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Optimization-Areas of research  

 Continuous optimization 
–  Complementarity constraints; Diff variational inequality 
–  PDE-constrained optimization 
–  Derivative-free optimization 
–  Multiscale Optimization 

 Mixed integer nonlinear programming (MINLP) 
 Automatic Differentiation. 
 Uncertainty quantification 

–  Stochastic Optimization 
–  Gaussian Processes 
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Applications  

 Computational Chemistry. 
 Pebble Bed Nuclear Reactors.  
 Energy Markets/Energy 

Distribution. 
 Nuclear Physics. 
 Climate/Economics/Energy 

Models. 
 Nuclear Waste Reprocessing 

Plants. 
 Off-road vehicle design. 
 …. 
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Tools  

 We specialize primarily in continuous optimization.  

 Software:  
–  MINPACK, PATH, filterSQP—serial codes but widely 

used. 
–  Toolkit for advanced optimization (TAO)—highly 

scaleable , built on PETSC 
–  The NEOS server (Beale-Orchard-Hayes prize) 



Do we solve big optimization problems? … 

 Yes.  
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Toolkit for advanced optimization (TAO) 

 Scalable Optimization Tools for Optimization 
 Primarily for PDE-constrained Optimization 
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Using the Computational Grid .. 

 People envision a “Computational Grid” much like the 
national power grid 

 Users can seamlessly draw computational power 
whenever they  need it 

 Many resources can be brought together to solve very 
large problems 

 Gives application experts the ability to solve problems 
of unprecedented scope and complexity, or to study 
problems which they otherwise would not. 

 It is ideally suited for sampling-based applications 
where the vast majority of the computing can be done 
asynchronously. 
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The problem 
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The “supercomputer” 

 An ad-hoc entity created with help of grid middleware 
(CONDOR-GLOBUS) 
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Statistics 
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Worker performance  
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NEOS Server   

 In addition to creating software, or solving specific 
applied math problems, we support the NEOS server.  

 http://www-neos.mcs.anl.gov 
 Optimization Software Developers connect their own 

solvers to NEOS.  
 Users can try multiple solvers. 
 Submission is supported by web interface or as remote 

library in either modeling language (AMPL, GAMS) or 
programming language input (MATLAB, FORTRAN). 

 Supports differentiable constrained optimization, mixed 
integer nonlinear programming, global optimization, 
complementarity problems, network` programming … 
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Mathematical Programming with Equilibrium/
Complementarity Constraints (MPEC/MPCC)—Definition 
and context 
 MPEC are important model problems in structural 

engineering, economics, data analysis, and have generated 
substantial activity in NLP algorithmic research.   

 They appear (for example) if the multipliers of  a lower-level 
optimization problem are primal variables in an embedding 
optimization problem (bilevel optimization) . 
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Challenges in the algorithmics of MPEC 

 The difficulty of this problems arises from the fact that, 
at a solution, the gradients of the active constraints are 
linearly dependent, and that, even worse, the Lagrange 
multipliers are unbounded.  

 Initial investigation with classical nonlinear 
programming algorithms showed a 50% failure rate.  

 It was long believed that these problems can be 
reliably solved only by specialized techniques such as 
bundle trust region methods and disjunctive technique, 
both of which may have exponential complexity.   
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The elastic mode approach 

 The elastic mode: a classical safeguarding technique.  
 Key: for the generic case, for     sufficiently large but 

fixed, the elastic mode problem has the same solution as 
the MPEC, but bounded multipliers (2005, in print). 
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Results/Impact 

 We have shown that the elastic mode solves the 
generic case and achieves superlinear convergence 
(2005, in print). 

 We have obtained global convergence results for 
bilevel optimization problems (2005, in print), as well as 
for the general MPEC, while solving inexact 
subproblems (2005, submitted). 

 Sven Leyffer, in addition of investigating the benefits of 
using a filter approach, has created the MacMPEC test 
set, which is the de facto standard for MPEC algorithm 
testing.  

 3 of our initial papers have 40, 25, 24 Google citations.  
 Elastic mode has been implemented, beyond SNOPT, 

by LOQO and KNITRO and successfully applied to 
MPEC. 



Can I simulate efficiently systems with many 
switches …   

 Such as granular dynamics. Normally attacked by DEM 

 Yes.  
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Nonsmooth contact dynamics—what is it? 
 Differential problem with variational inequality constraints  – 

DVI 

 Truly, a Differential Problem with Equilibrium Constraints 
Friction Model 

Newton Equations Non-Penetration Constraints 

Generalized Velocities 
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Differential Optimization versus ADAMS 

  ADAMS is the workhorse of 
engineering dynamics. 

  ADAMS/View Procedure for 
simulating.  

  Spheres: diameter of 60 mm 
and a weight of 0.882 kg. 

  Forces:smoothing with 
stiffness of 1E5, force 
exponent of 2.2, damping 
coefficient of 10.0, and a 
penetration depth of 0.1 … 
even if it is not yet accurate 
enough! 









ADAMS versus ChronoEngine 

Conclusion 1: Often, time stepping is more promising,  
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Hard Constraint (time stepping) Simulations 

 Different from hard particle, since they do not 
necessarily stop at collisions, and do not suffer from 
the strong time step limitation of penalty (spring and 
dashpot) approaches. 

 At every step they solve a Linear Complementarity 
Problem.  

 Our contributions have included the definitions of 
scheme with solvable subproblems (1997), 
accommodation of stiffness (2001), constraint 
stabilization (2004), fixed time step (2004).  

 Method is widely used in robotics and gaming.  
 Unfortunately, the subproblem may be nonconvex 

(2004), which may be a considerable obstacle for large 
scale applications. 
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Optimization-based simulation of nonsmooth dynamics. 

 We have defined a scheme that solves only convex 
subproblems, and takes a fixed time step.  

 We proved that the method converges to the same weak 
formulation as the original approach (2005, in print).  

 We have simulated segregation of granular materials with 
10^4 larger time step than spring dashpot models.  



Simulating the PBR nuclear reactor 

 The PBR nuclear reactor: 
- Fourth generation design 
- Inherently safe, by Doppler 
broadening of fission cross 
section 

- Helium cooled > 1000 °C 
- Can crack water (mass 
production 
of hydrogen) 

- Continuous cycling of 360’000  
graphite spheres in a pebble 
bed 

Granular  
flow 



Simulating the PBR nuclear reactor 

 Problem of bidisperse granular 
flow with dense packing.  

 Previous attempts: DEM methods 
on supercomputers at Sandia 
Labs regularization) 

 40 seconds of simulation for 
440,000 pebbles needs 1 week 
on 64 processors dedicated 
cluster (Rycroft et al.) 

Simulations with DEM.  Bazant et al. (MIT and  Sandia laboratories). 



Simulating the PBR nuclear reactor 
  160’000 Uranium-Graphite 

spheres, 600’000 contacts on 
average 

  Two millions of primal 
variables, six millions of dual 
variables 

  1 day on a Windows station… 
  But we are limited by the 2GB 

user mode limit, 64 bit port in 
progress—but linear scaling.. 

 We estimate 3CPU days, 
compare with 450 CPU days 
for an incomplete solution in 
2006 !!! 

  Answer 3: Our approach is 
efficient for large scale!! 
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In addition, we can approach efficiently 
approach many engineering problems (see 
website for papers) 
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New computational opportunity: GPU 

 Entry BG/L model: 1024 
dual core nodes 

 5.7 Tflop (compare to 0.5 
Tflop for NVIDIA Tesla 
GPU) 

 Dedicated OS 
 Dedicated power 

management solution 
 Require dedicated IT 

support 
 Price (2007): $1.4 million 
 Same GPU power (2008): 

7K!!! 
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Brick Wall Example… 

  Times reported are in seconds for one second long simulation 
  GPU: NVIDIA GeForce 8800 GTX 






Tests 

 Feasibility accuracy increases with number of iterations: 

Speed violation in constraints Position error in constraints (penetration) 

(with example of 300 spheres in shaker) 



Tests: Scalability 
 CPU effort per contact, since our contacts are the problem variables. 
 Penetration error was uniformly no larger than 0.2% of diameter.   

Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres 
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Multiscale and Optimization   

 If I reduce an optimization problem by a multiscale 
ansatz, will it be well posed? … 

 Sometimes.  
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Multiscale Approaches for Problems in Material Science. 

 … inspired by the quasicontinuum approach (Tadmor et al.). 
 High resolution model      

•  Representative (coarse-scale) DOF,  
•  Key observation: at the solution of the problem we have              , 

where     is an interpolation operator. 
•  Replace (O) with (RE), of much smaller dimension 
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Electronic structure computations 

 Electronic structure computation, a fundamental problem in 
chemistry and nanomaterials. 

•  Functionals                              are computed from classical 
electrostatic theory, but          , and, especially,           (kinetic) need 
to be computed by Density Functional Theory (DFT).  

•   In orbital-free DFT (Carter et al.), the functionals are explicit, but not 
in Kohn-Sham DFT (which is more accurate). 
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A multiscale approach for electronic density nanoscale 
simulations 
•  Kohn Sham can deal with ~10^3 atoms, 

whereas nanoparticles may have 10^7 
atoms.  

•  Multiscale approach: reduces the 
degrees of freedom. 

•  Representative variables: The density 
in the representative domains  

                               . 
•  The interpolation operator is 

constructed with respect to a reference 
crystalline mesh  (2005, in print) 
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The nonlinear variational inequality approach 

 We substitute the 
interpolation operator 
in the optimality 
conditions, (VI). 

 Example: Thomas-
Fermi DFT on 11 
Hydrogen atoms, 
using less than 50% 
degrees of freedom.  
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The nonlinear optimization approach 

•  “Interpolate and optimize” as 
opposed to “Optimize and 
Interpolate”. 

•  Allows us to use optimization 
tools, with costlier setup but 
more robustness. 

•  We proved that (RO) gives 
solutions of the same quality 
as (RE) (2005, in preparation) 
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Interpolate and Optimize, one step further 

 Interpolation gives assembly  rule with precomputable 
kernels. 

•  By a separation of scales argument,  
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Results for the kinetic energy interpolation 
approach 
•  11 Hydrogen atoms. 
•  There are a few domain 

boundary artifacts but do 
not exceed 2% of peak.  

•  Investigation in superior 
interpolation techniques 
is warranted .  
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 Algorithms for rigid encapsulation of DFT 

 Kohn-Sham encapsulations are not                                
but rather  

•  With  “interpolate and optimize”, we obtain the following 
expression, where     is assembled using precomputable 
kernels and acts as an external field 
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 Algorithms for rigid encapsulation of DFT (II) 

•  We can use a nested SOR Gauss-Seidell iteration which at 
every step uses the rigid Kohn-Sham encapsulation. 

•  We proved convergence for sufficiently small relaxation 
parameter (2005, in preparation). 

•  As more flexible Kohn-Sham implementations, that provide 
more local information, become available, the convergence can 
be accelerated.  
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Status 

 Project started in January, 
with LDRD support.  

 We completed  1-
dimensional test cases, 
and  implementation of 3D 
Thomas-Fermi DFT w/o 
interpolation.  

 Joint work with Peter 
Zapol (ANL/MSD) , Dan 
Negrut, Todd Munson, 
(ANL/MCS), Adrian 
Kopacz (NWU), 2 
proceedings papers and 1 
in progress.  






What is the right frame of mind for decision 
making?   

 Usually design (optimization) and risk analysis/
uncertainty are separate endeavors. 

 We argue (complex systems call) that they are hard-to-
separate elements of decision making.  
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Optimization under uncertainty  

 Necessary for robust and cost-effective design.  
 Perhaps not so widespread due to the fact that 

computational effort was a limitation until very recently.  
 One possible formulation – stochastic optimization 

 Used for crew scheduling, portfolio optimization, 
investigated in nuclear reactor design, nuclear waste 
plant design .. 
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Design under uncertainty of nuclear reactors 

 A huge, multiphysics, multiple time scales, stochastic 
optimization problem.  

 The workhorse technique has been first-order 
sensitivity analysis with Gaussian pdf (Cacuci, 1982). 
Probably a precursor for many other fields – the 
favorite complex system example.  

 It has been undertaken for more than 5 decades (even 
for ABR) … so is there something to still do here? 

 To answer this, we look at the economics and the 
various scales of the problem.  
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Nuclear Power Economics 101 

 US Nuclear Business in FY06 sales: $64B 
 Annual costs for a new 1000 MWe power plant 

–  Total = $391M (4.9 cents/KWh) 
–  Capital = $254M (3.2 cents/KWh) 
–  O&M = $101M (1.27 cents/KWh) 
–  Fuel = $36M (0.45 cents/ KWh) 

Source: Paul Turinsky –
MCSNA 07 
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Nuclear Power Economics 101. 
 Annual savings in bus-bar electrical energy cost for 1% 

power uprate of one 1000 MWe LWR (assuming annual 
capital and O&M costs fixed) = $3.55M/year 

•  OR 

 A 0.3% power uprate of one 1000 MWe LWR results in 
bus-bar electric energy cost savings of $1M/year 

 Annual savings in bus-bar electrical energy cost for 1% 
reduction in fuel cost for one 1000 MWe LWR = 
$0.36M/year  

•  OR 

 A 2.8% reduction in fuel cost for one 1000 MWe LWR 
results in bus-bar electric energy cost savings of $1M/
year 
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How are power uprates achieved? 

 Modification of 
nuclear fuel design to 
extract higher power 
with the same 
thermal margins. 
design margin,e.g. 
BWR 7x7 lattice => 
10x10 lattice = 
15-20% power 
uprates 

 The power uprates in 
the last 3 decades 
amount to about 5 
new reactors! 



48 

Stochastic finite element method 

 A surrogate model is an explicit approximation                               
in some basis         . 

 Stochastic Finite Element Method (SFEM):  
-  Choose a set  of multi-variable orthogonal polynomials 
Ψ. Use some subset {Ψq} to approximate the output 
function: 

-  The coefficients P in the definition of each polynomial 
are chosen to satisfy the orthogonality condition in 
some measure π: 

-  For Gaussian probability measure,  
the basis is a set of Hermite polynomials: 
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SFEM: Derivative-based Regression 

 Collocation procedure: evaluate the basis polynomials 
at the sample points in the parameter space, run full 
model to compute the outputs        S at the sample 
points, assemble the collocation system Ψx=S: 

 Issue: we would like to use high-order polynomials.                                    
The number of sample points required to assemble                                    
Ψ grows rapidly. 

 Suggestions:  
-  For each sample point, include derivative information. 
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Using Derivatives 

  The only interaction with the physics code is only by the 
right hand side.  

  If we implement the adjoint wisely, we can get NP times 
more information for not even on extra function evaluation 
cost !!! 
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Control Variate Performance 3 Parameters 
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Control Variate Performance, 6 Parameters 
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Control Variate, 9 parameters 
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Control Variate 12 parameters 
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Spatial Uncertainty Calculations 

Geostatistics 

Meteorology  

Dynamic Simulations  

Finite Element Analysis  
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How is this useful? The input and the output 
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Vehicle behavior of a car on patches of ice: 
ADAMS model 
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Our method is faster and more efficient for 
storage 


