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Validation: Certifying code by code or code by data   

  Models cannot perfectly match data. An error *model* is needed.  
–  Uncertainty Model – “Uncertainty Quantification” (physical parameters, 

discretization errors, geometrical parameters, model error).  
–  Uncertainty-to-output propagation: characterize  the system outputs 

over the entire uncertainty range – some form of sampling/sensitivity? 
  Objective of our small study – Rough answers to following questions:  

–  Are current uncertainty models suitable for high fidelity calculations 
(particularly thermohydraulics)?  

–  How do I reduce the number of expensive code samples?  
–  Where should I spend my effort in uncertainty reduction?  
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Salient Question: High Dimensional Uncertainty 
Propagation in Very Large Scale System  

•  How to approximate the stochastic distribution of functions over 
very large uncertain spaces? 

•  Example: F can be the equations of TH+Neutronics, p the 
physical parameters. (p ~ 1000 … 10000 … 100000). 

•  G can be (note that x(p) cannot even be stored): 
–  Max output temperature, max centerline temperature.  
–  A characteristic function                              which computes the probability 

of the max T to be in a given range. 
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High dimensional Approximation… The curse 
of dimensionality 
  Computing the statistics is strongly connected to approximating the 

function G over the high-dimensional space.  
  In a high dimensional problem, this is subject to the “curse of 

dimensionality” – the fact that the sample density is decreasing 
exponentially with the dimension of the problem.  

  Classical solutions:  
–  Sampling : global but slow – note that it does not answer the COD.  
–  Sensitivity analysis fast but local and hard to adjust. What if the 

precision in assessment is insufficient? Higher-order? Hard to 
develop and implement.  

  Can we create a method that efficiently uses the advantages of both 
methods, and is adjustable? 



Our answer: Output learning with derivative information 

  Setup: outputs (100)  << uncertain parameters (10^5-10^6)<< physical state 
space size (10^9-10^12). 

  Outputs, e.g.  
• Coolant fuel temperature. 
•  Peak fuel temperature 

  Output (parameters)=? – it is a machine learning problem.  
  The main observation: gradients of an output can be computed in 5*the effort 

(sometimes FAR less) for the output by adjoints, but provide NP times more 
information !!! 

  This is radically different compared to machine learning from non-computing 
experiment data.  

  Hypothesis: Using the derivative information, we can reduce the number of 
samples needed to compute the entire mapping.  

 Hybrid sampling-sensitivity approach.  
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Outline 

  Test case 
  Uncertainty quantification for sodium-cooled 

thermohydraulics.  
  Polynomial Regression with derivatives 
  Numerical Results.  
  Global sensitivity calculation. 
  Automatic differentiation issues  
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Test case: a simplied model of the nuclear reactor core. 
  A coupled system, taking into account multiple physical effects 
   (steady state): 

-  3D (finite volumes) model of heat  
   transport by diffusion, convection.  

-  1D model of neutronic diffusion in  
    the fuel elements, 4 energy groups. 

-  2D model of heat distribution in the 
    the fuel elements.  

  Physical properties, such as conductivity, heat capacity, heat transfer 
coefficient, neutronic macroscopic cross-sections, are dependent on 
temperature. We attribute the uncertainty of the model to experimental 
uncertainties in temperature dependencies. 
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Test case: a simplied model of the nuclear reactor core. 
  Heat transport: 

  Neutron interaction: 

  Heat distribution: 

  Temperature dependencies: 
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Test case: Equations  

  When discretized we obtain  

Interface 

Fuel 

Fluid 
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Test case: Uncertainty in the Physical Parameters  
1) Temperature dependent 



Test case: uncertainty in heat transfer coefficient(Nusselt) 
2) Other parameter dependent (Pe) 
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  Sometimes as bad as a factor of 2!  



Uncertainty Quantification 

  Representing the uncertainty in the physical parameters 
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Uncertainty in fluid flow core 

  The parameters\material properties R of the model include heat capacity 
cp, heat conductivity K for the coolant and fuel; convective heat transfer 
coefficient h.; and 4-group crossection.  

  A fixed-point iteration procedure R:=R(T) , T:=T(R) is used to couple the 
dependence of the temperature distribution on the material parameters, 
and the dependence of the material parameters on temperature. 

  Uncertainty in the performance J(T) of the nuclear reactor is attributed to 
the uncertainty in the values of parameters R, and it is temperature-
dependent.  

  Note: the available temperature-dependencies are built as a best fit to 
experimental data + uncertainties, but this results in an uncertainty band, 
even if the data warrants finer representation, such as no/little oscillation .. 

€ 

cp ≈1.6582 − 8.470 ⋅10
−4T + 4.4541⋅10−7T 2 − 2992.6T−2

with uncertainty   estimated at  0.1% at 300 K, 3% at 1000 K, 8% at 2000 K.  
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Current Representation of Uncertainty 

  Allows for realizations that CLEARLY cannot occur, with a phenomenal 
unjustified growth in uncertainty space. 

  Also note that for high resolution, it may include spatial complexity by 
coupling where you do not expect – so not suitable for high fidelity calc. 

  May not want to solve it with hifi and should not solve it.   
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A more reasonable model 

  Capture smoothness --- significant reduction of the uncertainty space. 
  Effectively low-order interpolation.   
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Representation of temperature-dependent uncertainty 

  Assume a temperature-dependent structure for the uncertainty: 

in the Chebyshev polynomial basis 

  With no oscillations in uncertainty, use 2nd order expansion, resulting in 3 
uncertainty parameters per thermo-dynamical property. 

€ 

C(0)(T) =1 C(1)(T) = T +1 C(2)(T) = 2T 2 −1
C(3)(T) = 4T 3 − 3T 2
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Representation of temperature-dependent uncertainty. 


   Find the validity region for the uncertainty coefficients {α} by random 
sampling. Start with a large uniform sample of values, reject the points that 
violate the uncertainty condition 


   In the multiplicative uncertainty model,  


   In the new representation the parameters become but the validity region is 
not necessarily rectangular 

€ 

C = C(T),C = C(Pe(T))
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  Uncertainty region with a uniform prior.  
  Arguable, but all uncertainty analyses have a subjective component.  



Polynomial regression with derivatives (PRD) 

  Truly, a novel machine learning technique for massive computer simulations 
environments. 

  Objective: learn the multidimensional function J(   ) from well-chosen sample 
simulations. Choose         run code compute J and its derivatives.  
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Basis construction: Stochastic finite element method 

  A surrogate model is an explicit approximation               in some 
basis         . 

  For uncertainty representation: Stochastic Finite Element Method (SFEM, 
truly spectral element for the uncertainty):  

-  Choose a set  of multi-variable orthogonal polynomials Ψ. Use some 
subset {Ψq} to approximate the output function: 

-  The coefficients P in the definition of each polynomial are chosen to 
satisfy the orthogonality condition in some measure π: 

-  For Gaussian probability measure,  
the basis is a set of Hermite polynomials: 

-  The coefficients xq are found by collocation/regression. 

        

€ 

Ψ(α1,α2,...) = H (ki )(α i)
i
∏

H (0)(α) =1 H (1)(α) = 2α H (2)(α) = 4α 2 −1
H (3)(α) = 8α 3 −12α H (4 ) (α) =16α 4 − 48α12 +12
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Related idea: Collocation for SFEM in uncertainty 
quantification. 

  Collocation equation: evaluate the basis polynomials at the sample points 
in the parameter space, run full model to compute the outputs        S at 
the sample points, assemble the collocation system Ψx=S: 

  It is truly a surface response approach.  
  Issue: we would like to use high-order polynomials.                                    

The number of sample points required to assemble                                    
Ψ grows rapidly. 
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Using Derivatives 

  Not square, solve by regression (PRD) 
  The only interaction with the physics code is only by the 

right hand side.  
  If we implement the adjoint wisely, we can get NP times 

more information for not even on extra function evaluation 
cost !!! 
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Basis pruning/ how to sample 

  Still subject to “curse of dimensionality”, (degree^d) 
  Collocation/regression choices: 
-  “Full” basis vs. “truncated” basis. 
-  “Tall” Ψ with over-sampling vs. “square” matrix Ψ with a minimal number 

of sample points 

  Goal-oriented basis: polynomials of high degree are only included for 
“important” variables. Importance is defined as sensitivity of the output 
function to a particular parameter. 

  Goal-oriented sample set: mostly an open question, especially when 
derivative is also involved. Sample points may be chosen: in the 
directions of highest sensitivity of the output function; for the best 
condition of Ψ;  for optimal approximation error; for the best condition of 
Λ. 
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Approximating the output of the model 

  For a moderate number of parameters (3-15), a good choice is “tall” 
matrix, “truncated” basis. 

  Possible definitions of “importance” of a parameter r(i) : 
-  Derivative (at some “typical” temperature distribution): 
-  Derivative adjusted by parameter variance:  

  We start with a full basis of order 3, separate the variables, by 
“importance”, into groups I, II and III of sizes nI > nII >> nIII.  We allow 
polynomials that include variables from group III to have degree 3; allow 
the polynomials that include variables from group II have degree 2; only 
keep polynomials of degree 1 in the variables from group I.  
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Computing derivatives using adjoints 

  The dependencies                                         can be studied directly, by 
random sampling. 

  The derivative       can be used for sensitivity analysis. 

  Derivative using the adjoint method: 
-  Start with an algebraic form of the flux equilibrium equation: 
                     with  
-  Assemble a system for the adjoint variable λ: 

-  Evaluate the expression: 
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Adjoints. 

  Consider the finite volumes equation 
in the form  

  Differentiate to obtain 

  We need two partial derivatives: 

  We have assembled                                                                                 
the adjoint variable: 
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Adjoints 

  The required components of the derivatives arrays 

    for the volume cells I,J and parameter components Rj, αk are defined and   
stored during the last step of the iteration Rn:=R(Tn-1) , Tn:=T(Rn). 

  Finally, the derivative is expressed as: 

  Note: in Matlab, computing all derivatives for a single output typically 
produces an overhead of 10-40 %. 



28 

Performance of PRD model 

  Size of the finite volume model: 7 pins, 20 horizontal layers.  

  The output function is a measure of temperature in the outflow layer: 

  We will compare with the linear (sensitivity) model.  
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Typical performance of the polynomial model: max 
centerline temperature 
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Performance of PRD approach, max centerline temperature 
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“Preconditioning” with SFEM for assessment, 

•  We can compute our expectation using a control 
variate technique. 

•  If the approximation is good, then we need far 
fewer samples to compute  our estimate 

•  This will answer the question: give me the mean 
with 90% confidence with very few  samples.  
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Control variate error versus effort.  
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How well does  PRD capture global nonlinear effects? 

  A global measure of importance using marginal distribution:  
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Global sensitivity:    
  12 “heat transport” uncertainty parameters, 24 “neutronics” uncertainty 

parameters 

  Complete derivative information can be obtained at approximately 200% 
additional computational cost, faster with adjoint differentiation. 

  There is a significant improvement in bias over the linear model, at a 
fraction of computational cost of random sampling. 

  Sampling of the polynomial approximation  
    shows that it preserves the dominant  
    sensitivites of the full model. Note:  
    sensitivities on 9000 runs of the full model  
    runs were reproduced by 15000 runs of BRD. 

  Some of the uncertainty parameters (“K-coolant”) are of relatively much 
larger importance for the output of the model (depends on the output). 

  Note that if you change the objective function, the conclusion of 
importance does change.  



Global Sensitivity Results “Bang for the buck” 
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•  Correct large values and orders of magnitude. 
•  To get comparable accuracy 10,000 samples for 

MC versus 40 samples for derivative SFEM !! 
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Conclusion    

  Polynomial regression with derivatives – a novel way to efficiently 
incorporate computer simulation information in an uncertainty model. 

  High accuracy even for nonlinear phenomena, without needing higher 
order sensitivity 

  Can be used to accurately predict relative importance at a fraction of the 
cost of sampling the full model– essential for accuracy/effort compromise. 

  The uncertainty information in the thermorhydraulics parameters may not 
be available to as high accuracy as one might think, this research show 
initial steps on how to reduce its dimension without sacrificing accuracy. 



Future work- bigger questions   
  Derivatives:  

–  How do I obtain derivatives, particularly if some legacy code is 
involved? Automatic differentiation? – Apply to simplified version of 
the SAS codes and/or depletion. It seems reasonable to expect that 
new codes will provide some form of adjoint sensitivity, as SAS/UNIC/
Nek get updated. 

–  Nevertheless, it is likely that not all modules will provide derivative 
information (Nek?). Can one use derivative information with noise 
from simplified models? (e.g. use function from Nek, sensitivity from 
RANS). Note that since we use a regression approach, we can 
tolerate some error in derivative (also physical/mathematical). 

  Machine learning connection 
–  Include tools of Information Science and Optimization to achieve 

optimal multifidelity (1D, diffusion, transport) simulation management 
for a given set of endgoals. 

–  But note that it looks we also may open a new chapter in ML.   
  Current uncertainty models for advanced reactor calculations, not suitable 

for high fidelity simulation– a raw data + transparent analysis approach.   
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PRD: Polynomial regression with derivatives   

  How do I choose better basis functions generators (resulting possibly in 
fewer samples)? Idea: use orthogonality with respect to the Sobolev 
product.  

  How do we choose good sample points at which to evaluate function/
derivative information – Optimal Design with Derivative Information in 
arbitrary domains. Idea: minimize a discrepancy function.  

  How do I optimally prune the basis functions. Adaptive basis selection 
using machine learning techniques. 

  Time-dependendent bases (Wavelets?). 
  Use it to represent model reduction with uncertainty.    
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A case for Automatic Differentiation 

  Derivatives can be obtained with minimal code modifications 

–  Even from legacy Fortran codes like MATWS. 

  Faster to implement than hand-coded derivatives 

–  More accurate and cheaper than finite differences 

–  Derivatives computed with AD are fully accurate (up to roundoff)  

  for smooth functions and implementations 



ADIFOR 
  ADIFOR 2.0 (Argonne and Rice University) can handle all standard 

FORTRAN 77 constructs (the usual concern of NE colleagues) 
  COMMON blocks 

   ADIFOR automatically creates common blocks for the 
derivatives 

  EQUIVALENCE statements 

   if several model variables share the same memory, so will their 
derivatives 

  IMPLICIT variables: 

   derivatives will explicitly be defined to have the same type as the 
original variables. 

  GO TO constructs: 

  Forward mode differentiation preserves the same control flow 

   adjoining requires forward model code modifications  

  ENTRY statements 

  Labeled CONTINUE or BREAK statements 



Differentiating MATWS 

  We differentiated MATWS using ADIFOR 2.0 
–  10K lines of legacy F77 code 
–  part of the Argonne SAS suite 

  Just a few modifications needed before differentiating: 
–  removed or re-coded CPU or OS dependent code sections 

•  variable address computations, system calls, etc. 
•  do not play a role when computing derivatives of output quantities 

–  subroutines with variable number of arguments are not supported 
•  define one subroutine for each call as needed 

–  renamed common blocks with inconsistent sizes between subroutines 
–  enforced correct argument types in subroutine calls by explicit casts 

  Currently validating the tangent derivatives against finite differences 



Automatic Differentiation 

  Possible issues: 
–  Differentiation of adaptive time stepping routines 

• MATWS uses an adaptive method for ODE integration 
•  The AD engine can generate spurious time/time step derivatives 

–  There are known fixes in the AD literature 
• Mathematically non-differentiable implementations 

–  Fix by re-coding the function/subroutine before running AD 
•  ADIFOR helps by raising runtime exceptions 

–  Enabling exception reporting is always a good idea 
• Cannot get around mathematical non-differentiability 

–  But neither can hand-coded derivatives or finite differences 
–  We can still get perfectly valid derivatives near a discontinuity  
–  Maybe use this for a smoothing approach?  



Example of AD problems 
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if (x .lt. 0) then 
    y = -x 
else 
    y = x 
endif 

if (x .le. 0) then 
    y = -x 
else 
    y = x 
endif 

if (x .eq. 1) then 
    y = 1 
else 
    y = x*x 
endif 

1 -1 

0 
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