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Optimization-Areas of research

B Continuous optimization

— Complementarity constraints; Diff variational inequality
— PDE-constrained optimization

— Derivative-free optimization

— Multiscale Optimization

B Mixed integer nonlinear programming (MINLP)
B Automatic Differentiation.

B Uncertainty quantification

— Stochastic Optimization
— (Gaussian Processes




Applications

B Computational Chemistry.
B Pebble Bed Nuclear Reactors.

B Energy Markets/Energy
Distribution.

® Nuclear Physics.

® Climate/Economics/Energy
Models.

@ Nuclear Waste Reprocessing
Plants.

B Off-road vehicle design.
m...







Tools

® We specialize primarily in continuous optimization.

min  f(x)
st. g(x)=<0
B Software: h(x)=0
— MINPACK, PATH, filterSQP—serial codes but widely

used.

— Toolkit for advanced optimization (TAO)—highly
scaleable , built on PETSC

— The NEOS server (Beale-Orchard-Hayes prize)




Do we solve big optimization problems? ...

M Yes.




Toolkit for advanced optimization (TAO)

M Scalable Optimization Tools for Optimization
B Primarily for PDE-constrained Optimization

Processors | BLMVM | Execution | Percentage of Time
Used Iterations Time AXPY Dot FG

8 996 1083.8 31 9 60

16 991 538.2 30 10 60

32 966 267.7 29 11 60

64 993 139.5 27 13 60

128 987 72.4 25 15 60
256 996 39.2 26 18 56
512 1000 21.6 23 22 53

Table 1: Scalability of BLMVM on Obstacle Problem with 2,560,000 variables.




Using the Computational Grid ..

B People envision a “Computational Grid” much like the
national power grid

M Users can seamlessly draw computational power
whenever they need it

® Many resources can be brought together to solve very
large problems

® Gives application experts the ability to solve problems
of unprecedented scope and complexity, or to study
problems which they otherwise would not.

M |t is ideally suited for sampling-based applications
where the vast majority of the computing can be done
asynchronously.




The problem

The World's Largest LP

@ Storm — A stochastic cargo-flight scheduling problem (Mulvey
and Ruszczyniski)

@ We aim to solve an instance with 10,000,000 scenarios
@ 1 C %121’%{: c §R1259

@ The deterministic equivalent LP is of size

A € §985.032,889x12,590,000,121




The “supercomputer”

B An ad-hoc entity created with help of grid middleware

(CONDOR-GLOBUS)

Number Type Location
184 Intel /Linux Argonne
254 Intel/Linux | New Mexico
36 Intel /Linux NCSA
265 Intel /Linux Wisconsin
83 Intel/Solaris | Wisconsin
239 Sun/Solaris Wisconsin
124 Intel/Linux | Georgia Tech
90 Intel /Solaris | Georgia Tech
13 Sun/Solaris | Georgia Tech
9 Intel/Linux | Columbia U.
10 Sun/Solaris | Columbia U.
33 Intel/Linux | Italy (INFN)
1345




Statistics

Wall clock time 31:53:37
CPU time 1.03 Years
Avg. # machines 433
Max # machines 556
Parallel Efficiency 67%
Master iterations 199
CPU Time solving the master problem 1:54:37
Maximum number of rows in master problem 30647




Worker performance
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NEOS Server

M |n addition to creating software, or solving specific
applied math problems, we support the NEOS server.

H http://www-neos.mcs.anl.gov

B Optimization Software Developers connect their own
solvers to NEOS.

W Users can try multiple solvers.

B Submission is supported by web interface or as remote
library in either modeling language (AMPL, GAMS) or
programming language input (MATLAB, FORTRAN).

B Supports differentiable constrained optimization, mixed
iInteger nonlinear programming, global optimization,
complementarity problems, network’™ programming ...




Mathematical Programming with Equilibrium/
Complementarity Constraints (MPEC/MPCC)—Definition

and context

B MPEC are important model problems in structural
engineering, economics, data analysis, and have generated
substantial activity in NLP algorithmic research.

B They appear (for example) if the multipliers of a lower-level
optimization problem are primal variables in an embedding
optimization problem (bilevel optimization) .

min f(x,y,w)

X,V W,Z
sbj.to g(x,y,w) <0
h(x,y,w) =0
Y, W =0

(V'w=0) y'w =0




Challenges in the algorithmics of MPEC

M The difficulty of this problems arises from the fact that,
at a solution, the gradients of the active constraints are
linearly dependent, and that, even worse, the Lagrange
multipliers are unbounded.

M |nitial investigation with classical nonlinear
programming algorithms showed a 50% failure rate.

M |t was long believed that these problems can be
reliably solved only by specialized techniques such as
bundle trust region methods and disjunctive technique,
both of which may have exponential complexity.




The elastic mode approach

B The elastic mode: a classical safeguarding technique.

m Key: for the generic case, f&r  sufficiently large but
fixed, the elastic mode problem has the same solution as
the MPEC, but bounded multipliers (2005, in print).

min f(xa ya W) + C(ezgh + egTSg + gc)
X,V W,Z
Sbj.tO g(xa Vs W) = Sg
_gh = h(xayaw) = gh
VW =0
yTw <&,




Results/Impact

B We have shown that the elastic mode solves the
generic case and achieves superlinear convergence
(2005, in print).

B \We have obtained global convergence results for
bilevel optimization problems (2005, in print), as well as
for the general MPEC, while solving inexact
subproblems (2005, submitted).

M Sven Leyffer, in addition of investigating the benefits of
using a filter approach, has created the MacMPEC test
set, which is the de facto standard for MPEC algorithm
testing.

M 3 of our initial papers have 40, 25, 24 Google citations.

M Elastic mode has been implemented, beyond SNOPT,
applied {o

A
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Can | simulate efficiently systems with many
switches ...

B Such as granular dynamics. Normally attacked by DEM

M Yes.




Nonsmooth contact dynamics—what is it?

M Differential problem with variational inequality constraints —

DV Newton Equations | [ Non-Penetration Constraints
M@ =j Z (cff)n(j) + Bt + BUET + f.(q,v) + k(t,q,v)
dt j=lTrp
% = T(q) Generalized Velocities
c'/ = 0 1L ®V(g)=0, j=12,..p

[ ( 0, 2(1)) - argminu<f>c,gf>2\/(/3§f>+/3§f>)2 [(VTtl(J)) [3’1+(th§1)) /32] ]

\_

H Truly, a Differential Problem with Equilibrium Constraints




Differential Optimization versus ADAMS

B ADAMS is the workhorse of
engineering dynamics.

B ADAMS/View Procedure for
simulating.

B Spheres: diameter of 60 mm
and a weight of 0.882 kg.

B Forces:smoothing with _——
stiffness of 1E5, force
exponent of 2.2, damping
coefficient of 10.0, and a
penetration depth of 0.1 ...
even if it is not yet accurate
enough!










ADAMS versus ChronoEngine

Table 2: Number of rigid bodies v. CPU time in ChronoEngine

Number of Spheres Max Number of Mutual | CPU time (seconds)
Table 1: Number of rigid bodies v. CPU time in ADAMS Contacts [-]
Number of Spheres Max Number of Mutual | CPU time (seconds) 1 1 0.70
Contacts [-] 2 3 0.73
! : o 4 14 0.73
4 14 775 8 44 0.76
3 44 2536 16 152 0.82
16 152 102.78 32 560 1.32
32 560 644.4 64 2144 2.65
The following graph shows the nonlinear increase in the CPU time as the number of 128 8384 6.17
colliding bodies increases. 236 33152 1530
CPU ti . Number of sph inCh Engi =0.0563x + 0.0446
CPU time v. Number of Spheres in ADAMS o aoaco 20007 1 154 Wme:¥. Number of sphores In ChronoEngine. 'y . 0'9‘;82
R® = 0.9985 18
700
16
600 / *
// 14 =
500 / 12 //
% 400 T 10 /
2 300 2 8 -
° 5}
55 6 /,/
/ L
100 2 / /
0 Ty ] -~ *
0 5 10 15 20 25 30 35 2
0 50 100 150 200 250 300
Number of Spheres [-]
Number of spheres []

Conclusion 1: Often, time stepping is more promising,
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Hard Constraint (time stepping) Simulations

M Different from hard particle, since they do not
necessarily stop at collisions, and do not suffer from
the strong time step limitation of penalty (spring and
dashpot) approaches.

B At every step they solve a Linear Complementarity
Problem.

B Qur contributions have included the definitions of
scheme with solvable subproblems (1997),
accommodation of stiffness (2001), constraint
stabilization (2004 ), fixed time step (2004).

B Method is widely used in robotics and gaming.

B Unfortunately, the subproblem may be nonconvex
(2004), which may be a considerable obstacle for large

AAAAAAAAAAAAAAAAAA -




Optimization-based simulation of nonsmooth dynamics.

B We have defined a scheme that solves only convex
subproblems, and takes a fixed time step.

® \We proved that the method converges to the same weak
formulation as the original approach (2005, in print).

B We have simulated segregation of granular materials with
1074 Iarg+el)r time step than spring.dashpot models.
1%

= argmin, E;T Mvy+k®'y
subject to Vo y - u'” \/(tfj)T 13)2 + (téj)T 1:)2
|
~DU)(g0) >0
h

i€ AV, e), k=12,.,m”




Simulating the PBR nuclear reactor

B The PBR nuclear reactor:
-Fourth generation design

-Inherently safe, by Doppler
broadening of fission cross

section
-Helium cooled > 1000 °C

-Can crack water (mass
production
of hydrogen)

-Continuous cycling of 360°000
graphite spheres in a pebble
bed

i
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Simulating the PBR nuclear reactor

B Problem of bidisperse granular
flow with dense packing.

M Previous attempts: DEM methods
on supercomputers at Sandia
Labs regularization)

M 40 seconds of simulation for
440,000 pebbles needs 1 week
on 64 processors dedicated
cluster (Rycroft et al.)

model a frictionless wall, ,=0.0. For the current simula-
tions we set kf=%kn and choose k,=2x10° gm/d. While
this is significantly less than would be realistic for graphite
pebbles, where we expect k,>10' gm/d, such a spring
constant would be prohibitively computationally expensive,
as the time step scales as &fock; " for collisions to be mod-
eled effectively. Previous simulations have shown that




Simulating the PBR nuclear reactor

B 160'000 Uranium-Graphite
spheres, 600°000 contacts on
average

B Two millions of primal
variables, six millions of dual
variables

B 7 day on a Windows station...

B But we are limited by the 2GB
user mode limit, 64 bit port in
progress—nbut linear scaling..

B \We estimate 3CPU days,
compare with 450 CPU days
for an incomplete solution in
2006 !

B Answer 3: Our approach is
efficient for large scale!!







In addition, we can approach efficiently
approach many engineering problems (see
website for papers) |













New computational opportunity: GPU

. Entry BG/L mOdel : 1 024 Floating Point Operations per Second for the CPU and GPU
dual core nodes 50

W 5.7 Tflop (compare to 0.5 59 = GeForcs BB CTX

G71 = GeForce 7900 GTX

Tflop for NVIDIA Tesla 071 670 = Geforce 780067

NV40 = GeForce 6800 Ultra

G P U ) NV/35 = GeForce FX 5950 Ultra G71
250 1" |NV30 = GeForce FX 5800
] G70-512
B Dedicated OS

G80

G70

» 200
B Dedicated power 5 +'N;'D|C;P;’ F
management solution © 150 o oeFeres
M Require dedicated IT 100 -
S u p po rt Intel Core2 Duo 3.0 GHz \

50 -

/

Jan-03  Jul-03  Feb-04 Aug-04 Mar-05 Sep-05 Apr-06 Nov-06

B Price (2007): $1.4 million

—

® Same GPU power (2008): ©
7K




Brick Wall Example...

B Times reported are in seconds for one second long simulation
B GPU: NVIDIA GeForce 8800 GTX

THE UNIVERSITY

| WISCONSIN

MADISON

Bricks Sequential Version GPU Co-processing

Version
1000 43 6
2000 87 10

8000 319 42







Tests

MFeasibility accuracy increases with number of iterations:

0.3 | 1 I 1 | 0.003 E I ! et ' 80 '
- . . ! E max iterations =
! max iterations = 80 : max iterations =40 -~~~
025 pememiombons max iterations =40 ——--- _ 0.0025 f=--------t- max iterations = 20 -- - - - - -

, 2 A t1 =) - - - - - v : . .
max iterations = 20 : max iterations = 10 -
max iterations = 10 -~ 3 : : : :
31173 SRS U RS SN S S

.

0.2 .
— = T L
W - ) S morhi R R R L L L L R il
0.1 0.001 : -
0.05 |+ 0.0005 b
0 i/ L4 s YWV ¥ ALY /!
5 5 25 3
0 50 100 150 200 250 300 0 0 100 }‘0 200 0 300
. ) fime steps
fime SIépS
Speed violation in constraints Position error in constraints (penetration)

(with example of 300 spheres in shaker)
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Tests: Scalability

BCPU effort per contact, since our contacts are the problem variables.
M Penetration error was uniformly no larger than 0.2% of diameter.

0.8

0.7 |- S —————————————————— -

=
=
g 0.6 |—----romdrmr b av /. 01
4
5B, 0.5 [— b /’
<
- E o4l / ———————— -
\J = -
1400 T T T NV/‘,‘! 2
Potential c PO i el - e - -d-- &S 0.3 = / """"""""" -
1200 [—---oooompe Active cOtiaf —9—‘—1'ft§~f*—fff———v\ v % oz i / ,,,,,,,,,,,,,,,,,,,, O
€ 1000 _ { I R e T ————————
il sy il N,—:,;f»” MT*-""
2 NP AV R 0
B 800 [—----oooo- wv/‘f ffffff ;xf\rI»—*— o e , o 2000 4000 6000 8000 1
=2 BN Tt number of contacts
§ 600 |- PR as T CEREE L CSn RREEEEEEEEEEETS —
: S 200
400 |—------ B ot NN —
,,J‘\ Cavd
200 6 50
o 50 100 150 200 U 250 300

time steps

Number of contacts in time, 300 spheres

CPU time per step for 300-1500 spheres
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Multiscale and Optimization

M If | reduce an optimization problem by a multiscale
ansatz, will it be well posed? ...

B Sometimes.




Multiscale Approaches for Problems in Material Science.

M ... inspired by the quasicontinuum approach (Tadmor et al.).
M High resolution model

o B S (x,x,)
sbj. to  g(x,,x,)=0.

* Representative (coarse-scale) DOF, X, dim(x;) < dim(x,).

* Key observation: at the solution of the problem we have *, =X, ,
where 7' is an interpolation operator.

* Replace (O) with (RE), of much smaller dimension

V. f(x,Tx)+V, g(x,Tx)A = 0,
g(x,Tx) = 0.

(RE)




Electronic structure computations

M Electronic structure computation, a fundamental problem in
chemistry and nanomaterials.

minpzo E(p9 {[{A}
s.1. fp =N

E[p. R, J=E.[o. R J+I[p]+K[p]+T[p]

* Functionals £, [p,{RAH, J|p ] are computed from classical
electrostatic theory, but K [P] and, especially, [P](kinetic) need

to be computed by Density Functional Theory (DFT).
* In orbital-free DFT (Carter et al.), the functionals are explicit, but not
in Kohn-Sham DFT (which is more accurate).




A multiscale approach for electronic density nanoscale

simulations

Kohn Sham can deal with ~10*3 atoms,
whereas nanoparticles may have 1077
atoms.

Multiscale approach: reduces the
degrees of freedom.

Representative variables: The density
in the representative domains

Y ,a=12,...,p.

The interpolation operator is

constructed with respect to a reference
crystalline mesh (2005, in print)

P

(@', 0) =Y 8, ()P, (@(° +T,.1))

o=1

D

Ds

Ds

Dg

Grid Node
(mesh for Yy)

\ Gauss

Quadrature
Point




The nonlinear variational inequality approach

Electronic Density Computed by two Methods
T T

® \We substitute the T [ momee v
interpolation operator EEE P
in the optimality
conditions, (VI). i | E ﬁ
B Example: Thomas- SEEEERERER:
Fermi DFT on 11 SRS EEEE R B!
Hydrogen atoms, |
using less than 50% 11 i% 1
degreas=df fraedbm. ot ¥ Q%b
(V] )0 = 8 (xlaT xl) o . ” ” L L 1' -

0 = V, f(x.Tx)+V, g(x,Tx)A+n.




The nonlinear optimization approach

* “Interpolate and optimize” as

Relative Reconstruction Error

opposed to “Optimize and
Interpolate”.

* Allows us to use optimization
tools, with costlier setup but
more robustness.

* We proved that (RO) gives _
solutions of the same quality
as (RE) (2005, in preparation) |
min J(x,Tx,)
(RO)sby. to  g(x,,7x;) =0, l

05-

xl 2 O. -1.5




Interpolate and Optimize, one step further

M |nterpolation gives assembly rule with precomputable

kernels. &2 | | |
J(p) = EE E fY fyo Ko (@' ,r)p, (@(x°,0)p, (P(r",1))dr"dr’
a=1 y=1% *% 7

E, (p)=- \ fYo I.(@)p, (®,0))dro,

[pde=3 [, 3100, @0",0)dr".

* By a separation of scales argument,

Tlpl+ Klpl= Y [, 37000 (0, @, 0)de” = SW_(T1p]+KLpl),.




Results for the kinetic energy interpolation
approach

Energy density compatrison between two methods

* 11 Hydrogen atoms. “ ' ' BT ——
* There are a few domain s

boundary artifacts but do

not exceed 2% of peak. or

* Investigation in superior sl
interpolation techniques
is warranted . 2




Algorithms for rigid encapsulation of DFT

B Kohn-Sham encapsulations are not p—=Tlplo,T[p]
but rather

7, ()= p=agmin E[p,7,].

Pa ’fpa =(qq @

* With “interpolate and optimize”, we obtain the following
expression, where L is assembled using precomputable

kernels and acts as an external field

min ,_, 2 w,E,(p, {RA } +L ({pa }a=1,p )

D
s.t. 2 y M@)o (@@, 0)dr’ = N.




Algorithms for rigid encapsulation of DFT (Il

* We can use a nested SOR Gauss-Seidell iteration which at
every step uses the rigid Kohn-Sham encapsulation.

* We proved convergence for sufficiently small relaxation
parameter (2005, in preparation).

* As more flexible Kohn-Sham implementations, that provide
more local information, become available, the convergence can
be accelerated.




Status

EDcdlistribution

® Project started in January,
with LDRD support.

® We completed 1-
dimensional test cases,
and implementation of 3D
Thomas-Fermi DFT w/o
iInterpolation.

B Joint work with Peter
Zapol (ANL/MSD) , Dan
Negrut, Todd Munson,
(ANL/MCS), Adrian
Kopacz (NWU), 2
proceedings papers and 1
INn progress.







What is the right frame of mind for decision
making?

B Usually design (optimization) and risk analysis/
uncertainty are separate endeavors.

® We argue (complex systems call) that they are hard-to-
separate elements of decision making.




Optimization under uncertainty

B Necessary for robust and cost-effective design.

B Perhaps not so widespread due to the fact that
computational effort was a limitation until very recently.

B One possible formulation — stochastic optimization

MiN, (2)(w), W) (W) ueq By [f(z,y(w), 2(w),w)]
subject to cz,y(w), s(w), z2(w),w) <0iweQ
A (z,y(w), s(w), z(w),w) =0;weQ
Sz, y(w), s(w), z(w),w) =0;weN
0 <yi1(w) L s(w) = F(z,y(w),z(w),w) > 0w € €2,

B Used for crew scheduling, portfolio optimization,
iInvestigated in nuclear reactor design, nuclear waste
plant design ..




Design under uncertainty of nuclear reactors

B A huge, multiphysics, multiple time scales, stochastic
optimization problem.

B The workhorse technique has been first-order
sensitivity analysis with Gaussian pdf (Cacuci, 1982).
Probably a precursor for many other fields — the
favorite complex system example.

B It has been undertaken for more than 5 decades (even
for ABR) ... so is there something to still do here?

B To answer this, we look at the economics and the
various scales of the problem.




Nuclear Power Economics 101

B US Nuclear Business in FY06 sales: $64B

B Annual costs for a new 1000 MWe power plant
— Total = $391M (4.9 cents/KWh)
— Capital = $254M (3.2 cents/KWh)
— O&M = $101M (1.27 cents/KWh)
— Fuel = $36M (0.45 cents/ KWh)

Source: Paul Turinsky —
MCSNA 07




Nuclear Power Economics 101.

B Annual savings in bus-bar electrical energy cost for 1%
power uprate of one 1000 MWe LWR (assuming annual
capital and O&M costs fixed) = $3.55M/year

* OR

® A 0.3% power uprate of one 1000 MWe LWR results in

bus-bar electric energy cost savings of $1M/year

B Annual savings in bus-bar electrical energy cost for 1%
reduction in fuel cost for one 1000 MWe LWR =
$0.36M/year

* OR

B A 2.8% reduction in fuel cost for one 1000 MWe LWR
results in bus-bar electric energy cost savings of $1M/
year




How are power uprates achieved?

B Modification of
nuclear fuel design to
extract higher power
with the same
thermal margins.
design margin,e.g.
BWR 7x7 lattice =>
10x10 lattice =
15-20% power
uprates

M The power uprates in
the last 3 decades
amount to about 5
new reactors!

U.S. Nuclear Industry Cumulative
Power Uprates

1977-2007

1985 1989 1993 1997 2001

Cumulative MWe

Source: Nedear Ragulwory Commission
Updacad: 407




Stochastic finite element method

B A surrogate model is an explicit approximation ~ ¥(@)
in some basis J=d=3x¥,
q

B Stochastic Finite Element Method (SFEM):

- Choose a set of multi-variable orthogonal polynomials
%Y. Use some subset {¥/,} to approximate the output
function:
f‘I’p‘I’qdn=O p=q

- The coefficients P in the definition of each polynomial
are chosen to satisfy the orthogonality condition in
some measure T1T:

AAAAAAAAAAAAAAAAAA

- For Gaussian probability measure,

” 1 1




SFEM: Derivative-based Regression

M Collocation procedure: evaluate the basis polynomials
at the sample points in the parameter space, run full
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right hand side.

B |f we implement the adjoint wisely, we can get NP times
more information for not even on extra function evaluation
cost !l
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Control Variate Performance 3 Parameters

Theoretical improvermnent of quality, 3 parameters, loglog. scale:

—— SFEM, full basis
— SFEM, truncated
Linear model
Monte-Carlo
1 SFEM, no derivatives
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Control Variate Performance, 6 Parameters

Theoretical improvement of quality, 6 parameters, loglog. scale:

— SFEM, full basis
— SFEM, truncated
Linear model
Monte-Carlo

1+ SFEM, no derivatives
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Control Variate, 9 parameters

Thearetical improvement of quality, 9 parameters, loglog. scale:

—— SFEM, full basis
— SFEM, truncated

Linear model
Monte-Carlo
1+ SFEM, no derivatives
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Control Variate 12 parameters

Theoretical improvement of quality, 12 parameters, loglog. scale:

— SFEM, full basis
— SFEM, truncated
Linear model
Monte-Carlo
1+ SFEM, no derivatives
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Spatial Uncertainty Calculations

Geostatistics
B




How is this useful? The input and the output
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Vehicle behavior of a car on patches of ice:
ADAMS model

Multiple Runs  Time= 0.0000 Equilibrium Frame=0001

® kyle schmitt (Online) Skype™ Chat
( kyp

() add v Send

[ chat history enabled Wwhat does this mean? kyle schmitt
112052 AM
JMad says: 11:25:44 AM
i'm making some animations too

11:25:45 AM
for the website

11:25:43 AM
cause they look cool

kyle schmitt says: 11:25:56 AM
nice!!

11:26:10 AM
wou should link them to me if you ever get a
chance

JMad says: 11:26:11 AM
should i include the road grid or remove it?

kyle schmitt says: 11:26:14 AM
imean link me to them

JMad says: 11:26:21 AM
ok

kyle schmitt says: 11:26:24 AM
include if it looks ok

JMad says: 11:30:08 AM
mihai just friended me

11:30:09 AM { +)) 4dd more people to this chat
i think >
& Emoticons ii'l Videos A\ SetFont v JIMad

matlab and |

Personalise »
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Our method is faster and more efficient for
storage

03 Comparison of Runtimes vs. Number of Interpolated Points
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