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Salient Question: Uncertainty Calculations in High
 Dimensional System  

•  How to approximate the stochastic distribution of functions over
 very large uncertain spaces? 

•  Example: F can be the equations of TH+Neutronics, p the
 physical parameters. (p ~ 1000 … 10000 … 100000). 

•  G can be: 
–  Max output temperature, max centerline temperature.  
–  A characteristic function                              which computes the probability

 of the max T to be in a given range. 



3 

High dimensional Approximation… The curse
 of dimensionality 

  But computing the correct average is strongly connected to approximating
 the function G.  

  In a high dimensional problem, this is subject to the “curse of
 dimensionality” – the fact that the sample density is decreasing
 exponentially with the dimension of the problem.  

  Classical solutions:  
–  Sampling : global but slow.  
–  Sensitivity analysis fast but local and hard to adjust. What if the

 precision in assessment is insufficient? Higher-order? Hard to
 develop and implement.  

  Can we create a method that efficiently uses the advantages of both
 methods, and is adjustable? 

  We think so: using adapted stochastic finite element method (PCE), fitted
 with derivative information, and used as a control variate.  
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Example: Distribution and transport of heat in ABR  reactor core 

  There are two aspects of heat exchange in the reactor core:                  
 thermal hydraulics, and neutron interaction. 

  Basic element of thermo-hydraulic model is a cylindrical pin surrounded by
 flowing coolant. Reactor core contains a hexagonal assembly of pins.  

  Finite volumes description of temperature distribution includes: 
-  a partition of the core into horizontal layers of volume elements;  
-  a heat flux equilibrium equation producing temperature T  in each element; 
-  temperature dependencies of the material properties R of each element.  
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Example: Distribution and transport of heat in the reactor core‏ 

  Choose a single output J(T) to characterize the performance of the model.
 For example: (maximal, average) temperature of coolant. 

  Evaluation of the model: 
-  For current values of thermodynamical parameters, compute thermal

 fluxes F over all types of interfaces (pin-pin, pin-coolant, coolant-coolant,
 coolant-outflow). Temperature gradient is estimated by a finite difference,
 all fluxes are linear in T. 

-  For a given nuclear reaction source term    ,                                 
 assemble the conservation law                                                                   
 into the form                        . 

-  Repeat the iterations R:=R(T) , T:=T(R) until                            
 convergence of the output. 
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Example: Equations  

  When discretized we obtain  

Interface 

Fuel 

Fluid 
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Uncertainty in fluid flow core 

  The parameters\material properties R of the model include heat capacity
 cp, heat conductivity K for the coolant and fuel; convective heat transfer
 coefficient h.  

  A fixed-point iteration procedure R:=R(T) , T:=T(R) is used to couple the
 dependence of the temperature distribution on the material parameters,
 and the dependence of the material parameters on temperature. 

  Uncertainty in the performance J(T) of the nuclear reactor is attributed to
 the uncertainty in the values of parameters R.  

  Note: the available temperature-dependencies are built as a best fit to
 experimental data + uncertainties, but this results in an uncertainty band,
 even if the data warrants finer representation, such as no/little
 oscillation .. 

with uncertainty   estimated at  0.1% at 300 K, 3% at 1000 K, 8% at 2000 K.  
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Representation of temperature-dependent uncertainty 

  Assume a temperature-dependent structure for the uncertainty: 

in the Chebyshev polynomial basis 

  With no oscillations in uncertainty, use 2nd order expansion, resulting in 3
 uncertainty parameters per thermo-dynamical property. 
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Representation of temperature-dependent uncertainty. 


   Find the validity region for the uncertainty coefficients {α} by random
 sampling. Start with a large uniform sample of values, reject the points that
 violate the uncertainty condition 


   In the multiplicative uncertainty model,  


   In the new representation the parameters become but the validity region is
 not necessarily rectangular 
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Stochastic finite element method 

  A surrogate model is an explicit approximation                               in some
 basis         . 

  Stochastic Finite Element Method (SFEM):  
-  Choose a set  of multi-variable orthogonal polynomials Ψ. Use some

 subset {Ψq} to approximate the output function: 

-  The coefficients P in the definition of each polynomial are chosen to
 satisfy the orthogonality condition in some measure π: 

-  For Gaussian probability measure,  
the basis is a set of Hermite polynomials: 

-  The coefficients xq are found by collocation. 
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SFEM: Derivative-based Regression 

  Collocation procedure: evaluate the basis polynomials at the sample
 points in the parameter space, run full model to compute the outputs       
 S at the sample points, assemble the collocation system Ψx=S: 

  Issue: we would like to use high-order polynomials.                                   
 The number of sample points required to assemble                                   
 Ψ grows rapidly. 

  Suggestions:  
-  For each sample point, include derivative information. 
-  Use an incomplete basis. 
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Using Derivatives 

  The only interaction with the physics code is only by the
 right hand side.  

  If we implement the adjoint wisely, we can get NP times
 more information for not even on extra function evaluation
 cost !!! 
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How to choose basis/ how to sample 

  SFEM setup choices: 
-  “Full” basis vs. “truncated” basis. 
-  “Tall” Ψ with over-sampling vs. “square” matrix Ψ with a minimal number

 of sample points 

  Goal-oriented basis: polynomials of high degree are only included for
 “important” variables. Importance is defined as sensitivity of the output
 function to a particular parameter. 

  Goal-oriented sample set: mostly an open question, especially when
 derivative is also involved. Sample points may be chosen: in the
 directions of highest sensitivity of the output function; for the best
 condition of Ψ;  for optimal approximation error; for the best condition of
 Λ. 
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Approximating the output of the model 

  For a moderate number of parameters (3-15), a good choice is “tall”
 matrix, “truncated” basis. 

  Possible definitions of “importance” of a parameter r(i) : 
-  Derivative (at some “typical” temperature distribution): 
-  Derivative adjusted by parameter variance:  

  We start with a full basis of order 3, separate the variables, by
 “importance”, into groups I, II and III of sizes nI > nII >> nIII.  We allow
 polynomials that include variables from group III to have degree 3; allow
 the polynomials that include variables from group II have degree 2; only
 keep polynomials of degree 1 in the variables from group I.  
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Computing derivatives using adjoints 

  The dependencies                                         can be studied directly, by
 random sampling. 

  The derivative       can be used for sensitivity analysis. 

  Derivative using the adjoint method: 
-  Start with an algebraic form of the flux equilibrium equation: 
                     with  
-  Assemble a system for the adjoint variable λ: 

-  Evaluate the expression: 
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Adjoints. 

  Consider the finite volumes equation 
in the form  

  Differentiate to obtain 

  We need two partial derivatives: 

  We have assembled                                                                                
 the adjoint variable: 
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Adjoints 

  The required components of the derivatives arrays 

    for the volume cells I,J and parameter components Rj, αk are defined and  
 stored during the last step of the iteration Rn:=R(Tn-1) , Tn:=T(Rn). 

  Finally, the derivative is expressed as: 

  Note: in Matlab, computing all derivatives for a single output typically
 produces an overhead of 10-40 %. 
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Performance of SFEM model 

  Size of the finite volume model: 7 pins, 20 horizontal layers.  

  The output function is a measure of temperature in the outflow layer: 
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“Preconditioning” with SFEM for assessment, 

•  We can compute our expectation using a control
 variate technique. 

•  If the approximation is good, then we need far
 fewer samples to compute  our estimate 
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Performance of SFEM model 

3 parameters:   Range    Variance   Error variance  # 
Cp-coolant               points 
  Random    953.8092   1.2901        
    sampling    957.5269 

  Linear    953.7269   1.3813    0.0016           
 model    957.5761 

  SFEM,    953.8016   1.2933    0.0001   12 
    full     957.5245 

  SFEM,    953.8027   1.2937    0.0002   4 
    truncated    957.5273   
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Performance of SFEM model 

6 parameters:   Range    Variance   Error variance  # 
Cp-coolant, K-fuel             points 
  Random    953.8098   1.2900       
    sampling    957.5273 

  Linear    953.7528   1.3527    0.0008        
 model    957.5619 

  SFEM,    953.8031   1.2942    1.6105e-5   26 
    full     957.5272 

  SFEM,    953.8020   1.2942    1.6113e-5   10 
    truncated    957.561  
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Performance of SFEM model 

9 parameters:   Range    Variance   Error variance  # 
Cp-coolant, K-fuel, K-coolant           points 
  Random    953.8162   1.2902   
    sampling    957.5340 

  Linear    953.7194   1.4115    0.0028        
 model    957.6103 

  SFEM,    953.8040   1.2941    1.5786e-5   46 
    full     957.5280 

  SFEM,    953.8033   1.2941    1.5761e-5   10 
    truncated    957.5273   
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Performance of SFEM model 

12 parameters:   Range    Variance   Error variance  # 
Cp-coolant, K-fuel, K-coolant,  h          points 
  Random    953.8162   1.2902   
    sampling    957.5340 

  Linear    953.7482   1.3679    0.0012           
 model    957.5786 

  SFEM,    953.8040   1.2941    1.5786e-5   72 
    full     957.5280 

  SFEM,    953.8033   1.2941    1.5762e-5   11 
    truncated    957.5273   
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Max temp For 12 parameters:  
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Mean Square Error 
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Control variate error versus effort.  
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Conclusion    

  We have defined a SFEM method for high-order approximation of the
 response of a multiphysics system.  

  The method uses derivatives to fit the SFEM polynomial, a first, to our
 knowledge.  

  For a simplified ABR model this results in 2 orders of magnitude
 improvement in variance over the linear model when both are used as a
 control variate. The absolute value of the improvement is small in this
 case, but we expect it to grow with more parameters.  

  The method has several challenges: basis pruning, sample choice which
 will be studied in further work.  


