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Motivation: Granular Materials

B The motion of a large,
dense set of rigid particles:
grand challenge of physics.

M Despite centuries of study,
and interest from DaVinci,
Newton, there is no
satisfactory continuum
theory or hybrid theory.

M Difficulty: co-existing gas,

I
liquid, and solid phases.
M | will use granular materials/ 1 million particle simulation

dynamics for “rigid
multibody dynamics”







Granular materials: applications

B Important? The second-most manipulated material in
industry after water (Richard, Nature Materials 2005).

B Applications range from pharmaceutical, food, powders,
petrochemical, nuclear, automotive, and semiconductor
industries up to geological granular flows — some
examples later.

B Two perhaps non-intuitive but crucial energy
applications.

— Circulating granular catalysts in refineries.
— Fluidized bed coal gasification (“clean coal”).




Granular materials: Challenges, need for HPC

B The absence of a continuum theory makes particle-by-particle
computational approaches the only general first principles
computing approach — we need HPC.

B 1 m”3 of sand: ~1 trillion granules. Enormous ... but just about
within reach.

M |n addition, the source of many open or difficult questions.

— Is there a “random” close packing of spherical particles? (A
maximum volume fraction of a random sphere population,
Torquato et al., 2000). Postulated at ~0.636. Jamming.

— Nothing is known of the same when there is friction.

— The Kepler conjecture, proven in the last decade: in the
deterministic case, the maximum space-filling volume
fraction is the one of the cannonball arrangement: 0.7405




(Dry) Granular materials: equations

M Equations of motion: mixture of ordinary differential
equations and variational inequalities/complementarity
conditions.

Newton Equations Non-Penetration Constraints
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Granular materials: abstraction: DVI

B Differential variational inequalities (DVI, Stewart and
Pang, 03-08): Mixture of differential equations and
variational inequalities.

y = f(ty(t),z(t))
x(t) € SOL(K;F(ty(t),))
y(0) = o

r € SOL(K:F(t,y, )< (z —x2) ' F(t,y,2) > 0,Vz € K
® In the case of complementarity, K = R"

Y Ft,y(t), (1))

0 < 2ty Pt y(h), (1))
0 = a®TFEy(t),z(h))
y(O) = Yo

B Many, but not all of our conclusions will be extensible
or applicable to this form of DVI,




DVI: time-stepping methods

B Our target methodology are time stepping methods.

y = f(ty(t),z(t))
z(t) € SOL(K;F(t,y(t),-)) .
y(O) = Yo

h,(vf—|—1) — i hf g{h,(&l)’ 01yl Jr (1 - Ql)yh,(i—lil)’xh,(i—kl))
D e SOL(K; F(I 0D Gyy™t 4 (1 — f)y™ ) 1))
y(0) = wo.

Y
X

® Implicit in the VI variable, implicit-explicit in state, with
possible linearization of the structural functions f,F.

B Promises much larger time steps than smoothing with
explicit integration: key to its stability and superior
performance.




Are all interesting DVI problems over R+? No.

B Conic Complementarity IS NATURAL in granular dynamics (and MD).
B Coulomb model.
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B Most previous time-stepping discretize friction cone to use LCP...
B Can we accommodate non-R+ cones naturally?




Other applications of DVI:

B Physics-based virtual reality.
B Automotive design

B Dynamics of multicristalline
materials: evolution of the
boundary between phases.

H Porous Media Flow.

B Generally appears any time
dynamics and “switching” is
encountered.










Our Inquiry

B Can we efficiently simulate large-scale DVI, particularly
granular dynamics, in a stable manner while being truthful
to the physics of the respective applications?

B Main interest is granular flow, but many results and
techniques extend to general DVI.




Content: The road to ...

® Solving DVI
— Smoothing versus hard constraints
— (1) Time Stepping
— Nonconvexity — (2) Convex Approximation:
— Some Theory

M (3) Iterative Algorithms for the time-stepping
subproblem.

B Results

— Validation.
— GPU implementation
— Application Examples
B Open problems/extensions.




Smoothing versus time-stepping

x=1(t,x(t).u(t))
m Recall, DVI (for C=R+) ™ 220 L F (t,x(t).u(t))2 0

x=f(tx(t).u(?));
u, F, (t,x(t),u (t))z g, i=172

B Smoothing

MﬁF(tn—l n-1 nl) e

® Followed by forward Euler._>

Easy to implement!! = +hf(t AU )

B Compare with the complexity X" =x"+hf (t"’“,x””,u”+l );
of time-stepping ————————jp
un+l 2 O J_ F (tn+1 , xn+1 ’un+l )Z O

B But does it give good results?




Applying ADAMS to granular flow

B ADAMS is the workhorse of
engineering dynamics.

B ADAMS/View Procedure for
simulating.

B Spheres: diameter of 60 mm
and a weight of 0.882 kg.

B Forces:smoothing with
stiffness of 1E5, force
exponent of 2.2, damping
coefficient of 10.0, and a

penetration depth of 0.1










ADAMS versus ChronoEngine

Table 2: Number of rigid bodies v. CPU time in ChronoEngine

Number of Spheres Max Number of Mutual | CPU time (seconds)
Table 1: Number of rigid bodies v. CPU time in ADAMS Contacts [-]
Number of Spheres Max Number of Mutual | CPU time (seconds) 1 1 0.70
Contacts [-] 2 3 0.73
! : o 4 14 0.73
4 14 775 8 44 0.76
3 44 2536 16 152 0.82
16 152 102.78 32 560 1.32
32 560 644.4 64 2144 2.65
The following graph shows the nonlinear increase in the CPU time as the number of 128 8384 6.17
colliding bodies increases. 236 33152 1530
CPU ti . Number of sph inCh Engi =0.0563x + 0.0446
CPU time v. Number of Spheres in ADAMS o aoaco 20007 1 154 Wme:¥. Number of sphores In ChronoEngine. 'y . 0'9‘;82
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Often, time stepping is more promising. We follow this direction.
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Time-stepping scheme

B Write an implicit-explicit scheme AS IF Painleve paradoxes
do not exist.

B We use linearization (Anitescu and Hart, 04) NOT index
reduction : results in constraint stabilization.

B Proceed with a fixed time step. Collisions are forced to be
“simultaneous” within one step.




Step 1 on the road. Time stepping scheme

with fixed time step (no collision stop/restart)

B A measure differential inclusion solution can be obtained by time-stepping
(Stewart, 1998, Anitescu, 2006): *PEC (approximated by LCP)
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Pause: Efficiency

B This scheme allows fixed time steps for plastic
collisions, major improvement in efficiency.

B Nevertheless, the PATH solver (Lemke, the only one
guaranteed to solve the cone-linearized subproblem),
starts to take extremely long times past ~1000s of

granules (Anitescu and Hart 04)... and we aim for 1
trillion.

B The main difficulty: the time-stepping subproblem is not
convex.




Time Stepping -- Convex Relaxation— Step 2

B A modification (relaxation, to get convex QP with conic constraints):

M@ —o)y = 3 (LD, +7.D, +7.D)) + (For small m and/or
i€ A(qV) e)
,(q ) O D D small speeds, almost
+ > (V) +hf, (1 .q" 0 0) ( no one-step
1€G :
| € - differences from the
p T - .
0— E\pz(qm) + VP Ut 4 - 1€ Gs Coulomb theory)
0< %df’"(q(”) + VD D) [ (DT 0)? 4 (D )2 }
i (1)
L 7,20, i€ Ag" e But In any case,

converges to same
MDI as unrelaxed
scheme.

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ]




What does convergence mean here ?

B Measure differential inclusion (Stewart 98)

M~ fulq,v) ~ klt,,0) € FO).

Definition If v is a measure and K (-) is a convex-set valued mapping, we
say that v satisfies the differential inclusions

if, for all continuous ¢ > 0 with compact support, not identically 0, we
have that

[ o(t)v(dt)

Jo@dt s




Convergence result.

H1 The functions n)(q), tgj ) (q), téj )(q) are smooth and globally
Lipschitz, and they are bounded in the 2-norm.

H2 The mass matrix M i1s positive definite.

H3 The external force increases at most linearly with the velocity and
position.

H(éL The uniform pointed friction cone assumption holds. No Jamming !

Then there exists a subsequence hy — 0 where
o ¢"*(.) — ¢(-) uniformly.
o v () — v(-) pointwise a.e.

o dv"(.) — dv(-) weak * as Borel measures. in [0,T], and every such
subsequence converges to a solution (¢(-), v(+)) of MDIL.




What is physical meaning of the relaxation?

® Origin

B Behavior
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Comparison between methods
T T

x10° LGP algorithm versus optimization based algorithm
T T T T
= LGP method
=~ Qptimization method




Further insight.

B The key is the combination between relaxation and
constraint stabilization.

0< %(D(j) (qm ) + qu)m (qa) )v(”” e (fov)z + (Dj’fv)z

M If the time step is smaller than the variation in
velocity then the gap function settles at

1 ' ' t t
0 ~ Z(D(]) (q(l) )_‘u(J)\/(DLZl, V)2 4 Dé’ v)2

M So the solution is the same as the original scheme
for a slightly perturbed gap function.




Cone complementarity

B Aiming at a more compact formulation:

_ . 1.
b = {lD”,O‘O.}l(I)’?.O.O.....I—<I>’"A.0.O}

h 2 2
_ A‘Ill A“il Ail A,I.Q AI.:) Ajf-) ,«I.”.,-‘l AI‘,IA A‘]‘HA
7.,4 —_— ,‘” . l'll . l'l‘ - ’l” - I'll - f'l' PRI " n - I' u - I’ v
1., owl 1_ . 0Ow? 1 Owns
by = Pl D — e
h ot h ot h ot
2 N
7[5 - by IThs«= s 'b }

Dy = [D"|D"?|...|D""a], i€ A(q',e) D'=|[D;|D,|D,]
WDy = [VUVI2|. . |[VIns], icGg be € R™ — (b4, bys)

Ve € R" = {v 4, v5}

De = [D4|Djg]




Cone complementarity

® Also define:
B = Mo® g, (10, g0, 00)
N =D:{M'Dg

r=DLM "k + be

B Then: - : el -~

This is a CCP,
CONE COMPLEMENTARITY

PROBLEM

(Nye+7r)e =T° 1L ~eeX

becomes..




An iterative method- Step 3

B Convexification opens the path to high performance computing.

B How to efficiently solve the Cone Complementarity Problem for large-
scale systems?

(Nye+7r)e =T 1L ~c€X

B Our method: use a fixed-point iteration (Gauss-Seidel-Jacobi)

[ Y = NIy (" —wB" (N +r+ K" (v —~7)) +(1 = \)~" 1

) i -0 Ko K13 -+ Kip,
B with matrices: mln, 0 o0 00 Koy Koy,
B ..and a non-extensive B 0 maly, 0 Pl 00 0 K,
separable projection : : L C
operator onto feasible set 00 o, 00 0 0

HT - Re — R"e




General: The iterative method

BASSUMPTIONS

Al The matrix N of the problem (CCP) is symmetric and positive semi-
definite.

A2 There exists a positive number, o > 0 such that, at any iteration », »r =
0,.1.2...., we have that B" -~ ol

A3 There exists a positive number, 3 > 0 such that, at any iteration », »r =
0.1.2....,we have that (2”1 —2")T ((/\er")—l Iy l) (a7t

3 H‘l.r-i-l _ .,.,-”2 .

mUnder the above assumptions, we
can prove convergence.

B The method produces in absence of jamming a bounded sequence
with an unique accumulation point




The algorithm

mDevelopment of an efficient algorithm for fixed point iteration:

[v] . j -th variable data
g ||b

[ 1.1 7] e=[E:.]
(| s = [MJ[E L) i -th constraint data
gy Obk Od Og

B avoid temporary data, exploit sparsity. Never compute explicitly the N matrix!

B implemented in incremental form. Compute only deltas of multipliers.

B O(n) space requirements and supports premature termination




The algorithm is specialized, for minimum
memory use!

(1) // Pre-compute some data for friction constraints (21) // Mn iteration logp
(2) for i:=1tona (22) r7:=0to rpax
(3) s, =M~'D’ (23) // Loop on frictipnal conXraints
(4) 9o = Dl’Tffz (24 for i :=1to ny
) e = Tracete %) 5" = (7" | wni (DVTw" +8,));
(6) // Pre-compute some data for bilateral constraints [/ i1 i i
(7) for i :=1 to ng 26) Ya = Allje (60 ) + (1= A)va
(8) s = M-IV (27) Ay = AT T

i iT i . i
(%) g = VIS (28) vi= v+ sl Ay
(10) = 97 (29) // Loop on bilateral constraints
(11) (30) for i :=1 to ng
(12) // Initialize impulses 31 50T = (A8 — ont (VST b))
(13) if warm start with initial guess ¢ (31) 1; 1 ( b ‘)?b,( +.i fl))) ’
514; 1 V2 = (32) W= ALy (+o{, )+ @=N7"
15 else o Ltr+l a4l A
(16) 72 -0 (33) A b _j‘ib ; 7‘+1"b ’
(17) (34) vi=v+s; Ay
(18) // Initialize speeds ~ (35)
(19)  v=3T"A s+ 2T+ Mk (36) return g, v

A
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GPU : The attraction.

1000
GT200

GT200 = GeForce GTX 280 ]
G92 = GeForce 9800 GTX

G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX
NV40 = GeForce 6800 Ultra
NV35 = GeForce FX 5950 Ultra
500 H NV30 = GeForce FX 5800

750 T

GFLOPS

- |ntel CPU

-=-NVIDIA GPU
250
3.2 GHz
3.0GHz Harpertown
Core2 Duo
NV30 e
O * T - - T T T
Oct-02 Mar-04 Jul-05 Nov-06 Apr-08

* Your PC graphic board is a supercomputer (0.32TF, GT8800).
« 5.7 TF: IBM BG/L $1,400K (2007) — NVIDIA Tesla $7K (2008)




NVIDIA TESLA C1060

® 30 Stream Multiprocessors.

Stream Processor Array (SPA) B 240 Scalar ProcessorS

® 4 GB device memory

B Memory Bandwidth: 102 GB/s

exture Processor Cluster Stream Multiprocessor (SM)

I Instruction Fetch/Dispatch | - CIOCk Rate 1 3G HZ
I

Shared Memory I

m Approx. $1,250

s
s

SFU SFU
s
s




Parallel CCP on GPU: The 30,000 Feet
Perspective

B Relies on a Gauss-Jacobi iteration: the first step.

B The GPU is viewed as a compute device that:
— Is a co-processor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel (30K)

W Data-parallel portions (such as per-body “in-place™) of an application
are executed on the device as kernels which run in parallel on many
threads

B Each simulation time step invokes multiple GPU calls

— For each of these calls, parallelism can be on a

» “Per body” basis (work is done on different bodies in parallel)
» “Per contact” basis (different contact events are processed in parallel)




GPU: The CCP Pre-Processing

1. (GPU, body-parallel) Force kernel. For each body, compute applied
external forces f(tV), q(V, v()) (for example, gravitational and gyroscopic
forces). Produce the force F; and the torque C; acting at CM of each

body j.

2. (GPU, contact-parallel) Contact preprocessing kernel. For each con-

tact ¢, given contact normal and position, compute in-place the matrices
DT D! and D! . and the contact residual b; = {%@i(q), 0,0}7.

1,VA 7 7,W A 1,wB’

3. (GPU, body-parallel) Velocity Initialization kernel. For each body 7,
initialize body velocity corrections: AFTY — g mj_le and Aw§l+1) _
hJ7'C;.

J




GPU: The CCP Loop

4.

(GPU, contact-parallel) CCP iteration kernel. For each contact ¢, do
vt = X\ My, (7" —wn; (Dv"+b;)) + (1 — Ay, Store AfyrH =

i +1 — 77 in contact buffer. Compute updates to the velocities of the two
connected bodies A and B (like Ar( = _1DZ oA AT Aw UH)

J AlDZ v, AT, and store them in the reduction buffer.

. (GPU, reduction-slot-parallel]) Run body-velocity reduction kernel.

. (GPU, body-parallel) Body velocity updates kernel. For each j body,

(1+1) _ r(l) JFAr(z+1) (1+1) _

add the cumulative velocity updates: r; and w;

(1) (I+1)
w; + Aw w; )

Repeat from step 4 until convergence or until number of CCP iterations
reached r > 7,44

. (GPU, body-parallel) Time integration kernel. For each j body, per-

form time integration as q( T = qjl) + hL(q (l))v§l+1)

. (CPU, serial) If post processing required, fetch body data structures and

contact multipliers from GPU memory to host memory.




Collision detection on the GPU

B For granular dynamics, the number of force multipliers
(x) is, in principle proportional to the square of the
number of bodies. 1 trillion bodies -> 10724 multipliers.

y o= fy(h), z(t))
z(t) € SOL(K; F(t,y(t),"))

Yo

B Collision detection is used to reduce the active set to
the one of the multipliers of pairs of bodies that could
be in contact — brute force still N*2.

H A binning strategy is used to reduce the complexity
Negrut et al. 2009)..




Scalable Collision Detection (CD)

® 30,000 feet perspective:

— Carry out spatial partitioning of the volume occupied by the bodies
* Place bodies in bins (cubes, for instance)

— Follow up by brute force search for all bodies touching each bin
o Embarrassingly parallel




Key Components, CD Method

® The method proposed draws on

— Sorting (Radix Sort)
* O(N) parallel implementation

— Exclusive Prefix Scan
* O(N) parallel implementation

— Fast binning operation for the simple convex geometries

* On a rectangular grid it is very easy to figure out where the center
of a sphere lands




Challenge: simulating PBNR

B Generation IV nuclear reactor
with continuously moving fuel.

M Previous attempts: DEM methods
on supercomputers at Sandia
Labs regularization)

M 40 seconds of LAMMPS
simulation for 440,000 pebbles
needs 3 days on 64 processors
dedicated cluster (Rycroft et al.)

model a frictionless wall, ,=0.0. For the current simula-
tions we set /cz:%k?1 and choose k,=2x10° gm/d. While
this is significantly less than would be realistic for graphite
pebbles, where we expect k,>10% gm/d, such a spring
constant would be prohibitively computationally expensive,
as the time step scales as &fock; " for collisions to be mod-
eled effectively. Previous simulations have shown that




Simulating the PBR nuclear reactor

B 160’000 Uranium-Graphite
spheres, 600°000 contacts on
average

B One step: Two millions of
primal variables, six millions of
dual variables. 4000 0.01 ms
steps.

W 1 day on a Windows station;
shows linear performance.

B We estimate (extrapolate) 3
CPU days, compare with 192
CPU days for smoothing
(DEM-LAMMPS) under-
resolved solution in 2006 !!!







Validation

M |[n our experience, time-stepping would not have
worked at this number of particles without the convex
relaxation.

B Also, for performance, we need relatively large time
steps.

B Did we destroy the physics and the predictive power of
the scheme?

B \We believe not, at least in the dense granular flow
case. Evidence, based on particle statistics:




DVI: Time-stepping validation : Hopper
(Tasora & A 2009)

A
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Hopper experiment and simulation: Images
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Hopper Results: Velocity (Tasora &A 2009)

Profiles of vertical speeds
Or q
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< -0.1-
©
£
>
>
>7 -0.15
-0.2
=@+ experimental
60 @ experimental
-0.25 | I I I I I | I I |
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
Radius [m]

B Note that there are sphere measurement errors of 2%,

and particle-wall friction variations of 10% (reduced by
climate control).

B So we declare validation a success for convex method.




Performance

B Things are very much in flux.

M Subject (granular dynamics) is old, but there are no
clear large scale computational benchmarks, since the
concern was “Can one do it at all”.

M Our focus has been porting to GPU and various
applications, and parameter choices are far from
stable.

B This makes much harder toe-to-toe comparison with
smoothing methods, though for small configurations,
time-stepping advantage is clear (see ADAMS).

B Our experience (such as the PBR) suggest that we get,
at least for GS, a factor of 50 reduction in effort due to
the method for up to 1 mill particles, but we must test it
for more and larger configurations.




PBR: GPU performance (Negrut et al, 2009)

120.0
® CPU y = 0.0009x - 2.622
R?=0.99928
100.0 A " GPU
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E —Linear{GPU
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E 600 1
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20.0 A y = 6E-05x - 0.1413
R?=0.99686
B
e
0.0 = — = T - . r
0 20000 40000 60000 80000 100000 120000 140000
Number of Bodies

M |t scales, but we still need “time-to-solution”
comparisons between the various methods.




Speedup - GPU vs. CPU (Bullet library)

GPU: NVIDIA Tesla C1060
CPU: AMD Phenom Il Black X4 940 (3.0 GHz)

0 1 2 3 4 5
Contacts (Millions)




Multi-GPU Collision Detection

Assembled Quad GPU Machine

Processor: AMD Phenom Il X4
940 Black

Memory: 16GB DDR?2

Graphics: 4x NVIDIA Tesla
C1060

Power supply 1: 1000W

Power supply 2: 760W




Processing Overview

Main Data Set

Results

Thread Thread Thread Thread
0 1 2 3

GP GP GP GP
uo U1 U2 US3




Multi-GPU Collision Detection

B Split and organize data into Chunks

B Relying on OpenMP threads, one for each GPU

M Divide chunks into groups, GPUs work on chunk after chunk

B Combine collision data per group

B Combine collision data for all groups




Results — Contacts vs. Time (0.5 billion
bodies)

Quad Tesla C1060 Configuration used

Time (sec)
N
o

000102030405060708091011121314151.6

Contacts (Billions)




Performance: Conclusions

M [t works: We currently run 1 million particles for 40
seconds in a few hours on a 2.66Ghs Intel GPU with a
C1060 NVIDIA Tesla GPU (about 30K/1000K threads).
Collision detection ~ 0.5 bill bodies on hybrid - 4GPU.

®In 06, LAMMPS-DEM was doing 400K particles under-
resolved in 3 days on a 64 node cluster.

B In terms of capability per equipment dollars, progress is
obvious — perhaps best HPC angle on GPU.

® Algorithmically, we need to establish relevant
benchmarks to substantiate our “about 50 times
iImprovement is due to the algorithm”.

— With what smoothing settings do we run LAMMPS-
DEM?

— Which statistics do we consider? Etc.




Some capabilities now available in our/your
office: granular flow.
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Some capabilities now available in your
office: Vehicle Design
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Some capabilities available in your office:
tracked vehicle simulation







Challenges and Open Questions.

M For large scale granular flow, can one solve the
subproblem in O(N)?

B Can one define a successful multigrid approach for the
subproblem?

B Given the conceptual connection between multigrid
and homogenization, can one derive some form of
continuum equations, at least for more regimes than
known today?

B Multi-GPU dynamics algorithm implementation




Conclusions and future work.

B Granular dynamics is a topic of enormous practical
Importance.

B Time-stepping promises performance, stability and
predictive power for granular dynamics.

B GPU is a low cost HP solution for many engineering
applications, including DVI-granular dynamics.

B Nevertheless, it is the convex relaxation was very
important for attaining many-million capability.

M Involving other physics such as fluid flow.

W Appropriate benchmarks for smoothing and time-
stepping for large numbers of particles
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