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Estimating the solution of parametric equations

� Consider the parametric nonlinear equation

� Question: Can I compute (or at least, efficiently approximate) the solution 
mapping           ?

� This is the essential step in uncertainty quantification, in cases where the 
parameters (such as diffusion coefficients, cross-sections, etc) are known 
only with some error or have a statistical distribution.

� Monte Carlo answer: Yes, if I sample enough. Use parameter PDF and

Followed by “histogram” or other post processing. 

� At each step I must solve the original problem for one parameter. It is a 
nightmare if one has many parameters and/or each subproblem solve is 
expensive 



The stochastic finite element (SFEM) setup 



The stochastic finite element (SFEM) answer … that has 
nothing stochastic in it

� This results in a system of nonlinear equations, which is K+1 times larger 
than the original system of equations. 

� Once the system is solved, the distribution           can be sampled with 
Monte Carlo without solving any additional systems of nonlinear 
equations.  So sampling is decoupled from the most computationally 
expensive part, which is deterministic. 

� As shown in my previous talk, the computational savings can be 
tremendous over regular Monte Carlo, if instance problem solves are 
expensive.            
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SFEM issues

� Convergence of the method or well posedness of the resulting nonlinear 
equations is virtually NEVER analyzed in Spanos, Ghanem, and co-
authors, unless the SFEM equation itself is linear. 

� In the case of optimization problems, it is inconvenient to start with an 
optimization problem and end with a system of nonlinear equations, since 
a lot of solver capability is lost (not to mention stability). 

� We attempt to resolve these issues in this work.  
� In addition, the number of polynomials of a given degree increase 

exponentially with the dimension of the parameter space, so how to 
chose them wisely is an important issue not addresed here; nonetheless 
it is a problem that plagues all SFEM approaches, so we will concentrate 
on the first two issues. 



The scalar product  



The weight function



Orthogonal polynomials



Function spaces 



Bounds on the projection



Example 



SFEM for unconstrained optimization

� We have two formulations: One is optimize and project (the nonlinear 
equation SFEM approach) and the other one is project and optimize (our 
approach).

� Result: If f is smooth, the optimality conditions of (SUO(K)) are the same 
as the nonlinear equations of the optimize and project approach. THE 
SAME APPLIES FOR THE CONSTRAINED OPTIMIZATION 
APPROACH!!



SFEM formulation of eigenvalue problem (for one 
parameter)
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� Note that this problem  can be exactly represented, even when multiple parameters are 
involved, modulo a series of quadratures
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Numerical Example for n=2
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� Use Legendre polynomials with K=4.
� Note that the variations allowed are not small 

variations ! (though the matrix will stay 
positive definite).

� The error in the angle of the eigenvector is 
less than 1%. 

� The eigenvalue distribution is excellent fit. 



Example for n=2, eigenvector convergence



Numerical Example for n=1000

� Mimics the minimum eigenvalue
problem for a one-dimensional 
diffusion equation, with uncertainty in 
absorption, akin to neutronics problems 
(where uncertainty in parameters also 
enters the matrix linearly)

� For K=4 The SCO formulation was 
solved in 7 seconds by KNITRO (one 
eig operation on same computer takes 
13 seconds!)
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Numerical Example, eigenvector behavior
� At first sight, approximation is awful 

(left panel)
� Residual,                                 

different story, typical error is 1%!
� The problem is the occasional 

degeneracy of the eigenvalue
problem.  

� If we sample eigenvector at 5 (well-
chosen ☺) points, and interpolate 
linearly, we get  an error that is 
typically larger by a factor of 3-4.

� If the distribution is peaked at the 
center of the interval, the situation is 
worse than for uniform distribution.

� This shows that black-box 
approaches, even enhanced with 
AD, may be unadvisable for 
quantifying eigenvector 
uncertainty!
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What’s next?

� Proof of well-posedness and consistency in the limit; finished 
(practically ☺ )

� Coupled thermo-hydraulics model for one parameter (crossection)
� One group, multiple parameters.
� Multiple groups.
� Note that even if we consider only linear terms, we produce a 

superior result (since the linear approximation is better in a larger 
range). So we could produce better “sensitivites”

� Also note that in the large example sensitivities may have been 
pointless at the center of the interval!



Possible Grand Vision

� Do a principal value component analysis to get the important parameters. 
� Compute the orthogonal polynomials with respect to the density function
� Create the SFEM approximation adaptively WITHIN THE LIMIT OF 

COMPUTATIONAL RESOURCES
� Adaptation is done by projecting the residual on the remaining 

coefficients. 
� Use importance sampling Monte Carlo to validate the approach and

capture the remaining randomness.



Possible approach. 



Is (SUO(K)) bounded below? Assumptions



Convergence result
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