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Differential Variational Inequality —ODE case

x(t) = f(t,x@),u))

B Formulation (Pang and u(t) € SOLK,F(t,x(®),))
Stewart, 08) [ (x(0),x(T)) = 0.
%[0T K,
B Here, the solution set -
SOL is defined as: /(&.@ — ) TF@. @), u@®) dt > 0.
0

M If Kis acone C. Most
common cases, C is a

- A x(t) = ft,x@®),ud),
direct sum of R*+ and R. & = ity | FG o0ty & @,




Differential Variational Inequalities —
Motivating Applications

B Contact Dynamics.
— Rigid-Bodies: Differential Operator is ODE.
— Deformable Bodies: Differential Operator is PDE.
— Granular Flow, Masonry Stability, Rock Dynamics...

B Finance: Option Pricing-- American Options. PDE
-based.

B Dynamics of multicristalline materials: evolution of the
boundary between phases.

B Porous Media Flow.

B See Luo, Pang et al, and Kinderlehrer and Stampacchia
Monographs..




Differential variational inequalities (DVI)
—ODE case-- challenges

M Recently Categorized by Index (“how easy it is to solve
for u infinitesimally”). similar to DAE

B Challenges

— Do we have solution uniqueness for DVI? Since we
do not have Peano (Stewart).

— How to solve them? (Anitescu)
e Time stepping versus smoothing.
e Nonpolyhedral C?

— Can they be used to compute hard MPECs
appearing in stochastic games (Shanno)




Differential Variational Inequalities with PDE
operator.

B Control of DVI (Kopaczka)—an MPEC

min J(y, u) ZZ%H)’—}’dH%z"’%H”HEQ
over y € HYQ);ue L2(Q),
st. yeK,

(D)VI -,V —y) 2 (Ut fv—y)e VveKk,
a(-,-)...bounded, coercive K ={vecH}(Q):v>0ael

(P)

Challenge— How to solve it scalably?-- Multigrid
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Smoothing Versus Time-Stepping

i=f(tx(t)u())
B Recall, DVI (for C=R+) u=0.1 F(z‘,x(t),u (t))z 0

i=f(6x()u())

B Smoothing ul-E(fax(t)’”(t))=€, i=12,...n,

u

u F (z"”"l,x”"l,z/t”_1 )= e, i=12,...n
ﬁ

® Followed by forward Euler. wel  n noon 1\
Easy to implement!! =4 +hf(t XU )’

B Compare with the complexity X" =x" + hf (t"’”,x””,z/t”+1 );
of time-stepping=————p

n+l n+l n+l n+l
B But does it give good results? u =01 F(f X', U )2 0




Applying ADAMS to granular flow

B ADAMS is the workhorse of
engineering dynamics.

B ADAMS/View Procedure for
simulating.

B Spheres: diameter of 60 mm
and a weight of 0.882 kg.

B Forces:smoothing with
stiffness of 1E5, force
exponent of 2.2, damping
coefficient of 10.0, and a
penetration depth of 0.1

balls_dropping




ADAMS versus ChronoEngine

Table 2: Number of rigid bodies v. CPU time in ChronoEngine

Number of Spheres Max Number of Mutual | CPU time (seconds)
Table 1: Number of rigid bodies v. CPU time in ADAMS Contacts [-]
Number of Spheres Max Number of Mutual | CPU time (seconds) 1 1 0.70
Contacts [-] D 3 0.73
! : o 4 14 0.73
4 14 775 8 44 0.76
3 44 2536 16 152 0.82
16 152 102.78 32 560 1.32
32 560 644.4 64 2144 2.65
The following graph shows the nonlinear increase in the CPU time as the number of 128 8384 6.17
colliding bodies increases. 236 33152 1530
CPU ti . Number of sph inCh Engi =0.0563x + 0.0446
CPU time v. Number of Spheres in ADAMS o aoaco 20007 1 154 Wme:¥. Number of sphores In ChronoEngine. 'y . 0'9‘;82
R® = 0.9985 18
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Time stepping is the way to go !!




Nonsmooth contact dynamics

W Differential problem with equilibrium constraints — DPEC.

d o o o

M S (@B B ) k)
dt J=L2,..p

d

dg

dt

c'/ = 0 1L ®V(g)=0, j=12,..p

[ ( 0, 2(1)) _ argminu<f>c,gf>2\/(/3§f>+/3§f>)2 [(thl(J)) [3’1+(VT téf)) /32] ]

\_




Conic Complementarity IS NATURAL in
Coulomb Models.

B Coulomb model.

( 1(] ) , 2“ ) ) =argmin

VI B (V)5

M(j)C,Sj)z\/(/a’l(j)+ﬁ§j))2 [(

K = {(x,y,z) u(j)z >y +x° } K = {(x,y,z)z > ‘u(j)\/yz +x° }
[ ¢\ /M(j)\/(thl(j) 2+(th§j))2\
B EK L v EK’
\ﬁz(f)) VTZLEJ)
\ /

B Most previous approaches discretize friction cone to use LCP...
B Can we still get convergence but not do that?




Time stepping scheme -- original

B A measure differential inclusion solution can be obtained by time-stepping

(Stewart, 1998, Anitescu 2006)

if\[v(l_Fl) o vl) - Z ( /"7" D;) + )f‘lt'DjIltL + )l Dlv)
i€ A(qD e)
Speeds . .
+ ) VYY) +af, @t g 0"
- o 0 — l\pl( (l)) 4+ V\I,'iT,U(lJrl) 4 ﬂ i € Gps

h ot "’

0< 7 2'(g") + Vo v+
1

Ll At >0,i¢ A(q(l),e)

In

At AtY — arcini l
( f-zlm );) — al glnlnﬂ'i'?”jzZ'\/('\f"-iﬁv)z‘*‘(","‘f‘.)Q L€ *A(q( )76)

(D, 4,00
gt =g + hol+D,

Reaction
impulses
/
\
{
\
COMPLEMENTARITY!




Time Stepping -- Convex Relaxation

B A modification (relaxation, to get convex QP with conic constraints):

]\[(v(l_*_l) _ vl) - Z ( )rlle + AllLl‘DTU + f\l;Di') +

| (For small u and/or
‘lEA(q(l‘) €)

small speeds, almost

(1) (D) 4D
+ Zg 8iAY% + hf, (", q" v'") no one-step
= .

. ° 5 \IJ ,i differences from the
0= h\l} () + VI o L e Gy Coulomb theory)
0< }—(I)l(q(l)) n V(I) (l—{—l) [_N \/ Dz Ty Dz T ) ]

12

i (1)
- L 720, i€ Alg7¢) l But In any case,
(Yo v2) =avgmin s i€ AlgY ) converges to same

w!(7,D" +~,D)] MDI as unrelaxed

g+ = g 4 po(+D), | scheme.

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ]




What is physical meaning of the relaxation?

M Origin

B Behavior
Comparison between methods x10% LGP algorithm versus optimization based algorithm
T T T

—— T T
T = | | = Gyimaton
5 = Optimization method ek =~ Qptimization method ||

L
1




Cone complementarity

B Aiming at a more compact formulation:

1. 1_. 1.
by =4=0",0,0,—9"2,0,0,...,=P"™a, 0,0
h h h

Y G R PR SR LR PR iAo ina o tng
7,,4 — 'm oy Tu s To oy insy Tusy o s n s Ju s Jv
1., owl 1 _. o2 1. oyn"s
bB: _\Ijl+;_a_\112+‘_?"'7_1716+ .
h ot " h ot h ot
~1 2 ~NB

{
Dy = [D|D?|...|D'"a], ic A(¢'.e) D'=[D,|D.|Di]
BDg = [VU VI [VEs], i€ Gy be € R™ — {b 4, bs)

Ye € R" ={v4. 75}

De = [D4|Djg]




Cone complementarity

B Also define:

BV = Mo 4 hf, (10, g0, o)

N=DLM'D¢
r=DLM "k + be

B Then: M@V —oly= S (4iDi +4iDi ++iDi)

icA(gW.€)

+ ) (V) +hf (¢, q0,00)
i€Gn

0= %\Ili(q“)) + VD %, i€Gn

0< lq)i(q(l)) 4+ VP D) This is a CCP,
R i CONE COMPLEMENTARITY
. ’ PROBLEM

i A — aromi ; (0
(7u7 ’Yv) - a'lgmln”i_\"i'z (.7,:")2_‘_(_7:;)2 (S A(q ’6)
[vT(’YUD:l aF AII'DZV)]

(Nve+7r)e =T° 1L ~ge

becomes..




Cone complementarity—Decomposable
cones.

B Here we introduced the convex cone

]—“CZ In RA3 is i-th friction cone

BC' s R

Y= ( D fcf)@(@gcf)

ic A(ql.e) i€0n

M ..and its polar cone:

1€0p

To= ( S5 fch) b (@ BC™

i€ A(q!.e)

CCP: (Nye+7)e =0T L ~c€T




General: The iterative method

B How to practically solve the Cone Complementarity Problem?
(Nye+7r)e =T 1 ~€X

B Our method: use a fixed-point iteration

[ ,77‘—l—1 _ /\HT (,77 _ wB" (A*,.)ﬂ +r4+ K7 (,Y'r—l—l L 77))) 4+ (1 o )\) 77}

B with matrices:

. B -0]'. K ...]'n__
B .and a non-extensive orthogonal pi mln, 0 e 0 12 ‘_13 ‘_1 g
operator onto feasible set 0 ol .0 00 Kz - Kap,
B7' —_— ]2 "2 NT: 0 0 0 A I\'Bnk
_0 0 T ’/nk-[nn,c i _0 0 0 0

Iy : R"s — R"




General: The iterative method

BASSUMPTIONS

Al The matrix N of the problem (CCP) is symmetric and positive semi-
definite.

A2 There exists a positive number, o > 0 such that, at any iteration », »r =
0.1.2...., we have that B" = ol

A3 There exists a positive number. 7 > 0 such that, at any iteration », »r =

0.1.2...., we have that (2"t —2")T ((/\W'B")_l + K" — %) (2" t1—a") >

Bt — ||
0.8
mUnder the above assumptions, we 0
can prove THEOREMS about convergence. % I

B The method produces a bounded sequence o2
with an unique accumulation point. ]

iterations
A -




General: Theory

min f(z) = 12" Nz +rTx

(0C) st. x; €Y, 1 =1,2,...,n.

Theorem Assume that 2 € T and that the sequences of matrices B” and
K" are bounded. Then we have that

f(xr-l-l) ~ e < -8 er+1 _ erQ

for any iteration index r, and any accumulation point of the sequence z" is a

solution of (CCP).

Corollary Assume that the friction cone of the configuration is pointed The
algorithm produces a bounded sequence, and any accumulation point results
in the same velocity solution

B Simple, but first result of this nature for conic
constraints—and HIGHLY EFFICIENT




General: Interesting Extensions

B N non symmetric, but positive semidefinite.

M Parallelizing the algorithms: block Jacobi with Gauss
Seidel blocks.

B Asynchronous version of the algorithm, particularly for
use with GPU.




The projection operator

B For each frictional contact constraint:

M For each bilateral constraint, simply do nothing.
B The complete operator:

vie A(q\V,e)
Vr < HiVn Hi = i
1
Yo < ——Yn H.j = {0.0.0}
Hi
1 Vi + Tn
Yo = HiYn N Y > ——n Hi.n e
i i+ 1
H-i,u = Yu N“i];['i.,-n
H.i‘.l, = /‘l‘-i,rI'i,n

|7
AAAAAAAAAAAAAAAAAA




The algorithm

MDevelopment of an efficient algorithm for fixed point iteration:

[v] . j -th variable data
v ||F

[ 1.1 7] e=[E:.]
(| s = [MJ[E L) i -th constraint data
gy Obk Od Og

B avoid temporary data, exploit sparsity. Never compute explicitly the N matrix!

B /mplemented in incremental form. Compute only deltas of multipliers.

B O(n) space requirements and supports premature termination

W for real-time purposes: O(n) time




The algorithm is specialized, for minimum
memory use!

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)

(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
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// Pre-compute some data for friction constraints
fori:=1tony

s, =MD’
. — T gt

J—
a = Trace(or)
// Pre-compute some data for bilateral constraints
for i :=1 to ng

= M-lVW
QZ, = Vl\I’”Tsz
= o

// Initialize impulses
if warm start with initial guess v

Yo =i
else
Y¢ =0

// Initialize speeds

v_z:l:_Al ;’Ya +Zn3 —«

+ M-k

(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)

// Main iteration loop
for r := 0 to "max
// Loop on frictional constraints
for i :=1to ny
8L = (’72_‘" — wn}, (Di'Tv"' + b;))
7; r+1 _ /\H (611) + (1 o /\)7&1 :
A,Yz Jg+1 7;14—1 7;1 .
vi=v+ s, A'yl T+
// Loop on bllarcml Con,stuu'nts
fori: =1 to nB

57 = (i~ (VT 1))

AU+l .

= ALy (0)7) + (1= My
1:+1 z'1+1 LT

Av 'b ‘—vb .

vi=v+s) A*”H

return yge, v




Simulating the PBR nuclear reactor

B The PBR nuclear reactor:
-Fourth generation design

-Inherently safe, by Doppler
broadening of fission cross

section
-Helium cooled > 1000 °C

-Can crack water (mass
production
of hydrogen)

-Continuous cycling of 360°000
graphite spheres in a pebble
bed

!
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Simulating the PBR nuclear reactor

B Problem of bidisperse granular
flow with dense packing.

M Previous attempts: DEM methods
on supercomputers at Sandia
Labs regularization)

M 40 seconds of simulation for
440,000 pebbles needs 1 week
on 64 processors dedicated
cluster (Rycroft et al.)

model a frictionless wall, ,=0.0. For the current simula-
tions we set kf=%kn and choose k,=2x10° gm/d. While
this is significantly less than would be realistic for graphite
pebbles, where we expect k,>10' gm/d, such a spring
constant would be prohibitively computationally expensive,
as the time step scales as &fock; " for collisions to be mod-
eled effectively. Previous simulations have shown that




Simulating the PBR nu

B 160°000 Uranium-Graphite
spheres, 600°000 contacts on
average

B Two millions of primal
variables, six millions of dual
variables

B 1 day on a Windows station...

B But we are limited by the 2GB
user mode limit, 64 bit port in
progress—nbut linear scaling..

B We estimate 3CPU days,
compare with 450 CPU days

for an incomplete solution in
2006 M

AAAAAAAAAAAAAAAAAA

h
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In addition, we can approach efficiently
approach many engineering problems (see
website for papers)




Examples

B Example: size-segregation in shaker, with thousands of steel
spheres

Note: solution beyond
reach of Lemke-type
LCP solvers!




Tests

MFeasibility accuracy increases with number of iterations:

0.3 | 1 I 1 | 0.003 E I ! et ' 80 '
- . . ! E max iterations =
! max iterations = 80 : max iterations =40 -~~~
025 pememiombons max iterations =40 ——--- _ 0.0025 f=--------t- max iterations = 20 -- - - - - -

, 2 A t1 =) - - - - - v : . .
max iterations = 20 : max iterations = 10 -
max iterations = 10 -~ 3 : : : :
31173 SRS U RS SN S S

.

0.2 .
- = T L
W - ) S morhi R R R L L L L R il
0.1 0.001 : -
0.05 |+ 0.0005 b
0 ! L4 s YWV ¥ AV /!
5 5 25 3
0 50 100 150 200 250 300 0 0 100 }‘0 200 0 300
. ) fime steps
fume SIépS
Speed violation in constraints Position error in constraints (penetration)

(with example of 300 spheres in shaker)
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Tests: Scalability

BCPU effort per contact, since our contacts are the problem variables.
M Penetration error was uniformly no larger than 0.2% of diameter.

1400 . T o.8
Ential contag¢t points
1200 £ &tl,}’:eigglj},:tgg:: oint: = 0.7
§ 1000 ‘ 1 ‘ : g 06
g = o5
“g 800 -E 0.4
E 600 <:°:>_'>‘ 0.3
ped
400 : jg: 0.2
200 ' o —s— S NS T E— ot 5 ‘ |
° so & 150 Q’NVZ’OO 230 300 1 °s 200% 4000 |6000 80007 10000 12000 14000
/iu;?\e,'s °ps . . . .1 IPrtiiber of contacts Tttt Tttt e
I ™ ‘ : : : ! ! ! !
200 ' ' ' ' 0 i i l l
0 50 100 150 2C 0 2000 4000 6000 8000 1

time steps number of contas

Number of contacts in time, 300 spheres

CPU time per step for 300-1500 spheres

A
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New large scale computational opportunity
Graphical Processing Unit

Floating Point Operations per Second for the CPU and GPU

350
G80
G80 = GeForce 8800 GTX
300 - G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX
NV40 = GeForce 6800 Ultra
NV35 = GeForce FX 5950 Ultra G71
250 7 |NV30 = GeForce FX 5800
G70-512
G70
0 200
o ——|ntel CPU
(o]
|
S 450 4 -=- NVIDIA GeForce
GPU
100
Intel Core2 Duo 3.0 GHz \
50 | AI-”*”‘//‘

o
A

0 1 T T T T T T 1

Jan-03  Jul-03 Feb-04 Aug-04 Mar-05 Sep-05 Apr-06 Nov-06




IBM BlueGene/L—GPU
comparison

B Entry model: 1024 dual core nodes

W 5.7 Tflop (compare to 0.5 Tflop for NVIDIA Tesla GPU)
B Dedicated OS

B Dedicated power management solution

B Require dedicated IT support

B Price (2007): $1.4 million

B Same GPU power (2008): 7K!!!




Brick Wall Example...

B Times reported are in seconds for one second long simulation
B GPU: NVIDIA GeForce 8800 GTX

THE UNIVERSITY

| WISCONSIN

D N B
R ° © Bricks

Sequential Version GPU Co-processing

Version
1000 43 6
2000 87 10

8000 319 42




Conclusions

B We have defined a new algorithm for complementarity
problems with conic constraints.

® \We have shown that it can solve very large problems
in granular flow far faster than DEM.

M It is the first iterative algorithm that provably converges
for nonsmooth rigid body dynamics.

M |t scalabllity is decent.

B \We have created a multithreaded implementation and
GPU port increases computational speed by a factor
of 7-8.




