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Differential Variational Inequality –ODE case 

 Formulation (Pang and
 Stewart, 08) 

 Here, the solution set
 SOL is defined as:  

 If K is a cone C. Most
 common cases, C is a
 direct sum of R^+ and R.  



Differential Variational Inequalities —
 Motivating Applications 

 Contact Dynamics. 
–  Rigid-Bodies: Differential Operator is ODE. 
–  Deformable Bodies: Differential Operator is PDE. 
–  Granular Flow, Masonry Stability, Rock Dynamics… 

 Finance: Option Pricing-- American Options. PDE
-based. 

 Dynamics of multicristalline materials: evolution of the
 boundary between phases. 

 Porous Media Flow.  
 See Luo, Pang et al, and Kinderlehrer and Stampacchia

 Monographs.. 



Differential variational inequalities (DVI) 
—ODE case-- challenges 

 Recently Categorized by Index (“how easy it is to solve
 for u infinitesimally”). similar to DAE  

 Challenges  
–  Do we have solution uniqueness for DVI? Since we

 do not have Peano (Stewart).  
–  How to solve them? (Anitescu) 

• Time stepping versus smoothing.  
• Nonpolyhedral C?  

–  Can they be used to compute hard MPECs
 appearing in stochastic games (Shanno) 



Differential Variational Inequalities with PDE
 operator. 

 Control of DVI (Kopaczka)—an MPEC 

Challenge– How to solve it scalably?-- Multigrid 

(D)VI 
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Smoothing Versus Time-Stepping 

  Recall, DVI (for C=R+) 

  Smoothing  

  Followed  by forward Euler.
 Easy to implement!! 

  Compare with the complexity
 of time-stepping 

  But does it give good results? 



Applying ADAMS to granular flow 

  ADAMS is the workhorse of
 engineering dynamics. 

  ADAMS/View Procedure for
 simulating.  

  Spheres: diameter of 60 mm
 and a weight of 0.882 kg. 

  Forces:smoothing with
 stiffness of 1E5, force
 exponent of 2.2, damping
 coefficient of 10.0, and a
 penetration depth of 0.1 



ADAMS versus ChronoEngine 

Time stepping is the way to go !! 



Nonsmooth contact dynamics 
 Differential problem with equilibrium constraints – DPEC. 

Friction Model 



Conic Complementarity IS NATURAL in
 Coulomb Models. 

  Coulomb model. 

 Most previous approaches discretize friction cone to use LCP… 
  Can we still get convergence but not do that? 



Time stepping scheme -- original 

  A measure differential inclusion solution can be obtained by time-stepping
 (Stewart, 1998, Anitescu 2006) 

Speeds 

Forces 

Bilateral constraint 
equations 

Contact constraint 
equations 

Coulomb 3D friction 
model 

Stabilization
 terms 

COMPLEMENTARITY! 

Reaction 
impulses 



Time Stepping -- Convex Relaxation 

  A modification (relaxation, to get convex QP with conic constraints): 

But In any case,
 converges to same
 MDI as unrelaxed
 scheme. 

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ] 

(For small µ and/or
 small speeds, almost
 no one-step
 differences from the
 Coulomb theory) 



What is physical meaning of the relaxation? 

 Origin 

 Behavior 



Cone complementarity 

  Aiming at a more compact formulation:  

           



Cone complementarity 

  Also define:  

  Then:       

becomes.. 

This is a CCP, 

CONE COMPLEMENTARITY  
PROBLEM 



Cone complementarity—Decomposable
 cones. 

  Here we introduced the convex cone 

  ..and its polar cone: 

CCP: 

In R^3 is i-th friction cone 

is  R 



General: The iterative method 

  How to practically solve the Cone Complementarity Problem? 

  Our method: use a fixed-point iteration 

  with matrices: 
  ..and a non-extensive orthogonal projection  

operator onto feasible set 
NT= 



General: The iterative method 

 ASSUMPTIONS 

 Under the above assumptions, we 
can prove THEOREMS about convergence. 

 The method produces a bounded sequence  
with an unique accumulation point. 

Always satisfied in 
multibody systems 

Use ω overrelaxation 
factor to adjust this 

Essentially free
 choice, we use
 identity blocks 



General: Theory 

 Simple, but first result of this nature for conic
 constraints—and HIGHLY EFFICIENT 



General: Interesting Extensions 

 N non symmetric, but positive semidefinite.  
 Parallelizing the algorithms: block Jacobi with Gauss

 Seidel blocks.  
 Asynchronous version of the algorithm, particularly for

 use with GPU. 



The projection operator 

   For each frictional contact constraint: 

 For each bilateral constraint, simply do nothing. 
 The complete operator: 



The algorithm 

 Development of an efficient algorithm for fixed point iteration: 

   avoid temporary data, exploit sparsity. Never compute explicitly the N matrix! 

   implemented in incremental form. Compute only deltas of multipliers. 

   O(n) space requirements and   supports premature termination 

   for real-time purposes: O(n) time 



The algorithm is specialized, for minimum
 memory use! 

   



Simulating the PBR nuclear reactor 

 The PBR nuclear reactor: 
- Fourth generation design 
- Inherently safe, by Doppler 
broadening of fission cross
 section 

- Helium cooled > 1000 °C 
- Can crack water (mass
 production 
of hydrogen) 

- Continuous cycling of 360’000  
graphite spheres in a pebble
 bed 

Granular  
flow 



Simulating the PBR nuclear reactor 

 Problem of bidisperse granular
 flow with dense packing.  

 Previous attempts: DEM methods
 on supercomputers at Sandia
 Labs regularization) 

 40 seconds of simulation for
 440,000 pebbles needs 1 week
 on 64 processors dedicated
 cluster (Rycroft et al.) 

Simulations with DEM.  Bazant et al. (MIT and  Sandia laboratories). 



Simulating the PBR nuclear reactor 
  160’000 Uranium-Graphite

 spheres, 600’000 contacts on
 average 

  Two millions of primal
 variables, six millions of dual
 variables 

  1 day on a Windows station… 
  But we are limited by the 2GB

 user mode limit, 64 bit port in
 progress—but linear scaling.. 

 We estimate 3CPU days,
 compare with 450 CPU days
 for an incomplete solution in
 2006 !!! 



In addition, we can approach efficiently
 approach many engineering problems (see
 website for papers) 



Examples 

  Example: size-segregation in shaker, with thousands of steel
 spheres 

Note: solution beyond
 reach of Lemke-type 
 LCP solvers! 



Tests 

 Feasibility accuracy increases with number of iterations: 

Speed violation in constraints Position error in constraints (penetration) 

(with example of 300 spheres in shaker) 



Tests: Scalability 
 CPU effort per contact, since our contacts are the problem variables. 
 Penetration error was uniformly no larger than 0.2% of diameter.   

Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres 
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New large scale computational opportunity
 Graphical Processing Unit  



IBM BlueGene/L—GPU
 comparison 

  Entry model: 1024 dual core nodes 

  5.7 Tflop (compare to 0.5 Tflop for NVIDIA Tesla GPU) 

  Dedicated OS 

  Dedicated power management solution 

  Require dedicated IT support 

  Price (2007): $1.4 million 

  Same GPU power (2008): 7K!!! 



Brick Wall Example… 

  Times reported are in seconds for one second long simulation 
  GPU: NVIDIA GeForce 8800 GTX 



Conclusions 

 We have defined a new algorithm for complementarity
 problems with conic constraints. 

 We have shown that it can solve  very large problems
 in granular flow far faster than DEM. 

 It is the first iterative algorithm that provably converges
 for nonsmooth rigid body dynamics.  

 It scalability is decent.  
 We have created a multithreaded implementation and

 GPU port increases computational speed by a factor
 of  7-8. 


