Cone complementarity problems for solving large scale multi rigid body dynamics

Mihai Anitescu
LANS Seminar, June 6, 2007
Joint work with A. Tasora, Dept of Mech Eng, Univ of Parma
Model requirements and notation

Nonsmooth rigid multibody dynamics (NRMD) methods attempt to predict the position and velocity evolution of a group of rigid particles subject to certain constraints and forces.

- non-interpenetration.
- collision.
- joint constraints
- adhesion
- Dry friction – Coulomb model.
- global forces: electrostatic, gravitational.

These we cover in our approach.
Areas that use NRMD

- granular and rock dynamics.
- masonry stability analysis.
- simulation of concrete obstacle response to explosion.
- tumbling mill design (mineral processing industry).
- interactive virtual reality.
- robot simulation and design.
The pebble bed nuclear reactor (PBR)

- In PBR, the fuel pebbles are moving as a slow granular flow. PBR is the leading NGNP candidate for an INL prototype (Pop mech, Oct, 2006)

Sketch of a pebble bed reactor with 360,000 fuel pebbles

A fuel pebble (60 mm diameter, with a graphite outer shell) contains 11,000 fuel microspheres.

A fuel microsphere (0.9 mm diameter).

- silicon carbide
- porous buffer
- pyrocarbon
- UO₂ kernel
Model Requirement and Notation

- MBD system: generalized positions q and velocities v. Dynamic parameters: mass $M(q)$ (positive definite), external force $k(t, q, v)$.
- Non interpenetration constraints: $\Phi^{(j)}(q) \geq 0$, $1 \leq j \leq n_{total}$ and compressive contact forces at a contact.
- Joint (bilateral) constraints: $\Theta^{(i)}(q) = 0$, $1 \leq i \leq m$.
- Frictional Constraints: Coulomb friction, for friction coefficients $\mu^{(j)}$.
- Dynamical Constraints: Newton laws, conservation of impulse at collision.
Normal velocity: \(v_n \)
Normal impulse: \(c_n \)

Contact Model

- Contact configuration described by the (generalized) distance function \(d = \Phi(q) \), which is defined for some values of the interpenetration. Feasible set: \(\Phi(q) \geq 0 \).

- Contact forces are compressive, \(c_n \geq 0 \).

- Contact forces act only when the contact constraint is exactly satisfied, or

\[\Phi(q) \text{ is complementary to } c_n \text{ or } \Phi(q)c_n = 0, \text{ or } \Phi(q) \perp c_n. \]
Friction Model

- Tangent space generators: \(\hat{D}(q) = \begin{bmatrix} \hat{d}_1(q), \hat{d}_2(q) \end{bmatrix} \), tangent force multipliers: \(\beta \in \mathbb{R}^2 \), tangent force \(D(q) \beta \).
- Conic constraints: \(||\beta|| \leq \mu c_n \), where \(\mu \) is the friction coefficient.
- Max Dissipation Constraints: \(\beta = \arg\min_{||\tilde{\beta}|| \leq \mu c_n} v^T \hat{D}(q) \tilde{\beta} \).
- \(v_T \), the tangential velocity, satisfies \(|v_T| = \lambda = -v^T \hat{D}(q) \frac{\beta}{||\beta||} \). \(\lambda \) is the Lagrange multiplier of the conic constraint.
- Discretized Constraints: The set \(\hat{D}(q) \beta \) where \(||\beta|| \leq \mu c_n \) is approximated by a polygonal convex subset: \(D(q) \tilde{\beta}, \tilde{\beta} \geq 0, \|\tilde{\beta}\|_1 \leq \mu c_n \). Here \(D(q) = [d_1(q), d_2(q), \ldots, d_m(q)] \).

For simplicity, we denote \(\tilde{\beta} \) the vector of force multipliers by \(\beta \).
Defining the friction cone

For one contact:
\[
FC^{(j)}(q) = \left\{ c_n^{(j)} n^{(j)} + \beta_1^{(j)} t_1^{(j)} + \beta_2^{(j)} t_2^{(j)} \right| \right. \\
\left. c_n^{(j)} \geq 0, \sqrt{\left(\beta_1^{(j)}\right)^2 + \left(\beta_2^{(j)}\right)^2} \leq \mu^{(j)} c_n^{(j)} \right\}.
\]

The total friction cone:
\[
FC(q) = \left\{ \sum_{j=1,2,\ldots,p} c_n^{(j)} n^{(j)} + \beta_1^{(j)} t_1^{(j)} + \beta_2^{(j)} t_2^{(j)} \right| \right. \\
\left. \sqrt{\left(\beta_1^{(j)}\right)^2 + \left(\beta_2^{(j)}\right)^2} \leq \mu^{(j)} c_n^{(j)} \right. \\
\left. c_n^{(j)} \geq 0 \perp \Phi^{(j)}(q) = 0, j = 1, 2, \ldots, p \right\}.
\]

We have
\[
FC(q) = \sum_{j=1,2,\ldots,p, \Phi^{(j)}(q)=0} FC^{(j)}(q).
\]
Nonsmooth dynamics

- Contact, dynamics, friction for rigid bodies. Applicable to granular media, structural analysis, robotics …
- Differential problem with equilibrium constraints – DPEC.

\[
\begin{align*}
M \frac{dv}{dt} &= \sum_{j=1,2,\ldots,p} \left(c^{(j)}_n n^{(j)} + \beta_1^{(j)} t_1^{(j)} + \beta_2^{(j)} t_2^{(j)} \right) + f_c(q,v) + k(t,q,v) \\
\frac{dq}{dt} &= v \\
c^{(j)}_n &\geq 0 \quad \Phi^{(j)}(q) \geq 0, \ j = 1,2,\ldots,p \\
\left(\beta_1^{(j)}, \beta_2^{(j)} \right) &= \arg\min_{\mu^{(j)} c^{(j)}_n \geq \sqrt{\left(\beta_1^{(j)} \right)^2 + \left(\beta_2^{(j)} \right)^2}} j = 1,2,\ldots,p \\
\left[\left(v^T t_1^{(j)} \right) t_1^{(j)} + \left(v^T t_2^{(j)} \right) t_2^{(j)} \right]^T \left(\beta_1 t_1^{(j)} + \beta_2 t_2^{(j)} \right).
\end{align*}
\]
Painleve Paradox—no strong solutions

\[
\begin{align*}
I &= \frac{m}{16} \\
\theta &= \frac{72}{2} \\
\omega &= 0 \\
16(\cos \theta - \mu \cos \theta \sin \theta) &= -2 \\
\mu &= 0.75
\end{align*}
\]

(Baraff)

\[
p = r - \frac{l}{2} \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}
\]

Constraint: \(\hat{n}p \geq 0 \) (defined everywhere).

\[
\hat{n}\ddot{p} = -g + f_N \left(\frac{1}{m} + \frac{l}{2I} (\cos^2(\theta) - \mu \sin(\theta) \cos(\theta)) \right)
\]

\[
\hat{n}\dddot{p}_a = -g - \frac{f_N}{m}
\]

Painleve Paradox: No classical solutions!
Measure differential inclusion—first step

\[M \frac{dv}{dt} = f_C(q, v) + k(q, v) + \rho \]
\[\frac{dq}{dt} = v. \]
\[\rho = \sum_{j=1}^{p} \rho^{(j)}(t). \]
\[\rho^{(j)}(t) \in FC^{(j)}(q(t)) \]
\[\Phi^{(j)}(q) \geq 0, \]
\[\|\rho^{(j)}\| \Phi^{(j)}(q) = 0, \quad j = 1, 2, \ldots, p. \]

However, we cannot expect even that the velocity is continuous!. So we must consider a weaker form of differential relationship
Measure differential inclusion – second step

We must now assign a meaning to

\[M \frac{dv}{dt} - f_c(q,v) - k(t,q,v) \in FC(q). \]

Definition If \(\nu \) is a measure and \(K(\cdot) \) is a convex-set valued mapping, we say that \(\nu \) satisfies the differential inclusions

\[\frac{dv}{dt} \in K(t) \]

if, for all continuous \(\phi \geq 0 \) with compact support, not identically 0, we have that

\[\frac{\int \phi(t)\nu(dt)}{\int \phi(t)dt} \in \bigcup_{\tau:\phi(\tau) \neq 0} K(\tau). \]
Weak solution for NRMD

Find \(q(\cdot), v(\cdot) \) such that

1. \(v(0) \) is a function of bounded variation (but may be discontinuous).
2. \(q(\cdot) \) is a continuous, locally Lipschitz function that satisfies
 \[
 q(t) = q(0) + \int_0^t v(\tau) d\tau
 \]
3. The measure \(dv(t) \), which exists due to \(v \) being a bounded variation function, must satisfy, (where \(f_c(q, v) \) is the Coriolis and Centripetal Force)
 \[
 \frac{d(Mv)}{dt} - k(t, v) - f_c(q, v) \in FC(q(t))
 \]
4. \(\Phi^{(j)}(q) \geq 0, \forall j = 1, 2, \ldots, p. \)
Optimization-based simulation of nonsmooth dynamics.

Define the following time-stepping scheme

\[v^{(l+1)} = \begin{bmatrix}
\argmin_{v} & \frac{1}{2} \hat{v}^T M \hat{v} + k^{(l)^T} \hat{v} \\
\text{subject to} & \nabla \Phi^{(j)^T} \hat{v} - \mu^{(j)} \sqrt{(t_{1}^{(j)^T} \hat{v})^2 + (t_{2}^{(j)^T} \hat{v})^2} \\
& + \frac{1}{h} \Phi^{(j)}(q^{(l)}) \\
& j \in A(q^{(l)}, \varepsilon), \ k = 1, 2, \ldots, m^{(j)} \end{bmatrix} \geq 0 \]

\[A(q^{(l)}, \varepsilon) = \left\{ j \mid \Phi^{(j)}(q^{(l)}) \leq \varepsilon \right\} \]

\[q^{(l+1)} = q^{l} + hv^{l+1} \]
Result

H1 The functions \(n^{(j)}(q) \), \(t_1^{(j)}(q) \), \(t_2^{(j)}(q) \) are smooth and globally Lipschitz, and they are bounded in the 2-norm.

H2 The mass matrix \(M \) is positive definite.

H3 The external force increases at most linearly with the velocity and position.

H4 The uniform pointed friction cone assumption holds.

Then there exists a subsequence \(h_k \to 0 \) where

- \(q^{h_k}(\cdot) \to q(\cdot) \) uniformly.
- \(v^{h_k}(\cdot) \to v(\cdot) \) pointwise a.e.
- \(dv^{h_k}(\cdot) \to dv(\cdot) \) weak * as Borel measures. in \([0,T]\), and every such subsequence converges to a solution \((q(\cdot), v(\cdot))\) of MDI. Here \(q^{h_k} \) and \(v^{h_k} \) is produced by the relaxed algorithm.
How we got here (I)

Euler method, half-explicit in velocities, linearization for constraints. Maximum dissipation principle enforced through optimality conditions.

\[M(v^{l+1} - v^{(l)}) - \sum_{i=1}^{m} \nu^{(i)} c^{(i)} - \sum_{j \in A} (n^{(j)} c^{(j)} + D^{(j)} \beta^{(j)}) = hk \]

\[\nu^{(i)^T} v^{l+1} = -\gamma \frac{\Theta^{(i)}}{h}, \quad i = 1, 2, \ldots, m \]

\[\rho^{(j)} = n^{(j)^T} v^{l+1} \geq -\gamma \frac{\Phi^{(j)}(q)}{h}, \quad \text{compl. to} \quad c^{(j)} \geq 0, \quad j \in A \]

\[\sigma^{(j)} = \lambda^{(j)} e^{(j)} + D^{(j)^T} v^{l+1} \geq 0, \quad \text{compl. to} \quad \beta^{(j)} \geq 0, \quad j \in A \]

\[\zeta^{(j)} = \mu^{(j)} c^{(j)} - e^{(j)^T} \beta^{(j)} \geq 0, \quad \text{compl. to} \quad \lambda^{(j)} \geq 0, \quad j \in A. \]

Here \(\nu^{(i)} = \nabla \Theta^{(i)}, n^{(j)} = \nabla \Phi^{(j)} \). \(h \) is the time step. The set \(A \) consists of the active constraints. Stewart and Trinkle, 1996, MA and Potra, 1997: Scheme has a solution although the classical formulation doesn’t!
How we got here (II)—in the limit of faces of cone approx to infinity

Define $\Theta^{(l)} = -Mv^{(l)} - hk^{(l)}$. We solve the following LCP

\[
\begin{bmatrix}
M & -\tilde{\nu} & -\tilde{n} & -\tilde{D} & 0 \\
\tilde{\nu}^T & 0 & 0 & 0 & 0 \\
\tilde{n}^T & 0 & 0 & 0 & -\tilde{\mu} \\
\tilde{D}^T & 0 & 0 & 0 & \tilde{E} \\
0 & 0 & \tilde{\mu} & -\tilde{E}^T & 0
\end{bmatrix}
\begin{bmatrix}
v^{(l+1)} \\
\tilde{c}_\nu \\
\tilde{c}_n \\
\tilde{\beta} \\
\tilde{\lambda}
\end{bmatrix}
+
\begin{bmatrix}
\Theta^{(l)} \\
\gamma \\
\Delta \\
0 \\
0
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\zeta}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\tilde{c}_n \\
\tilde{\beta} \\
\tilde{\lambda}
\end{bmatrix}
^T
\begin{bmatrix}
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\zeta}
\end{bmatrix}
= 0,
\begin{bmatrix}
\tilde{c}_n \\
\tilde{\beta} \\
\tilde{\lambda}
\end{bmatrix}
\geq 0,
\begin{bmatrix}
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\zeta}
\end{bmatrix}
\geq 0.
\]

The LCP is actually equivalent to a strongly convex QP.
Why to do the conic constrained problems?

- Since it is much more compact, fewer constraints
- Most users report improvement over polyhedral cones without proof of convergence for Gauss-Seidell.
Optimality conditions for problems with cone constraints, Polar cones.
MRBD – Conic formulation.

We now define the cones

\[\Lambda^i = \{ x, y, z \in \mathbb{R}^3 | x \geq \mu^i \sqrt{y^2 + z^2} \} \],

\[\mathcal{FC}^i = \{ x, y, z \in \mathbb{R}^3 | \mu^i x \geq \sqrt{y^2 + z^2} \} . \]

\(\tilde{u} \in \Lambda^i \) and \(\tilde{w} \in \mathcal{FC}^i \) imply that \(\tilde{u}^T \tilde{w} \geq 0 \) Why?

Use notation:

\[n^i \leftrightarrow D_n, \quad d^i_{1,2}, \quad t^i_{1,2} \leftrightarrow D_u, D_v, \quad \tilde{f}^l \leftrightarrow \tilde{k}^l \]

\[v^{l+1} = \arg \min_v \frac{1}{2} v^T M v + v^T \tilde{f}^{(l)} \]

subject to

\[\left(\frac{1}{h} \Phi^i(q^{(l)}) + \nabla \Phi^i_T v^{(l+1)}, D_u^T v^{(l+1)}, D_v^T v^{(l+1)} \right) \in -\mathcal{FC}^{i \circ}, \]

\[i \in A(q^{(l)}, \epsilon) \]

(1)
Optimality conditions – Conic complementarity problem

\[v^{l+1} = \arg \min_v \frac{1}{2} v^T M v + v^T \tilde{f}^{(l)} \]

subject to

\[\left(\frac{1}{h} \Phi^i(q^{(l)}) + \nabla \Phi^i v^{(l+1)}, D_u^T v^{(l+1)}, D_v^T v^{(l+1)} \right) \in - \mathcal{FC}^i, \]

\[i \in A(q^{(l)}, \epsilon) \]

\((1) \)

\[M v^{(l+1)} = \tilde{f}^{(l)} + \sum_{i \in A(q^{(l)}, \epsilon)} \left(\gamma_n^i D_n^i + \gamma_u^i D_u^i + \gamma_v^i D_v^i \right), \]

\[i \in A(q^{(l)}, \epsilon) \]

\[\left(\frac{1}{h} \Phi^i(q^{(l)}) + \nabla \Phi^i v^{(l+1)}, D_u^T v^{(l+1)}, D_v^T v^{(l+1)} \right) \in - \mathcal{FC}^i \]

\[\perp \left(\gamma_n^i, \gamma_u^i, \gamma_v^i \right) \in \mathcal{FC}^i. \]

Why?
Abstract form—preliminaries.

\[b \in \mathbb{R}^{3n_\mathcal{A}} = \begin{pmatrix} \frac{1}{\hbar} \Phi_1^{i_1}(q^{(l)}), 0, 0, \frac{1}{\hbar} \Phi_2^{i_2}(q^{(l)}), 0, 0, \ldots, \frac{1}{\hbar} \Phi_n^{i_n}(q^{(l)}), 0, 0 \end{pmatrix}, \]

\[r \in \mathbb{R}^{3n_\mathcal{A}} = \begin{pmatrix} \frac{1}{\hbar} \Phi_1^{i_1}(q^{(l)}) + D_n^{i_1} M^{-1} \tilde{k}, D_u^{i_1} M^{-1} \tilde{k}, D_v^{i_1} M^{-1} \tilde{k}, \\
\frac{1}{\hbar} \Phi_2^{i_2}(q^{(l)}) + D_n^{i_2} M^{-1} \tilde{k}, D_u^{i_2} M^{-1} \tilde{k}, D_v^{i_2} M^{-1} \tilde{k}, \\
\ldots, \frac{1}{\hbar} \Phi_n^{i_n}(q^{(l)}) + D_n^{i_n} M^{-1} \tilde{k}, D_u^{i_n} M^{-1} \tilde{k}, D_v^{i_n} M^{-1} \tilde{k} \end{pmatrix}, \]

\[\gamma \in \mathbb{R}^{3n_\mathcal{A}} = \begin{pmatrix} \gamma_1^{i_1}, \gamma_1^{i_1}, \gamma_1^{i_1}, \gamma_2^{i_2}, \gamma_2^{i_2}, \gamma_2^{i_2}, \ldots, \gamma_n^{i_n}, \gamma_n^{i_n}, \gamma_n^{i_n} \end{pmatrix}. \]

and the following matrices

\[D^i = \begin{bmatrix} D_n^i, D_u^i, D_v^i \end{bmatrix}, i \in \mathcal{A}(q^{(l)}, \epsilon), \]

\[D = \begin{bmatrix} D_1^i, D_2^i, \ldots, D_{n_\mathcal{A}}^i \end{bmatrix}, \quad N = D^T M^{-1} D. \]
Abstract form

\[(CCP) \quad (N\gamma + r)^i \in -\mathcal{F}C^i \quad \perp \gamma^i \in \mathcal{F}C^i, \quad i = 1, 2, \ldots, n_A. \quad (1)\]

- Note that it includes linear complementarity problems, if the cones are products of \mathbb{R}^+
- It can also be seen as the optimality conditions of a problem with cone-constrained variables (problems with bound constraints in the case above)
Convex cones facts and prelims

Assume that we have a set of closed convex cones $\mathcal{Y}^i \subset \mathbb{R}^{n_i}$, where the index takes the values $i = 1, 2, \ldots, n_k$. We consider the Cartesian product of such cones $\mathcal{Y} = \bigoplus_{i=1}^{n_k} \mathcal{Y}^i$, which we assume is a cone in \mathbb{R}^{n_c}, that is, that the sum of the dimensions of the element cones satisfies $n_c = \sum_{i=1}^{n_k} n_i$.

$\Pi_C(y)$ the projection of the vector $y \in \mathbb{R}^m$ onto the convex cone C.
Polar cone: $C^\circ = \{ x \in \mathbb{R}^m \mid \langle x, y \rangle \leq 0, \forall y \in C \}$.

Properties of cones (Lemarechal)

P1 $\|\Pi_C(y_1) - \Pi_C(y_2)\|^2 \leq \langle \Pi_C(y_1) - \Pi_C(y_2), y_1 - y_2 \rangle$, $\forall y_1, y_2 \in \mathbb{R}^m$

P2 $x = \Pi_C(y) \iff x \in C, y - x \in C^\circ, \langle x, y - x \rangle = 0$

P3 $\Pi_{\mathcal{Y}}(x) = (\Pi_{\mathcal{Y}^1}(x_1), \Pi_{\mathcal{Y}^2}(x_2), \ldots, \Pi_{\mathcal{Y}^n_k}(x_{n_k}))$

P4 $\mathcal{Y}^\circ = \bigoplus_{i=1}^{n_k} \mathcal{Y}_i^\circ$
Gauss * Algorithm

Theorem Solution of (CCP) iff fixed point of

\[
x^{r+1} = \lambda \Pi_{\gamma} \left(x^r - \omega B^r \left(N x^r + r + K^r (x^{r+1} - x^r) \right) \right) + (1 - \lambda) x^r,
\]

where \(0 < \lambda \leq 1, \quad \omega > 0. \)

\[
B^r = \begin{pmatrix} \eta_1 I_{n_1} & 0 & \cdots & 0 \\ 0 & \eta_2 I_{n_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \eta_{n_k} I_{n_{n_k}} \end{pmatrix}, \quad L^r = \begin{pmatrix} 0 & K_{12} & K_{13} & \cdots & K_{1n_k} \\ 0 & 0 & K_{23} & \cdots & K_{2n_k} \\ 0 & 0 & 0 & \cdots & K_{3n_k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix},
\]

where \(\eta_i > 0, \quad i = 1, 2, \ldots, n_k, \quad I_{n_i} \in \mathbb{R}^{n_i \times n_i}, \quad K_{ij} \in \mathbb{R}^{n_i \times n_j}, \quad 1 \leq i < j \leq n_k, \)

and we have either that \(K^r = L^r, \) or that \(K^r = L^r^T. \)

\(K^r = 0: \) Gauss Jacobi, \(K^r = L^r^T, \) Gauss Seidel.
Assumptions about the algorithm

A1 The matrix N of the problem (CCP) is symmetric and positive semi-definite.

A2 There exists a positive number, $\alpha > 0$ such that, at any iteration $r, \ r = 0, 1, 2, \ldots$, we have that $B^r \succ \alpha I$

A3 There exists a positive number, $\beta > 0$ such that, at any iteration $r, \ r = 0, 1, 2, \ldots$, we have that $(x^{r+1} - x^r)^T \left((\lambda \omega B^r)^{-1} + K^r - \frac{N}{2} \right) (x^{r+1} - x^r) \geq \beta \| x^{r+1} - x^r \|^2$,

(so $\lambda \omega$ needs to be sufficiently small; but theory works with λ and ω changed at every iteration, but bounded away from 0 and this is a computable test, as long as α and β are fixed. Any obvious test would work after a FINITE number of iterations)
Theory

\[(OC) \quad \min_{s.t.} \quad f(x) = \frac{1}{2} x^T N x + r^T x \quad x_i \in \mathcal{Y}^i, \quad i = 1, 2, \ldots, n_k.\]

Theorem Assume that \(x^0 \in \mathcal{Y} \) and that the sequences of matrices \(B^r \) and \(K^r \) are bounded. Then we have that

\[
f(x^{r+1}) - f(x^r) \leq -\beta \|x^{r+1} - x^r\|^2
\]

for any iteration index \(r \), and any accumulation point of the sequence \(x^r \) is a solution of (CCP).

Corollary Assume that the friction cone of the configuration is pointed (that is, there does not exist a choice of reaction forces whose net effect is zero). If the relevant parameters satisfy assumptions A2 and A3, then the algorithm produces a bounded sequence, and any accumulation point results in the same velocity solution.
Gauss-Seidell optimized version (in terms of storage)

1. For $i = 1, 2, \ldots, n_A$ compute the $m \times 3$ matrices $s^i = M^{-1}D^i$ and 3×3 matrices $g^i = D^{i,T}s^i$.

2. For $i = 1, 2, \ldots, n_A$, compute $\eta_i = \frac{3}{\text{Trace}(g^i)}$.

3. If warm starting with some initial guess γ^*, initialize reactions as $\gamma^0 = \gamma^*$, otherwise $\gamma^0 = 0$.

4. Initialize speeds: $v = \sum_{i=1}^{n_A} s^i \gamma^{i0} + M^{-1}\dot{k}$.

5. For $i = 1, 2, \ldots n_A$, perform the updates

 $\delta^{ir} = (\gamma^{ir} - \omega \eta_i (D^{i,T}v^r + b^i))$;

 $\gamma^{i,r+1} = \lambda \Pi^{(i)} (\delta^{ir}) + (1 - \lambda)\gamma^{ir}$;

 $\Delta\gamma^{i,r+1} = \gamma^{i,r+1} - \gamma^{ir}$;

 $v := v + s^{iT} \Delta\gamma^{i,r+1}$.

6. Repeat the loop 5 in reverse order, if symmetric updates are desired.

7. $r := r + 1$. Repeat from 5 until convergence, or until $r > r_{\text{max}}$.
Numerical Results: Example 1: Size-based segregation

- 300-1500 bodies
- $\omega = \lambda = 1$
- Time step = 0.01
- 20-80 iterations
Example 1 (II): Convergence

Fig. 3 Convergence of $\Delta \gamma^r$ for varying ω, for a sample time step in the 300-sphere benchmark.

Fig. 4 CPU time for each step in a 1000-body simulation, split into CCP fraction, collision detection fraction, and other.

Fig. 5 Maximum speed violation in constraints, for the 300-sphere benchmark.

Fig. 6 Maximum penetration error in constraints, for the 300-sphere benchmark.
Example 1 (III): Scalability

Fig. 7 Number of contact constraints, increasing while pouring spheres in the shaker.

Fig. 8 Average CPU time used to compute a step of simulation, as a function of the number of contacts.
Example 2: Nuclear reactor “Loading”

- Currently time is in weeks of CPU for 30000 on 64 proc cluster for 10 seconds of simulations, though not quite same configuration.
- Our simulations up to 30000 spheres on a laptop—memory limited by broad phase collision.
- More than 140000 contact points and 420000 unknowns.
- 140 iterations.
- It takes about 2hr of CPU (Windows).
Conclusion Iterative methods for NRMD Simulations

- Time-stepping methods: Different from hard particle, since they do not necessarily stop at collisions, and do not suffer from the strong time step limitation of penalty (spring and dashpot) approaches.
- Problems with conic constraints substantially reduce the size of the problem with the tradeoff of a more mathematically complex constraint.
- Our “Gauss Seidell” works well for up to ~1/2 mil vars and promises to scale.
- TO do: parallelism. Theory is nonetheless readily available block GJ with GS blocks is covered by our method.
- TO do: very high accuracy. Preconditioning? Multigrid?