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Model requirements and notation

Nonsmooth rigid multibody dynamics (NRMD) methods attempt to
predict the position and velocity evolution of a group of rigid particles
subject to certain constraints and forces.

e non-interpenetration.

e collision.

e joint constraints

e adhesion

e Dry friction — Coulomb model.

e global forces: electrostatic, gravitational.

B These we cover in our approach.




Areas that use NRMD

e granular and rock dynamics.
e masonry stability analysis.

e simulation of concrete obstacle response to explosion.
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e interactive virtual reality.

e robot simulation and design.
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The pebble bed nuclear reactor (PBR)

B |In PBR, the fuel pebbles are moving as a slow granular flow. PBR is the leading
NGNP candidate for an INL prototype (Pop mech, Oct, 2006)

Sketch of a pebble bed reactor with 360,000 fuel pebbles
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A fuel pebble (60
mm diameter, with a
graphite outer shell)
contains 11,000 fuel
microspheres.
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A fuel microsphere (0.9 mm diameter).

silicon carbide

porous buffer
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Model Requirement and Notation

e MBD system : generalized positions ¢ and velocities v. Dynamic
parameters: mass M (q) (positive definite), external force k(, ¢, v).

e Non interpenetration constraints: CID(j)(q) >0, 1 <j < ngotar and
compressive contact forces at a contact.

e Joint (bilateral) constraints: © (%) (q) =0, 1<i<m.

e Frictional Constraints: Coulomb friction, for friction coefficients
(7)
TSRS

e Dynamical Constraints: Newton laws, conservation of impulse at

collision.




Normal velocity: v

Normal impulse: ¢

(Contact Model)

e Contact configuration described by the (generalized) distance

function d = ®(g), which is defined for some values of the
interpenetration. Feasible set: ®(¢) > 0.

e Contact forces are compressive, ¢, > 0.

e Contact forces act only when the contact constraint 1s exactly
satisfied, or

®(g) is complementary to ¢,, or ®(q)c, =0, or P(q) L c,.




Friction Model

e Tangent space generators: B(q) = [c/l\l(q), c/fg(q)} , tangent force
multipliers: 3 € IR?, tangent force D(q) 3.
e Conic constraints: ||3|| < uc,,, where p is the friction coefficient.

A

e Max Dissipation Constraints: 5 = argmin‘ 13| <psen vT D(q)

e up, the tangential velocity, satisfies [vp| = A = —UTﬁ(q)%. A is

the Lagrange multiplier of the conic constraint.

e Discretized Constraints: The set ﬁ(q) B where ||3|| < pen is
approximated by a polygonal convex subset: D(¢)j3, 5 > 0,
().
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For simplicity, we denote 3 the vector of force multipliers by 3.




Defining the friction cone

For one contact:

FCW(q) = {Cglnu>%_ﬁ§ntg>%_ﬁéﬂtg>

. N 2 o 2 .y
@20 [() + (#) <0}

The total friction cone:

FC(q) = {Zj_l,Q,...,p (J)n(j)_i_ﬁ(ﬂ) (J)+6(J)t(ﬂ)‘

/¢(uq?+(ug < D)

(J)>OJ_(I)(J)( )—O,j:1,2,---,p}-

We have

FC(q) = > FCY(q).

i=1,2,...,p, @) (q)=0




Nonsmooth dynamics

B Contact, dynamics, friction for rigid bodies. Applicable to granular media,
structural analysis, robotics ...

B Differential problem with equilibrium constraints — DPEC.

MEL =S e 00+ SO )+ £, (@) K aY)
j=L2,...p

Q@ o,

dt

Cy” >0 1L oW(q)=0,j=12..,p

AY.AY) = argmin j=12..,p

. . . N2
,U(J)Cr(]J)Z (ﬂl(J)+ﬂ2(J)j

KVthj)jtfj)+[VTt§j))t§j)T(ﬂﬂf”+ﬂzt§j)j-




Painleve Paradox—no strong solutions

=0 =2 (Baraff)
16

b=T2 ) o=0

16(cos 0 - pcos Bsin 0) = -2

u=0.75

cos(0)

sin(f)

Constraint: np > 0 (defined everywhere).

i = —g + fn (5 + gp(cos®(0) — psin(6) cos(9)))

—p L
p=r—3




Measure differential inclusion—first step

MZ = folgv)+k(gv)+p
dg  — ),
p = ?—1 P(j)(t)-
pil(t) e FCY(q(t))
q;(j)(q) > 0,

However, we cannot expect even that the velocity 1s continuous!. So we

0, 3=1,2,...,p.

must consider a weaker form of differential relationship




Measure differential inclusion — second step

We must now assign a meaning to

M~ folg.v) ~ Kt q.0) € FO(q).

Definition If » is a measure and K (-) is a convex-set valued mapping, we
say that v satisfies the differential inclusions

dv
— e K(t
- € K(1)
if, for all continuous ¢ > 0 with compact support, not identically 0, we
have that
J o(t)v(dt)
S K(r)
[ o(t)dt | U




Weak solution for NRMD

Find ¢(-), v(-) such that
1. v(0) is a function of bounded variation (but may be discontinuous).

2. ¢(-) is a continuous, locally Lipschits function that satisfies

3. The measure dv(t), which exists due to v being a bounded variation
function, must satisfy, (where f.(q,v) is the Coriolis and Centripetal

Force)
d(Mwv)
dt

—k(t,v) — fe(q,v) € FC(q(t))

4. ®D(g) >0,Vj =1,2,...,p.




Optimization-based simulation of nonsmooth dynamics.

Define the following time-stepping scheme

argmin. LorMukory

2

T A . T A\ 2 T A2
v — subject to vol) V—,U(J)\/(ti(” V) -I-('[éj) V)

+1q)(j)(q(l)) >0
h

_ jeA@V.e), k=12..,m?
A(@®.)={jlo"(q") <&

(1+1) I+1

=q +hv
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Result

H1 The functions n{9) (g), tgj ) (q), tgj ) (¢) are smooth and globally
Lipschitz, and they are bounded in the 2-norm.

H2 The mass matrix M 1s positive definite.

H3 The external force increases at most linearly with the velocity and
position.

H4 The uniform pointed friction cone assumption holds.
Then there exists a subsequence iy, — 0 where
o ¢"*(.) — ¢(-) uniformly.

o v () — v(-) pointwise a.e.

o dv" () — dv(-) weak * as Borel measures. in [0,T], and every such
subsequence converges to a solution (g(-),v(-)) of MDI. Here ¢"*
and v"* is produced by the relaxed algorithm.




How we got here (I)

Euler method, half-explicit in velocities, linearization for constraints.
Maximum dissipation principle enforced through optimality conditions.

M@ =@y 300 S @ s D)) = i
=1

jEA
7 (4)
(0 fUHl:—f}/@h : 1 =1,2,...,m
. T HU) .
p) =pli) > _y h(Q)’ compl. to ¢¥) >0, je€A

o) = \De@ 1 pOTYHL >0 compl to 59 >0, jc A
(D = D) — oD 30) >0, compl. to AP >0, jeA
Here vV = vOW 7U) = V&) h is the time step. The set A consists

of the active constraints. Stewart and Trinkle, 1996, MA and Potra,1997:
Scheme has a solution although the classical formulation doesn’t!




How we got here (II)—in the limit of faces of cone approx
to infinity
Define O = — Mo — bk We solve the following LCP

M -5 —-a D o |[ot0] [ e®] 0
vt 00 0 0 ¢ T 0
a0 0 0 —/ Cn +1 A | =)
DT 0 0 0 E 3 0 G
00 @ —E" o || x| [0 | |<C]




Why to do the conic constrained problems?

M Since it is much more compact, fewer constraints

B Most users report improvement over polyhedral cones without proof of
convergence for Gauss-Seidell.




Optimality conditions for problems with cone constraints,
Polar cones.




MRBD — Conic formulation.

We now define the cones

A = {x,y,z c R?|z > ,ui\/y2 +z2}, FC' = {x,y,z c R?|ule > \/y2 +z2}.

% € A" and @ € FC® imply that 7w > 0 Why ?

Use notation:

ni HDna ?[,27 rji[,2 HDuaDQM .fl Hl:jl
vt = argmin, 20T Mv + vT £
subject to (%Cbi(q(l)) + Vi U+, DTpU+1), DZU(ZH)) c —FC,
i € AlgW,e)

(1)




Optimality conditions — Conic complementarity problem

vl = argmin, %UTMU + 0T fO
subject to (%Cbi(q(l)) + VO D) DTyl+1) ng(lﬂ)) c —FC,
i€ A(qW,€)
(1)
M) = fO 3 (DL DL RDy)
icA(q®)e)
i€ A(qW,e) (%(I)i(q(l)) + Vi D), DT+D), ng(lﬂ)) (1)

€ —FC" L (7, 7i, i) € FC'.

Why ?




Abstract form—preliminaries.

beR™ = (;27(¢"),0,0,32(¢"),0,0,..., ;24 (¢q"),0,0)
) T ~ T ~ LT ~
reR3mA  — (%(I)“(q“)) + DIt Mk, D M—'k, D M E,
) .T ~ T ~ LT ~
202 (g0) + D2 Mk, Dy M~'k, D2 Mk,
iL ~ T ~ T ~
oty 3Oma (V) + DA M~ e, DA M~ k, D, M—lkz)
T T T R O SR TYev P )
(1)
and the following matrices
D" = [DZJwDZ'uDZ}] 7i§A(q(Z)a€)a (2)
D = [D%,D%,...,Da], N=DTM™'D.




Abstract form

(CCP) (Nv+r) e—-FC° L~ eFCi=12, ... n4

B Note that it includes linear complementarity problems, if the cones are
products of RN+

M [t can also be seen as the optimality conditions of a problem with cone-
constrained variables (problems with bound constraints in the case
above)




Convex cones facts and prelims

Assume that we have a set of closed convex cones T¢ C R™, where the index
takes the values ¢+ = 1,2,...,n,. We consider the Cartesian product of such
cones T = @;*, T, which we assume is a cone in R, that is, that the sum of

N
the dimensions of the element cones satisfies n. = > n;.
i=1

IIo(y) the projection of the vector y € R™ onto the convex cone C.
Polar cone: C° = {x € R™|(x,y) <0, Vy € C}.

Properties of cones (Lemarechal)
P1 [T (y1) — Te (w2)[|* < (T (y1) = Mo (y2) ;31 — 92), Von,y2 € R™
P2 x=Il¢g(y) ©xecC,y—xecC (x,y—x) =0
P3 Iy (z) = (HUyi(x1), My2(22), ..., My (20, )
P4 T — @B, T




Gauss * Algorithm
Theorem Solution of (CCP) iff fixed point of

o S AHT(mr—wBT(NCUT—FT""KT(:UTH_ZUT)))+(1_)\)xr’ 1
r=0,1,2,..., v

where 0 < A <1, w>0.

[ mI,, 0O 0 \ [0 Ko K3 Kin,

( 0 ol \ 0 0 Ko Kon,
B’I“ _ | . 24ng : L’I“ — O O O K3'I’Lk; ’

o - o ] L I

\O 0 T,/ \0 0 0 0o )

(1)
where n; >0, +=1,2,...,ng, I,, € R"*™ K;; ¢ R""" 1 <13 <j < ng,
and we have either that K™ = L", or that K" = L"*.

K™ = 0: Gauss Jacobi, K" = L™, Gauss Seidel




Assumptions about the algorithm

A1l The matrix N of the problem (CCP) is symmetric and positive semi-
definite.

A2 There exists a positive number, o > 0 such that, at any iteration r, r
0,1,2,..., we have that B" > ol

A3 There exists a positive number, 8 > 0 such that, at any iteration r, r

0,1,2,..., we have that (z" 1 —2")7 (()\wBr)_l + K" — %) (2"t —27)

2
Bllarrt —am|",

1V

(so Aw needs to be sufficiently small; but theory works with A and w changed at
every iteration, but bounded away from 0 and this is a computable test, as long
as a and (3 are fixed. Any obvious test would work after a FINITE number of
iterations)




Theory

min f(z) = 12" Nz +r'x

(0C) st. x; €Y, 1 =1,2,...,np.

Theorem Assume that 2 € T and that the sequences of matrices B” and
K" are bounded. Then we have that

f@™h) = f(@") < =B " — a7

for any iteration index r, and any accumulation point of the sequence x" is a
solution of (CCP).

2

Corollary Assume that the friction cone of the configuration is pointed
(that is, there does not exist a choice of reaction forces whose net effect is zero).
If the relevant parameters satisfy assumptions A2 and A3, then the algorithm
produces a bounded sequence, and any accumulation point results in the same
velocity solution




Gauss-Seidell optimized version (in terms of storage)

1. For i = 1,2,...,n4 compute the m x 3 matrices s* = M ~'D* and 3 x 3
matrices ¢g* = D»T's,
3
Trace(g?)"

2. Fort1=1,2,...,n4, compute 7; =
3. If warm starting with some initial guess v*, initialize reactions as v° = ~+*,
otherwise 7 = 0.

4. Initialize speeds: v = Y4 sy 4+ M~ k.

5. For 1 =1,2,...ny4, perform the updates

7 s NN

51.7“ — (,Y'w" L wni.(Di’T’UT T bz)),
,yz,r—l—l — )\HT (57,7“) T (1 . )\),Yz'r ;
A,Yi,'r—l—l — ,}/i,r—i—l o ,Yz"r :

)= + SiTAwiar+l.

hd /

~

C

6. Repeat the loop 5 in reverse order, if symmetric updates are desired.

7. r:=1r+ 1. Repeat from 5 until convergence, or until » > 7,,4.-




Numerical Results: Example 1: Size-based segregation

B 300-1500 bodies
B omega=lambda=1
B Time step=0.01

m 20-80 iterations




Example 1 (Il): Convergence
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Fig. 3 Convergence of A~" for varying
w, for a sample time step in the 300-
sphere benchmark.
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Fig. 5 Maximum speed violation in
constraints, for the 300-sphere bench-
mark.
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Example 1 (lll): Scalability

1400 I | — T I
Potential contact points
7 S -..Active contact points =77 - 5
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Fig. 7 Number of contact constraints, Fig. 8 Average CPU time used to
increasing while pouring spheres in the compute a step of simulation, as a func-
shaker. tion of the number of contacts.
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Example 2: Nuclear reactor “Loading”

B Currently time is in weeks of CPU for 30000 on 64 proc cluster for 10
seconds of simulations, though not quite same configuration

B Our simulations up to 30000 spheres on a laptop—memory limited by
broad phase collision.

B More than 140000 contact points and 420000 unknowns.
M 140 iterations
M [t takes about 2hr of CPU (Windows).
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Conclusion lterative methods for NRMD Simulations

B Time-stepping methods: Different from hard particle, since they do not
necessarily stop at collisions, and do not suffer from the strong time step
limitation of penalty (spring and dashpot) approaches.

B Problems with conic constraints substantially reduce the size of the
problem with the tradeoff of a more mathematically complex constraint.

B Our “Gauss Seidell” works well for up to ~1/2 mil vars and promises to
scale.

B TO do: parallelism. Theory is nonetheless readily available block GJ with
GS blocks is covered by our method.

B TO do: very high accuracy. Preconditioning? Multigrid?
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