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Motivation: Granular Materials 

 The motion of a large, 
dense set of rigid particles:  
grand challenge of physics.  

 Despite centuries of study, 
and interest from DaVinci, 
Newton,  there is no 
satisfactory continuum 
theory or hybrid theory.  

 Difficulty:  co-existing gas, 
liquid, and solid phases. 

 I will use granular materials/
dynamics for “rigid 
multibody dynamics”  

1 million particle simulation 






Granular materials: applications 

 Important? The second-most manipulated material in 
industry after water (Richard, Nature Materials 2005). 

 Applications range from pharmaceutical, food, powders, 
petrochemical, nuclear, automotive, and semiconductor 
industries up to geological granular flows – some 
examples later.  

 Two perhaps non-intuitive but crucial energy 
applications.  
–  Circulating granular catalysts in refineries.  
–  Fluidized bed coal gasification (“clean coal”).  



Granular materials: Challenges, need for HPC 

 The absence of a continuum theory makes particle-by-particle 
computational approaches the only general first principles 
computing approach – we need HPC. 

 1 m^3 of sand: ~1 trillion granules. Enormous … but just about 
within reach.  

 In addition, the source of many open or difficult questions.  
–   Is there a “random” close packing of spherical particles?  (A 

maximum volume fraction of a random sphere population, 
Torquato et al., 2000). Postulated at ~0.636. Jamming. 

–  Nothing is known of the same when there is friction.  
–  The Kepler conjecture, proven in the last decade: in the 

deterministic case, the maximum space-filling volume 
fraction is the one of the cannonball arrangement: 0.7405 



(Dry) Granular materials: equations 

 Equations of motion: mixture of ordinary differential 
equations and variational inequalities/complementarity 
conditions. 

Friction Model 

Newton Equations Non-Penetration Constraints 

Generalized Velocities 



Granular materials: abstraction: DVI 

 Differential variational inequalities (DVI, Stewart and 
Pang, 03-08): Mixture of differential equations and 
variational inequalities. 

 In the case of complementarity, 

  Many, but not all of our conclusions will be extensible 
or applicable to this form of DVI,  



DVI: time-stepping methods    

 Our target methodology are time stepping methods. 

 Implicit in the VI variable, implicit-explicit in state, with 
possible linearization of the structural functions f,F. 

 Promises much larger time steps than smoothing with  
explicit integration: key to its stability and superior 
performance.  



Are all interesting DVI problems over R+? No.  

  Conic Complementarity IS NATURAL in granular dynamics (and MD). 
  Coulomb model. 

 Most previous time-stepping  discretize friction cone to use LCP… 
  Can we accommodate non-R+ cones naturally?  



Other applications of DVI: 

 Physics-based virtual reality.  
 Automotive design 
 Dynamics of multicristalline 

materials: evolution of the 
boundary between phases. 

 Porous Media Flow.  
 ….. 
 Generally appears  any time 

dynamics and “switching” is 
encountered.  









Our Inquiry 

 Can we efficiently simulate large-scale DVI, particularly 
granular dynamics, in a stable manner while being truthful 
to the physics of the respective applications? 

 Main interest is granular flow, but many results and 
techniques extend to general DVI.    



Content: The road to … 

 Solving DVI 
–  Smoothing versus hard constraints 
–  (1) Time Stepping  
–  Nonconvexity – (2) Convex Approximation:  
–  Some Theory 

 (3) Iterative Algorithms for the time-stepping 
subproblem. 

 Results 
–  Validation. 
–  GPU implementation 
–  Application Examples 

 Open problems/extensions.  



 Smoothing versus time-stepping 

  Recall, DVI (for C=R+) 

  Smoothing  

  Followed  by forward Euler. 
Easy to implement!! 

  Compare with the complexity 
of time-stepping 

  But does it give good results? 



Applying ADAMS to granular flow 

  ADAMS is the workhorse of 
engineering dynamics. 

  ADAMS/View Procedure for 
simulating.  

  Spheres: diameter of 60 mm 
and a weight of 0.882 kg. 

  Forces:smoothing with 
stiffness of 1E5, force 
exponent of 2.2, damping 
coefficient of 10.0, and a 
penetration depth of 0.1 









ADAMS versus ChronoEngine 

Often, time stepping is more promising. We follow this direction.  



Time-stepping scheme 
 Write an implicit-explicit scheme AS IF Painleve paradoxes 

do not exist.  
 We use linearization (Anitescu and Hart, 04) NOT index 

reduction : results in constraint stabilization.  
 Proceed with a fixed time step. Collisions are forced to be 

“simultaneous” within one step.  



Step 1 on the road. Time stepping scheme 
with fixed time step (no collision stop/restart) 

  A measure differential inclusion solution can be obtained by time-stepping 
(Stewart, 1998, Anitescu, 2006): *PEC (approximated by LCP) 

Speeds 

Forces 

Bilateral constraint 
equations 

Contact constraint 
equations 

Coulomb 3D friction 
model 

Stabilization 

 terms 

COMPLEMENTARITY! 

Reaction 
impulses 



Pause: Efficiency 

 This scheme allows fixed time steps for plastic 
collisions, major improvement in efficiency.  

 Nevertheless, the PATH solver (Lemke, the only one 
guaranteed to solve the cone-linearized subproblem), 
starts to take extremely long times past ~1000s of  
granules (Anitescu and Hart 04)… and we aim for 1 
trillion.  

 The main difficulty: the time-stepping subproblem is not 
convex.    



Time Stepping -- Convex Relaxation– Step 2 

  A modification (relaxation, to get convex QP with conic constraints): 

But In any case, 
converges to same 
MDI as unrelaxed 
scheme. 

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ] 

(For small m and/or 
small speeds, almost 
no one-step 
differences from the 
Coulomb theory) 



What does convergence mean here ? 
 Measure differential inclusion (Stewart 98) 



Convergence result. 

No Jamming ! 



What is physical meaning of the relaxation? 

 Origin 

 Behavior 



Further insight.  

 The key is the combination between relaxation and 
constraint stabilization. 

 If the time step is smaller than the variation in 
velocity then the gap function settles at  

 So the solution is the same as the original scheme 
for a slightly perturbed gap function. 



Cone complementarity 

  Aiming at a more compact formulation:  

           



Cone complementarity 

  Also define:  

  Then:      

becomes.. 

This is a CCP, 

CONE COMPLEMENTARITY  
PROBLEM 



An iterative method- Step 3 

  Convexification opens the path to high performance computing.  
  How to efficiently solve the Cone Complementarity Problem for large-

scale systems? 

  Our method: use a fixed-point iteration (Gauss-Seidel-Jacobi) 

  with matrices: 
  ..and a non-extensive 
separable projection  
operator onto feasible set 

KT= 



General: The iterative method 

 ASSUMPTIONS 

 Under the above assumptions, we 
can prove convergence. 

 The method produces in absence of jamming a bounded sequence  
with an unique accumulation point 

Always satisfied in 
multibody systems 

Use w overrelaxation 
factor to adjust this 

Essentially free 
choice, we use 
identity blocks 



The algorithm 

 Development of an efficient algorithm for fixed point iteration: 

   avoid temporary data, exploit sparsity. Never compute explicitly the N matrix! 

   implemented in incremental form. Compute only deltas of multipliers. 

   O(n) space requirements and   supports premature termination 



The algorithm is specialized, for minimum 
memory use! COM: Constraint <-> Body 

The rest “in place” per-body or per-constraint for Gauss-Jacobi  



GPU : The attraction. 

•  Your PC graphic board is a supercomputer (0.32TF, GT8800).  
•  5.7 TF: IBM BG/L $1,400K (2007) – NVIDIA Tesla $7K (2008) 



NVIDIA TESLA C1060 
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  30 Stream Multiprocessors. 
  240 Scalar Processors 

  4 GB device memory 

 Memory Bandwidth: 102 GB/s 

  Clock Rate: 1.3GHz 

  Approx. $1,250 



Parallel CCP on GPU: The 30,000 Feet 
Perspective 

 Relies on a Gauss-Jacobi iteration: the first step.  
 The GPU is viewed as a compute device that: 

–  Is a co-processor to the CPU or host 
–  Has its own DRAM (device memory) 
–  Runs many threads in parallel (30K) 

  Data-parallel portions (such as per-body “in-place”) of an application 
are executed on the device as kernels which run in parallel on many 
threads 

 Each simulation time step invokes multiple GPU calls 
–  For each of these calls, parallelism can be on a  
•  “Per body” basis (work is done on different bodies in parallel) 
•  “Per contact” basis (different contact events are processed in parallel) 
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GPU: The CCP Pre-Processing 
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GPU: The CCP Loop 
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Collision detection on the GPU 

 For granular dynamics, the number of force multipliers 
(x) is, in principle proportional to the square of the 
number of bodies. 1 trillion bodies -> 10^24 multipliers. 

 Collision detection is used to reduce the active set to 
the one of the multipliers of pairs of bodies that could 
be in contact – brute force still N^2.  

 A binning strategy is used to reduce the complexity 
(Negrut et al. 2009)..  



Scalable Collision Detection (CD) 

 30,000 feet perspective: 

–  Carry out spatial partitioning of the volume occupied by the bodies 
•  Place bodies in bins (cubes, for instance) 

–  Follow up by brute force search for all bodies touching each bin 
•  Embarrassingly parallel 
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Key Components, CD Method 

 The method proposed draws on 

–  Sorting (Radix Sort) 
• O(N) parallel implementation 

–  Exclusive Prefix Scan 
• O(N) parallel implementation 

–  Fast binning operation for the simple convex geometries 
• On a rectangular grid it is very easy to figure out where the center 

of a sphere lands 
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Challenge: simulating PBNR 

 Generation IV nuclear reactor 
with continuously moving fuel.  

 Previous attempts: DEM methods 
on supercomputers at Sandia 
Labs regularization) 

 40 seconds of LAMMPS 
simulation for 440,000 pebbles 
needs 3 days on 64 processors 
dedicated cluster (Rycroft et al.) 

Simulations with DEM.  Bazant et al. (MIT and  Sandia laboratories). 



Simulating the PBR nuclear reactor  
  160’000 Uranium-Graphite 

spheres, 600’000 contacts on 
average 

 One step: Two millions of 
primal variables, six millions of 
dual variables. 4000 0.01 ms 
steps. 

  1 day on a Windows station; 
shows linear performance. 

 We estimate (extrapolate) 3 
CPU days, compare with 192 
CPU days for smoothing 
(DEM-LAMMPS) under-
resolved solution in 2006 !!! 






Validation 

 In our experience, time-stepping would not have 
worked at this number of particles without the convex 
relaxation. 

 Also, for performance, we need relatively large time 
steps.  

 Did we destroy the physics and the predictive power of 
the scheme?  

 We believe not, at least in the dense granular flow 
case. Evidence, based on particle statistics: 



DVI: Time-stepping validation : Hopper 
(Tasora & A 2009) 






Hopper experiment and simulation: Images 

t=0s t=0.6s t=1.2s 



Hopper Results: Velocity (Tasora &A 2009) 

 Note that there are sphere measurement errors of 2%, 
and particle-wall friction variations of 10% (reduced by 
climate control).  

 So we declare validation a success for convex method. 



Performance   

 Things are very much in flux. 
 Subject (granular dynamics) is old, but there are no 

clear large scale computational benchmarks, since the 
concern was “Can one do it at all”.  

 Our focus has been porting to GPU and various 
applications, and parameter choices are far from 
stable.  

 This makes much harder toe-to-toe comparison with 
smoothing methods, though for small configurations, 
time-stepping advantage is clear (see ADAMS). 

 Our experience (such as the PBR) suggest that we get, 
at least for GS, a factor of 50 reduction in effort due to 
the method for up to 1 mill particles, but we must test it 
for more and larger configurations.  



PBR: GPU performance (Negrut et al, 2009) 

 It scales, but we still need “time-to-solution” 
comparisons between the various methods.  



Speedup - GPU vs. CPU (Bullet library) 
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Multi-GPU Collision Detection 

Processor: AMD Phenom II X4 
940 Black 

Memory: 16GB DDR2 

Graphics: 4x NVIDIA Tesla 
C1060 

Power supply 1: 1000W 

Power supply 2: 750W 

Assembled Quad GPU Machine 
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Processing Overview 

Thread 
0 

Thread 
1 

Thread 
3 

Thread 
2 

GP
U 0 

GP
U 1 

GP
U 3 

GP
U 2 

Open 
MP 

Quad Core AMD 
Microprocessor  

Tesla C1060 
4x4 GB Memory 
4x30720 threads 

Main Data Set 

Results 
16 GB RAM 

CUDA 
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Multi-GPU Collision Detection  

 Split and organize data into Chunks  

 Relying on OpenMP threads, one for each GPU 

 Divide chunks into groups, GPUs work on chunk after chunk 

 Combine collision data per group 

 Combine collision data for all groups 
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Results – Contacts vs. Time (0.5 billion 
bodies) 
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Performance: Conclusions 
 It works: We currently run 1 million particles for 40 

seconds in a few hours on a 2.66Ghs Intel GPU with a 
C1060 NVIDIA Tesla GPU (about 30K/1000K threads). 
Collision detection ~ 0.5 bill bodies on hybrid - 4GPU.   

 In 06, LAMMPS-DEM was doing 400K particles under-
resolved in 3 days on a 64 node cluster.  

 In terms of capability per equipment dollars, progress is 
obvious – perhaps best HPC angle on GPU.  

 Algorithmically, we need to establish relevant 
benchmarks to substantiate our “about 50 times 
improvement is due to the algorithm”.  
–  With what smoothing settings do we run LAMMPS-

DEM?  
–  Which statistics do we consider? Etc. 



Some capabilities now available in our/your 
office: granular flow. 









Some capabilities now available in your 
office: Vehicle Design 









Some capabilities available in your office: 
tracked vehicle simulation 






Challenges and Open Questions. 

 For large scale granular flow, can one solve the 
subproblem in O(N)? 

 Can one define a successful multigrid approach for the 
subproblem? 

 Given the conceptual connection between multigrid 
and homogenization, can one derive some form of 
continuum equations, at least for more regimes than 
known today? 

 Multi-GPU dynamics algorithm implementation 



Conclusions and future work.  

 Granular dynamics is a topic of enormous practical 
importance. 

 Time-stepping promises performance, stability and 
predictive power for  granular dynamics.  

 GPU is a low cost HP solution for many engineering 
applications, including DVI-granular dynamics.  

 Nevertheless, it is the convex relaxation was very 
important for attaining  many-million capability. 

 Involving other physics such as fluid flow.  
 Appropriate benchmarks for smoothing and time-

stepping for large numbers of particles  
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