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What is GNEP? Program Mission
�GNEP: Global Nuclear Energy Partnership
�A new Department of Energy initiative, started in 2006 with 

$250 million per year, and plans for increase.
�Use scientific computing (among other things) to “close the 

nuclear cycle”, reduce radioactivity of nuclear waste from 
nuclear reactors.

Sources: DOE GNEP fact sheet, 

DOE GNEP implementation Plan (June 07)
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The open-closed nuclear fuel cycle 

Source: DOE ONE “Recycling spent 
nuclear fuel”

Tc, I

Cs*, Sr*

Am, Pu, Ne,Cu
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Separation-reprocessing for the closed fuel 
cycle
�The main candidate separation technology UREX+ 

(Uranium extraction plus- developed primarily at ANL). 
�The current target site for geological storage (Yucca 

Mountain) is rated in terms of total radiation;  closing 
fuel cycle may increase its effective capacity by 
10,000%.

Source: DOE GNEP fact sheet 
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Computing goals for GNEP

� “The final goal will be optimization in the presence of 
modeling and input uncertainty in order to design safe, 
reliable, economical, and socially acceptable end-to-end 
solutions for nuclear energy production”—stochastic 
(robust?) optimization. 

�Crosscutting technologies R&D needs identified
– Multi-physics coupling
– Optimization and confidence analysis

• Considering higher order uncertainty analysis (“Nonlinearities can 
cause problems with first-order perturbation theory methods”)

• The sensitivity and uncertainty methods should be able to address 3D 
system designs, possibly with multi-physics coupling.



711:30:29 

Major sources of uncertainty in the “normal”
functioning closed fuel cycle

� In the reprocessing plant
– The chemical composition and state of the waste. 
– Measurements. 
– Parameters associated with reactions in aequeous

environments 
� In nuclear reactor (LWR and ABR):

– The composition of the fuel (it is well known at loading; but it is 
time-dependent, contains the entire periodic table, and 
cannot be directly tested for months or years, and even then 
not completely (for reprocessing calibration)).

– The physical parameters governing neutron scattering and 
fission.  Source: GNEP development plan-

June 07
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Design under uncertainty of nuclear reactors

�A huge, multiphysics, multiple time scales, complex 
systems stochastic optimization problem. 

�The workhorse technique has been first-order 
sensitivity analysis with Gaussian pdf (Cacuci et al., 
1981, 2005). Probably a precursor for many other 
fields – the favorite complex system example. 

� It has been undertaken for more than 5 decades (even 
for ABR) … so is there something to still do here?

�To answer this, we look at the economics of nuclear 
power.
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About our choice of justification

�A lot of the extra work solicited by GNEP is in safety of 
nuclear reactors (safe response to abnormal 
functioning) and not in maintaining safety margins 
under “normal” working assumptions. 

�Most of the computational tools developed here are 
usable in answering safety questions in any case. 

�We use economics since it is easier to convey to a 
multidisciplinary audience. 

�We present US only because of the amount of data 
available to us. In many ways US nuclear R&D is not 
the leader (see recent  IBM Global Center of 
Excellence for Nuclear Power announcement)
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Nuclear Power Economics 101

�US Nuclear Business in FY06 sales: $64B
�Annual costs for a new 1000 MWe power plant

– Total = $391M (4.9 cents/KWh)
– Capital = $254M (3.2 cents/KWh)
– O&M = $101M (1.27 cents/KWh)
– Fuel = $36M (0.45 cents/ KWh)

Source: Paul Turinsky –
MCSNA 07



1211:30:29 

Nuclear Power Economics 101.
�Annual savings in bus-bar electrical energy cost for 1% 

power uprate of one 1000 MWe LWR (assuming 
annual capital and O&M costs fixed) = $3.55M/year

• OR

�A 0.3% power uprate of one 1000 MWe LWR results in 
bus-bar electric energy cost savings of $1M/year

�Annual savings in bus-bar electrical energy cost for 1% 
reduction in fuel cost for one 1000 MWe LWR = 
$0.36M/year 

• OR

�A 2.8% reduction in fuel cost for one 1000 MWe LWR 
results in bus-bar electric energy cost savings of 
$1M/year Source: Paul Turinsky –

MCSNA 07
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How are power uprates achieved?

�Modification of 
nuclear fuel design to 
extract higher power 
with the same 
thermal margins. 
design margin,e.g. 
BWR 7x7 lattice => 
10x10 lattice = 15-
20% power uprates

�The power uprates in 
the last 3 decades 
amount to about 5 
new reactors!
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How can computing help for ensuring power 
uprates while maintaining safety margins?

�Due to limited computational power the design problem was 
decomposed in subcomponents, and conservative margins are 
imposed on intermediate criteria to satisfy the all-important, 
NRC-mandated safety margins. 

�An “all-at-once” design will increase performance (and design 
complexity) while preserving the NRC safety margins. 

�Reduction of uncertainty effects in simulator predictions of 
limiting nuclear plant attributes via
– More accurate simulator models
– More accurate physics input data
– More rigorous treatment of uncertainties. 

�But now we must take on increased model complexity, and in 
particular effects of uncertainties on nonlinear models
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Nuclear Reactors 

The largest 
modeling 

complexity 
by far: the 

core
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Physical Structure of the Nuclear Reactor 
Core of a PWR (I) the fuel assembly ( bundle)

Energy : 3.5 
barrels of oil, 
17,000 cubic 
feet of natural 
gas, or 1,780 

pounds of coal.
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Physical Structure of the Nuclear Reactor 
Core of a PWR (II) the core ( bundle)

Fuel bundles

Control rods 
(o)
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What is going on in a reactor core?
NEUTRONICS: Fission in fuel rods 
generates self-sustained, controlled 

neutron flux

THERMO-
HYDRAULIC

S: Cooling 
agent (a fluid/ 
gas) extracts 

heat. 

FUEL BEHAVIOR 
Nuclear reaction 

modifies the 
chemical 

composition of the 
fuel
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The coupled multiphysics of nuclear 
reactors.

� Neutronics: Time scale: 10^(-
21) s. 1 var 6 dimensions

� Thermohydraulics: Time scale 
10^(-5s). 4 vars 3 dimensions.

� Fuel behavior: Time scales: 
10^4 s. 100s of vars in 3 
dimension.  

� Most computationally 
intensive to date: Neutronics.  
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Can a 6-dimensional equation be so bad?...
� …Yes, because the 6th dimension is energy and the crossections (   ) 

variations are astounding with respect to it. 
� We must accept (fairly large) uncertainty in the crossections !

“inaccurately represented over 20ev”
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Multiphysics-based design of nuclear reactors 
�Must adress the parametric uncertainty.
�Of this, the most significant (by variation and number of 

parameters affected) is the error in the crossection
since, even of the largest foreseeable architectures
– We cannot resolve the resonancies (even tens of thousands of 

points will not do it for all elements in the spectrum).
– We cannot resolve to sufficient resolution the time dependence 

of fuel composition, coupled with neutronics/thermo hydraulics  
by temperature  

�We need *some form* of stochastic approach since 
– A pure error analysis approach is intractable, since even at 

small scales cross-section data is inaccurate. 
– We have decades of statistical data about crossections. 

�We still must solve the coupled problem (eventually)
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Now what? 
�This will result in a huge stochastic optimization 

problem, unlikely to be solved in full generality in the 
foreseeable future. 

�On the other hand we have access to a lot of high 
quality past research on how to construct reduced 
models for the physics.  

�But “large uncertainty” calculations that go beyond 
linear perturbation have rarely been carried out, and 
this is one of the most promising and active conceptual 
areas. 

�To carry out such calculations, we have started 
investigating stochastic finite element methods for use 
in nuclear reactor characterization – resulting in some 
interesting and challenging optimization problems.
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Uncertainty quantification (characterization?) 
of parametric equations
�Consider the parametric nonlinear equation

� Question: How can I compute (or at least, efficiently approximate) 
the solution mapping            (and its distribution if        has a PDF)?

� Sensitivity approach: Assume                   is linear and    
Gaussian

� Monte Carlo answer: 
– Use parameter PDF and sample

– Followed by “histogram” or other post processing. 
� Difficulties: Monte Carlo is slow and sensitivity approach is restrictive 

to relatively small uncertainty.

( , )F x ω ω
ω
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Discussion of Objectives
� Can we derive an uncertainty characterization method that is more 

general than sensitivity and quicker than Monte Carlo?
� There are several promising avenues (including combinations of them)

– Randomized Quasi Monte Carlo?
– Higher order sensitivity
– Stochastic Finite Element

� In this work we investigate the promise of Stochastic Finite Element
� We concentrate on the parametric aspect alone (that is, approximating 

the mapping            and not its distribution (i.e. we look at the “hard”
part, since with a good model, there is no need for further interaction 
with model)

� We discuss issues appearing in evaluating uncertainty in NR with
respect to crossections and other parameters.

� Contributions: Theoretical foundations for SFEM Galerkin approach 
and uncovered potential of collocation approach in nuclear 
reactor apps.

( )x ω
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Connection with other approaches.
�We truly have a problem of polynomial approximation –

hardly new stuff. 
�The “angle” here is that the mapping has large areas in 

which it is incredibly smooth, so it is worth investigating 
very high order approximations (e.g. order 30). 

�The relation with (constrained) parametric optimization 
was never analyzed, to our knowledge.

�Clearly there is a relationship with other areas, 
(polynomial interpolation for derivative-free optimization, 
surface response methods) and we will investigate in the 
future the possibility of importing ideas and techniques. 

�At the moment, we are interested in initial applications, 
attaching promising techniques to the appropriate type of 
problem and estimating how far it could take us. 
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Stochastic finite element in engineering 
application …

� 3-5 dimension fluid dynamics /reactive flow simulation 
(Ghanem and Najm, Gottlieb and Hesthaven). 

� 50 dimensional PDEs with stochastic inputs (Liu and 
Hesthaven). 

� 4 dimensions terrain uncertainty analysis for vehicle 
design (Sandu et al). 

�Very active area of research, all the papers 2004-.
– Google scholar “complementarity constraints” 252 (2004-)
– Google scholar “stochastic finite element” 707 (2004-)
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Stochastic Finite Element (SFEM) Notions 
and Notations
� The average operator

� The orthogonal polynomials

� Typical multidimensional polynomial families are created by tensor 
products of Legendre, Laguerre, Chebyshev …

� The stochastic connection leads to the name of polynomial chaos
� Stochastic finite dimensional approximation space

� Note that PDF of outcome can be done now without using model!
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SFEM approximation procedures
� The model equation 
� The Galerkin (projection) approach to approximate            enforces that 

the residual be orthogonal to the SFEM space

� The collocation approach (which is a deterministic sampling, or response 
surface approach). 
– Choose sample points                                       generally tensor product 

of “good” one-dimensional points (Chebyshev zeros, Gauss-Legendre 
nodes, etc..)

– Compute the exact solution at these points 
– Collocate the approximate solution at these points
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Comparison of the two approaches

�Galerkin: 
– Works even if the problem is discontinuous or nonsmooth.
– Exponential convergence with increasing degree of 

polynomials if the problem is smooth, BUT
– Needs to solve coupled nonlinear system of equations. 
– For complicated functions F, equations are hard to set up and 

need quadrature (since the averages cannot be exactly 
computed)

�Collocation: 
– The problems to be solved are decoupled
– Easy to implement and setup, BUT
– Its convergence properties are not understood for nonsmooth

cases or incomplete tensor subset. 
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The weight function and scalar product
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Function Spaces  
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Orthogonal polynomials
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Example 
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Fourier Series
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All-important smoothness characterization 
(SFEM)
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Galerkin approach for constrained 
optimization
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Optimization and approximation versus 
approximation and optimization.
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Is (SUO(K)) bounded below? Assumptions



4111:30:29 

Constraints
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Assumption Notations …
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Inf-sup condition (smallest singular value)
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Convergence results
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Optimization-Galerkin formulation of 
symmetric eigenvalue problems (one-group)

� Note that this problem  can be exactly represented, even when 
multiple parameters are involved, modulo a series of quadratures, (if 
not, Galerkin is hard to formulate and may need quadrature)
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Numerical Example for n=2
2 1 1 0.4

;
1 2 0.4 0.2QQ D
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

�Use Legendre polynomials with 
K=4.

�Note that the variations allowed 
are not small variations ! (though 
the matrix will stay positive 
definite).

� The error in the angle of the 
eigenvector is less than 1%. 

�The eigenvalue distribution is 
excellent fit. 
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Example for n=2, eigenvector convergence
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Galerkin Numerical Example for n=1000
� Minimum eigenvalue problem for a 

one-dimensional diffusion 
equation, with uncertainty in 
absorption, a one dimensional 
neutronics problem. 

� For K=4 The SCO formulation was 
solved in 7 seconds by KNITRO 
(one eig operation on same 
computer takes 13 seconds!)
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Galerkin Numerical Example, eigenvector 
behavior

� At first sight, approximation is awful (left 
panel) but                                             has 
typical value of  is 1%!

� The problem is the occasional 
degeneracy of the eigenvalue problem

� If we sample eigenvector at 5 (well-
chosen ☺) points, and interpolate linearly, 
we get  an error that is typically larger by 
a factor of 3-4.

� This shows that black-box approaches 
(collocation, Monte Carlo,..), even 
enhanced with AD, may be sometimes 
unadvisable.

� Sensitivity approaches would not be 
applicable for such eigenvector 
uncertainty problems!

( ) ( ) ( ) ( )QQ D x xω ω λ ω ω+ − %% %
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Galerkin formulation, generalized 
nonsymmetric eigenvalue problems for 
multigroup (diffusion and transport) models

� Embed an optimization problem – allows us to use previous 
results and define a power-method-like iteration.
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Results for keff for two-group 1D diffusion

� Direct coupling only, correlated fission uncertainty and uncertainty in
� Model takes 40s to compute; about the time to take 100 samples. 
� If the goal is computation of distribution (for which 100 samples would 

be insufficient  to compute distribution with such accuracy, and this is  a 
*very* simple model), method more competitive than Monte Carlo.

,1 2s →Σ
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Further (interesting) observation: 

� Nonlinearity is invisible along the coordinate directions, but it is 
very significant along the correlated directions 

� This shows that first-order derivative approximation may miss 
substantial information. 

� This also shows that we have a lot of structure that we may exploit 
adaptively to reduce the size of the basis.
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Keff for 4 group diffusion model--Collocation 
Approach 

Method Number of Parameters 
(Nr. Calibration 
Samples) 

RMSE 
Error

Equivalent
Monte Carlo Sample 
Reduction

Sensitivity 12 0.3352

0.1320

0.0301

1/1

Collocation degree 1 12 1/6.5

Collocation degree 2 78 6.5/121

� 11 crossections, direct transfer only. 
� The error is estimated by averaging it over 100 random samples.
� The upshot is not that sensitivity is not useful, but that, given a certain 

budget of information, we may be better off from including info from 
more than one point (including sensitivity for higher order approaches)
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How did we choose the collocation points 
and polynomials?

� Tensor Legendre polynomials of homogeneous degree up to d

� The collocation points are the simplex Chebyshev tensor roots

� For large dimension m, one must prune the polynomials (cannot choose either 
simplex or full tensor), since it is subject to curse of dimensionality … though 
people have been doing 50 variables in SDEs with stochastic input. 
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Remaining challenges

�To approximate the parametric map in reprocessing 
and core design problems with SFEM when large-
scale, coupled physics is present.

�To investigate adaptive techniques of selecting the 
polynomial basis, in conjunction with some form of 
sparse grids. 

�Solve the coupled problems in large scale stochastic 
Galerkin. 

�Determine well-posedness conditions for collocation 
with incomplete (non-tensor) bases. 

�Refine convergence results for moderate smoothness. 
�Define a mixed SFEM-sampling approach for 1000s of 

parameters.
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Conclusions and future work
�Nuclear reactor application and reprocessing are the source of 

challenging uncertainty quantification problems, especially 
when trying to attain the GNEP aims.

�SFEM are promising approaches of generating quality 
approximations when uncertainty meets nonlinear.

�SFEM Galerkin models are very robust and work even in 
cases of nonsmooth problems where sampling-based or 
sensitivity methods would fail. 

�For smooth models, SFEM collocation models can be very 
competitive, faster and more accurate than sensitivity 
approaches even for the same computational budget.

� Optimization issues appear at the lowest levels of uncertainty 
calculations for GNEP and this will likely continue and 
accelerate.
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