Define

(9. h)w = [ W()g(@) " h(w)do.
where g, h are continuous functions from1I R ™
to I RP. Here 2 €¢I R™ is an open set and
w(w) is a weight function.
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Eulg(w)] =< g(w) >= (g, 1)

though the latter is not a scalar product and
may even be multidimenional.




The weight function
1. The weight function W(w) :IR™ -1 R is

nonnegative, that is, W(w) > 0, Vw € .

2. Any multivariable polynomial function P(w)
IS integrable, that is,

/Q W ()| P(w)|dw < o0

With this definition,, we can define the semi
norm

on the space of continuous functions. If, in
addition, ||gllyy = 0 = g = 0, then |||
norm.
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Orthogonal polynomials

We can ortho normalize the set of polynomials
in the variable wand we obtain the orthogonal
polynomials P;(w) that satisfy

° <PZ-,P]-> = 0;5, 0 < 4,7. By convention, we
always take Fp to be the constant polyno-

mial.

e Theset {F;},—p 1 . forms the basis of the
complete space L%, .

o If k1 < kg, then deg (Py, ) < (Ps,).




Function spaces

We define

LZ%,W:;%V®L%VV®...L§V

p

We can now define the Fourier coefficients as

ca(f) =(f,P)€EIRP, fetd, k=0,1,...

The projection operator: f € L%/ on to the
space of the polynomials of degree at most K

Ny (f) = > i, (f) Pr(w)

k., deg(Py)<K




Bounds on the projection

1
< C— (1)
A Keq

When the function f is analytical q is unbounded
and we obtain exponential convergence

feHy = ||f =N

In addition, a reciprocal also holds, that is,
there exists a parameter ¢t such that, that de-
pends only on W(x) such that

S ller(PIldeg(P)t < 00 = fe CH(Q) (2)
keN




Example

For the case m =1, Q2 =[-1,1], and W(w) =
%, the ortho normal family are the normalized
Legendre polynomial functions

1 [2k+1 1 dk<2_1>k, 5

P =
E= o\ 2 2kkldok \*




SFEM for unconstrained optimization
(UO) min f(z,w)
reR™

B We have two formulations: One is optimize and project (the nonlinear
equation SFEM approach) and the other one is project and optimize (our

approach).
E, (Vf (Z(w; xg,27,.. . 2] ),w) P(a)) =0n, k=0,1,....K

(SUO(K))  mMinggay,..ox 5 (F) = Euw [f(&,w)]

B Result: If fis smooth, the optimality conditions of (SUO(K)) are the same
as the nonlinear equations of the optimize and project approach. THE
SAME APPLIES FOR THE CONSTRAINED OPTIMIZATION

APPROACH!!




SFEM formulation of eigenvalue problem (for one
parameter)

min Ew[(ixﬂ(w)f(Q+wDQ)(ixiPi(w)j]

i=0

s.t. Ec{(i:xiR(w)jT(gxiR(w)ij(a))lzEw[Pk(a))] k=12,...,K

B Note that this problem can be exactly represented, even when multiple parameters are
involved, modulo a series of quadratures




Numerical Example for n=2

Q_z 1_D_ 1 04
11 20”79 |04 02

B Use Legendre polynomials with K=4.

B Note that the variations allowed are not small

variations ! (though the matrix will stay
positive definite).

B The error in the angle of the eigenvector is
less than 1%.

B The eigenvalue distribution is excellent fit.
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Example for n=2, eigenvector convergence

First Component of Eigenvector Second Component of Eigenvector
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Numerical Example for n=1000

Eigenvalue behavior of n=1000 problem

B Mimics the minimum eigenvalue 005
problem for a one-dimensional of
diffusion equation, with uncertainty in w05

absorption, akin to neutronics problems .|
(where uncertainty in parameters also
enters the matrix linearly)

B For K=4 The SCO formulation was
solved in 7 seconds by KNITRO (one
eig operation on same computer takes
13 seconds!)
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Numerical Example, eigenvector behavior
W At first sight, approximation is awful

(I eft pan e I) Cosine of the angle between SFEM and Simulated Eigenvector Error of SFEM and Simulation + Interpolation
.0

_ 1’\(’ ‘ j(\ 0.07 i:i;n;hl:tiomlnterpolation
B Residual, H(Q+a)DQ))~((a))—ﬁ.(a)))~((a))H |

different story, typical error is 1%!
B The problem is the occasional "l 1 e

degeneracy of the eigenvalue
problem.

® If we sample eigenvector at 5 (well- 003
chosen ©) points, and interpolate |
linearly, we get an error that is :
typically larger by a factor of 3-4. |

B If the distribution is peaked at the
center of the interval, the situation is 108
worse than for uniform distribution.
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B This shows that black-box
approaches, even enhanced with
AD, may be unadvisable for
guantifying eigenvector
uncertainty!




What's next?

B Proof of well-posedness and consistency in the limit; finished
(practically © )

B Coupled thermo-hydraulics model for one parameter (crossection)
B One group, multiple parameters.
B Multiple groups.

B Note that even if we consider only linear terms, we produce a
superior result (since the linear approximation is better in a larger
range). So we could produce better “sensitivites”

B Also note that in the large example sensitivities may have been
pointless at the center of the interval!




Possible Grand Vision

Do a principal value component analysis to get the important parameters.
Compute the orthogonal polynomials with respect to the density function

Create the SFEM approximation adaptively WITHIN THE LIMIT OF
COMPUTATIONAL RESOURCES

Adaptation is done by projecting the residual on the remaining
coefficients.

Use importance sampling Monte Carlo to validate the approach and
capture the remaining randomness.




Possible approach.




Is (SUO(K)) bounded below? Assumptions

Al Uniformly bounded level sets assumption:
There exist a function x(-) that is convex,
nondecreasing, and that has bounded level
sets, and a parameter v > 0 such that

x(z]|") < flz,w), ,Vwe2 (1)

A2 Smoothness assumption: The function f(z,w)
IS twice continuously differentiable in both
arguments.

Result The objective function of the problem
(SUO(K)) has bounded level sets.




Convergence result
Let (xg,x{(,xg,...,xi{_l) be a solution of the
problem SUO(K). We define zi* = 0y, for k >
K. In addition, we defined

k
(W) =3 a2l Lp(w)
i=0

Furthermore, assume

© 5
> ok ||k < M,

Then there exists a function x*(w) continu-
ously differentiable such that, for a subsequence

5) [0 wr,

of the sequence we have zx( ™ (w)

LI I ) ) V Vo ) v l\{.&/

in L2, and any such function z*(w) satisfies
the first order conditions if of the optimization

problem (SUQO).
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