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Motivation: Quasicontinuum (QC) Methods in Material 
Science
QC: multiscale model reduction method for 
the simulation (energy minimization with 
respect to atomic position) of crystalline 
solids described with potentials. (Tadmor, 
Ortiz et a, 96+l)
In regions of small deformation, positions of 
“nonrepresentative” atoms are expressed by 
interpolation of positions of “representative”
(local if cut-off) atoms, positioned at nodes 
of a macro mesh. In “interesting regions”
mesh refined to atomic level
Nanoindentation calculations carried out for 
~10^6 atoms with only ~10^4 representative 
atoms, excellent agreement with full 
simulations.
The idea: reduction of degrees of freedom 
by interpolation QC mesh and nanoindentation

(Tadmor, Philips, et al.)( ) ( )2 1 1 2, dim dimx Tx x x= <<
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Motivation: Density Functional Theory 

One of the workhorses of modern computational chemistry. 
The issue is the resolution of the problem (followed by min wrt.              )

Here,       is the electronic density and 

DFT approaches differ in the way they approximate kinetic energy and 
exchange energy. In orbital-free (OFDFT) approaches the functionals are 
explicitly available, not so in the generally more accurate Kohn-Sham. 
Simplest OFDFT Thomas-Fermi. Only for validation of model reduction.

The main limitation: number of atoms and electrons that can be simulated
Question: Can a QC-like approach be defined in regions of small 
deformation and result in model reduction with reasonable accuracy?

ρ̂
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Partial answer: DFT based local QC (Fago et al., 04)

Each representative atom is surrounded by a DFT box.. The electron-
nucleus interaction is computed by PBC with the infinite crystal deformed 
according to the local interpolation rule. (DNS outside reach).
Problem: the mesh cannot be deformed to the point where DFT boxes 
interact. So the simulation stops with “initiation of nanoindentation”
Secondary problem: The problem does not capture the migration of
electrons that could accompany such defects. 
Challenge: Move reduction beyond PBC.
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Why so many atoms?—radiation damage simulation
The “small deformation of crystal in a 
large domain” appears in many 
interesting applications
Radiation effects/ radiation damage in 
materials used in nuclear/fusion 
reactors. Simulation of primary knock-
off followed by the “cascade”
(Stoller,00) shows “slightly perturbed 
crystal most places” is a very good 
hypothesis.
DO WE NEED REPRESENTATION 
OF ELECTRONIC STRUCTURE? –
YES!! Accurate potential 
approximation do not exist for many 
materials and configurations 
especially ones in reactor apps. But 
DNS impossible: 10^3 atoms all we 
can do currently (at least with KS) –
WE NEED 10^7!
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Why so many atoms? –Nanoscale properties of materials

Most metals are polycristalline, with nm size grains (Laurent Delannay)
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Why so many atoms?—Properties of Materials depend 
strongly on structure at nanoscale

Physical and chemical properties are most sensitive in the nm range grain 
size (Anter El-Azab lecture notes). 
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Why so many atoms?—Properties of Materials depend 
strongly on structure at nanoscale

Au nanoparticle melting point 

To understand properties  of such materials, we must simulate at the tens 
of nm scale– either a few particles or continuum simulation will result in 
inaccurate predictions. Need millions of atoms simulations, 
unreachable by DNS with DFT. 
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Postdoctoc in Jan-Dec 2005)
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Emil Constantinescu (grad stud VPI).
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Outline

Objective 1: Analysis and variants of interpolation-based (QC like) model 
reduction in material science.
Objective 2: A QC-like model reduction approach for orbital free, density 
functional theory (OFDFT) electronic structure calculations
Some implementation considerations
Numerical validation of the DFT QC-like model reduction. 
Reasonableness of some of the assumptions. 
Conclusions, Future work.

In talk, I will at times use “rep” for representative and “nonrep” for 
nonrepresentative, much like the QC literature.
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Formulation of the problem and the material science 
approaches

The problem has a few “representative” degrees of freedom      and a lot of 
“nonrepresentative” degrees of freedom – the essence of scale separation.
Analogous to “representative atoms” and “non-rep atoms” in “Tadmor et al.”

1x
2x
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The two types of reduced problems

The essential observation is that                     is a very good approximation for 
small perturbations of crystalline structure. 
Approach 1: Interpolate and optimize (energy-based: insert constraint, write 
OC) 

Approach 2: Optimize and Interpolate (force-based: write OC, insert 
constraint)

2 1x Tx≈
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General Assumptions for Analysis
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Regularity results for RO problems

Compatibility conditions for the constraints
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Further assumptions for (RE) problems

The proof of regularity of (RE) requires two further assumptions
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Regularity results for (RE) problem
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A multiscale approach for electronic density nanoscale 
simulations

, 1, 2 , ,Y pα α = …

Representative variables: The density in the 
representative domains                                .
The interpolation operator is constructed with 
respect to a reference crystalline mesh

The approach allows for deformation of the 
mesh when atoms are also allowed to relax 
(second part, not covered in our presentation).

For example, at the points selected (which are 
correspondent by crystalline vectors 
translations) we enforce  that
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The reduced “equations” approach—Optimize and 
interpolate

Example: Thomas-Fermi DFT on 
11 Hydrogen atoms, using less 
than 50% degrees of freedom, 
solved with AMPL/FilterSQP. 
The bound constraints are 
nonetheless not active in our 
example, and we truly have the 
(RE) approach. We would obtain 
an MPEC by reduction should 
they be active.
Note that the drift in total charge 
cannot be captured by PBC.
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The reduced optimization approach. Interpolate and 
Optimize

Allows us to use optimization tools, 
with costlier setup but more 
robustness.
The maximum relative error is less 
than 1.5%, remarkable if we 
consider that we have one order of 
magnitude variation. 
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Interpolate and Optimize, one step further

Interpolation gives assembly  rule with precomputable kernels—The “fine 
scale” is explored only once (Negrut, Anitescu, El-Azab, Zapol – Journal of 
Nanoscience and Nanotechnology-in press)
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Usefulness of further approximations 
Even if the objective function is 
separable, the 
“nonrepresentative” part must be 
explored. Function evaluation still 
expensive.
This appears in QC as well, but 
handled by the fact that the 
pairwise potential is cut off, and 
only “nearby” nonrepresentative
DOF are explored. 
For many functions, one can 
accurately interpolate the function 
values as well, and the same 
results apply. 
But this must be treated 
differently for different types of 
functions (cut-offs dependence) 
and difficult to formalize.
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Results for the kinetic energy interpolation approach

11 Hydrogen atoms.
There are a few domain 
boundary artifacts but do not 
exceed 2% of peak. 
Investigation in superior 
interpolation techniques is 
warranted . 
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Need to evaluate integrals of the form

An assumption is made in regards to the form of                 : justified by our 
“further approximation” discussion

– Example:

Two essential steps:
Use grid values and quadrature rules to evaluate integral
Use interpolation to approximate               in passive subdomains

Implementation – Details- (Negrut et al. JNN)
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OF-DFT Energy Evaluation

Integrals are evaluated using a quadrature rule:

Reconstruction idea:

Elementary manipulations lead to matrix representation:

- Kernel vector (constant, evaluated at beginning of simulation)
- Vector based on values of     at grid points of reconstruction 

subdomains
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Evaluating the TFD Energy Functionals

Kinetic Energy  (kernel K)

Exchange (kernel K)

Electron-Nuclei interaction (kernel Ken)

Electron-Electron interaction (kernel K)



268:50:27 PM

Solving the Optimization Problem

Optimization Problem:

Solver used: TAO – parallel optimization solver
Bound-constrained optimization:    should stay positive
Penalty approach, due to charge conservation constraint and TAO does not 
support equality constraints yet. 
Bound-constraint limited-memory variable metric (BLMVM) TAO solver 
employed
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Computational flow

Three stages method:

– Preprocessing

– Electronic Problem

– Ionic Problem (not 
implemented yet)
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Numerical Results: 3D Simulations

Same Hydrogen string problem, but in 
3D:
– Parallel function/gradient 

evaluation
– Parallel optimization solver
– Constant mesh size
– Dimension of problem: 35,672
– Example run on Linux cluster, 

using 13 MPI processes
– Note that both the cost per 

iteration and the number of 
iterations decreases with less 
active subdomains
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Organization of the reconstruction scheme for the 
“string” example for 7 active domains 13 total domains

Reduce the number of “degrees of freedom” in the energy 
minimization problem
– Use an interpolation operator to express the “norep” degrees of freedom

Example: only degrees of freedom from D1, D2, D3, D7, D11, D12, and D13 are 
considered in the problem

Additionally, only D3, D7, D11 are used to reconstruct (through interpolation) the 
value of the electronic density in D4, D5, D6, D8, D9, D10
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Numerical Results: 3D Simulations

13 parallel processes
5 active subdomains

13 parallel processes
7 active subdomains

13 parallel processes
13 active subdomains
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Slab of Hydrogen Atoms

25 H atoms
9 active subdomains
Run on Linux cluster
25 MPI processes
Uniform mesh
33,275 unknowns D1 D2 D3 D4 D5

D6 D7 D8 D9 D10

D11 D12 D13 D14 D15

D16 D17 D18 D19 D20

D21 D22 D23 D24 D25
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Electronic density distribution
– All subdomains active

Slab of Hydrogen Atoms (Contd.)

Electronic density relative error
– 9 subdomains active
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Analysis validity in potential-based case

Problem minimize the energy function of 101 atoms with pairwise
Lennard-Jones potential V ; representative dof and atom 61 fixed. The 
positions of nonrepresentative DOF are obtained by linear interpolation 
from positions of nearby representative DOF

Problem is solved with SNOPT in through AMPL, solution of (O) takes 
about 10 iterations.
It can be verified from the outset that all assumptions (RECF), (ROCF) 
and (CSC) concerning the constraints are satisfied.
At the solution it turns out that (SOSC) and the assumption that the 
interpolation ansatz is accurate are also satisfied; which means that the 
well posedness of the “interpolate and optimize” (RO) problem is ensured. 
But how about the HT constraint and “optimize and interpolate”?
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Verification of the HT assumption
Recall, the assumption stated that 

In top figure we plot the columns 
corresponding to DOF used in linear 
interpolation of 

Note that the match with T is nearly 
perfect and our theory can be applied to 
ensure that (RE) is regular.
But that does not follow solely from the 
atoms being positioned as a smooth 
function of the macroscale! See second 
figure where maximum relative 
interdistance perturbation is 1.6%
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Analysis applied to electronic structure problems

1D example: 
– HT assumption is no longer verified at optimality, though convergence 

and stability of the “optimize and interpolate” case (RE) can be 
observed. 

– All assumptions for the “interpolate and optimize” case (RO) are 
satisfied – conclusions hold.

3D example: 
– The (RE) approach was not coded. 
– The (RO) approach satisfies all assumptions except (SOSC) which 

we did not test, since we did not compute Hessians. 
– Note that the novelty here is also in the interpolation rule itself.
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Conclusions and future work

We have designed a nonlocal QC-like model reduction for DFT, and we 
have shown that it is accurate. 
We have given conditions for well posedness of the reduced problem, 
and show that they are reasonable for many configurations
To do .. A lot 
– Test the approach for more realistic DFT approaches (OFDFT which

includes gradients terms as well as Kohn Sham).
– A lot of NA: Better Interpolation which avoid artifacts at boundary 

between domains; error estimator for macromesh refinement (where 
should I choose more repdomains); micromesh refinement …

– Inequalities (though easy for our ansatz since redundant on nonreps). 
– Compress the long range interaction operators kernels using 

multipole or multiresolution, or discuss reduced Poisson Solves.
– Determine weaker conditions of well-posedness for “optimize and 

interpolate”; force-based approaches.
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