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Nonsmooth contact dynamics—what is it?

M Differential problem with variational inequality constraints —

DV Newton Equations Non-Penetration Constraints
M@ =j Z (cff)n(j) + Bt + BUET + f.(q,v) + k(t,q,v)
dt j=lTrp
% - r(q )v Generalized Velocities
c'/ = 0 1L ®V(g)=0, j=12,..p

[ ( 0, 2(1)) - argminu<f>c,gf>2\/(/3§f>+/3§f>)2 [(VTtl(J)) [3’1+(th§1)) /32] ]

\_

H Truly, a Differential Problem with Equilibrium Constraints




Contact dynamics applications

B Granular Flow,
B Masonry Stability,
B Rock Dynamics.

B Agent-Based Modeling
(Pedestrian Evacuation
Dynamics).

B Physics-based graphics
simulations.

B Most common
approaches by far are

smoothing approaches
(DEM)




Question 1: Should we do smoothing?

i=f(tx(t)u())
B Recall, DVI (for C=R+) u=0.1 F(z‘,x(t),u (t))z 0

i=f(6x()u())

B Smoothing ul-E(fax(t)’”(t))=€, i=12,...n

n n-1 n-1 n-1 .
ul.Fl.(z‘ XU )=8, i=12,...n

ﬁ
xn+1 =xn +hf(tn,xn,un )’

u

® Followed by forward Euler.
Easy to implement!!

B Compare with the complexity X" =x" + hf (t"’”,x””,z/t”+1 );
of time-stepping ————————jp
un+1 > O J_ F (tn+1,xn+1’un+l )Z O

B But does it give good results?




Applying ADAMS to granular flow

B ADAMS is the workhorse of
engineering dynamics.

B ADAMS/View Procedure for
simulating.

B Spheres: diameter of 60 mm
and a weight of 0.882 kg.

B Forces:smoothing with
stiffness of 1E5, force
exponent of 2.2, damping
coefficient of 10.0, and a
penetration depth of 0.1




ADAMS versus ChronoEngine

Table 2: Number of rigid bodies v. CPU time in ChronoEngine

Number of Spheres Max Number of Mutual | CPU time (seconds)
Table 1: Number of rigid bodies v. CPU time in ADAMS Contacts [-]
Number of Spheres Max Number of Mutual | CPU time (seconds) 1 1 0.70
Contacts [-] 2 3 0.73
! : o 4 14 0.73
4 14 775 8 44 0.76
3 44 2536 16 152 0.82
16 152 102.78 32 560 1.32
32 560 644.4 64 2144 2.65
The following graph shows the nonlinear increase in the CPU time as the number of 128 8384 6.17
colliding bodies increases. 236 33152 1530
CPU ti . Number of sph inCh Engi =0.0563x + 0.0446
CPU time v. Number of Spheres in ADAMS o aoaco 20007 1 154 Wme:¥. Number of sphores In ChronoEngine. 'y . 0'9‘;82
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Conclusion 1: Often, time stepping is more promising,
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Time stepping scheme -- original

B A measure differential inclusion solution can be obtained by time-stepping
(Stewart, 1998, Anitescu 2006)

Mt —ol) = 37 (iDL iDL 51D +

i€ A(q e)

Speeds impulsos
+ > .W +hf,(tV,q", ") pul
1eUn
AN 1 BAK
- 0=—T'(g")+ VI o) L 2 e Gy
h ot
0< }1<1>1'(q<’>) + VO D :
12
Ly, 20, i€ Ag",e)
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A e (1)
(s 70) WEN, > VaDT+0? € Alg™,e)
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Time Stepping -- Convex Relaxation

B A modification (relaxation, to get convex QP with conic constraints):

oD _ ol — D! +~D! 44D
M (v v') ’EA(X(:D | (v D + 7D+ 7. Dy) + (For small u and/or
e P small speeds, almost
+ > (V) +hf (D, ¢ 0 ") no one-step
1€G 1
1 €0 - differences from the
0 — E\pz( gV + v+ L 2 o 1€Gs Coulomb theory)
0< %(I)i(q(l) )+ VO pHY [—u’ V(DT w)2 4 (DT w2 J
L oAb >0,ieAlg". e But In any case,

converges to same
MDI as unrelaxed
scheme.

g =q" + ho'", \

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ]




Cone complementarity

B Aiming at a more compact formulation:

1. 1_. 1.
by =4=0",0,0,—9"2,0,0,...,=P"™a 0,0
h h h

N G R PR SR LR PR iAo ina tng
7,,4 — ‘'m s Tu s To oy insy Tusy Tor9 n s Ju s Jv
1., owl 1 _. o2 1. oyn"s
bB: _\Ijl+;_a_\112+‘_?"'7_1716+ .
h ot " h ot h ot
~L 2 ~NB

{
Dy = [D|D?|...|D'"a], ic A(¢'.e) D'=[D,|D.|Di]
BDg = [VU VI [VEs], i€ Gy be € R™ — (b4, bs)

Ye € R" ={v4. 75}

De = [D4|Djg]




Cone complementarity problem at each step

B Also define:

Y = Mo® £ nf, (10, g D)

N=DLM'D¢
r=D{M 'k + be

. Then M) —ol) = Z (‘,,i,Djl +‘?;Df, +“,:D:) y

i€A(q® €)

+ Y (V) +hf,(t0.q0.01)
€0

0= %‘I’i(q(”) + VI oD 4 % i€Gp
This is a CCP,
CONE COMPLEMENTARITY

PROBLEM

0< %([)i(q(’)) + VP p+D)
1 ‘):l >0,i€ -A(q(”.f)

i i) — aremi . )
(1%, 75) = argmin o 1€ A(g'" €
[v" (7uD;, +7.D5)]

(Nye+r)e =T" L ~.€eX

becomes..




Cone complementarity—Decomposable
cones.

B Here we introduced the convex cone

]—“CZ In RA3 is i-th friction cone

BC' s R

Y= ( D fcf)@(@gcf)

ic A(ql.e) €0

M ..and its polar cone:

1€0p

To= ( S5 fch) b (@ BC™

i€ A(q!.e)

CCP: (Nye+7)e =0T L ~€T




General: The iterative method

B Question 3: How to efficiently solve the Cone Complementarity Problem
for large-scale systems?

(Nye+r)e =T 1L ~ee¥
B Our method: use a fixed-point iteration

[ ,77‘—|—1 _ /\HT (,71 _ wB" (A,T,.Yr +r 4+ K7 (,77’—!—1 L 77))) 4+ (1 o )\) 77}

. . B 0 Ix'1-)_ IX—13 s I(lnk

B with matrices: mln, 0 e 0
. 0 0 I\—23 L I\—an

B ..and a non-extensive 0 Nolps -+ 0
BI' — 2 NT: 0 0 O ... I\'Bnk

orthogonal projection
operator onto feasible set

_0 0 ’/nk-[nn__ _00 0 0

k

Iy : R"s — R"




General: The iterative method

BASSUMPTIONS

Al The matrix N of the problem (CCP) is symmetric and positive semi-
definite.

A2 There exists a positive number, o > 0 such that, at any iteration », »r =
0.1.2...., we have that B" = ol

A3 There exists a positive number. 7 > 0 such that, at any iteration », »r =

0.1.2...., we have that (2"t —2")T ((/\W'B")_l + K" — %) (2" t1—a") >

Bt — ||
0.8
mUnder the above assumptions, we 0
can prove THEOREMS about convergence. % I

B The method produces a bounded sequence o2
with an unique accumulation point. ]

iterations
A -




The projection operator is easy and separable

B For each frictional contact constraint:

M For each bilateral constraint, simply do nothing.
B The complete operator:

vie A(q\V,€)
Vr < HiVn Hi = i
1
Yo < ——Yn H.j = {0.0.0}
Hi
1 Vi + Tn
Yo = HiYn N Y > ——n Hi.n e
i i+ 1
H-i,u = Yu N“i];['i.,-n
H.i‘.l, = /‘l‘-i,rI'i,n

I 7
AAAAAAAAAAAAAAAAAA




Simulating the PBR nuclear reactor

M Problem of bidisperse granular
flow with dense packing.

M Previous attempts: DEM methods
on supercomputers at Sandia
Labs regularization)

M 40 seconds of simulation for
440,000 pebbles needs 1 week
on 64 processors dedicated
cluster (Rycroft et al.)

model a frictionless wall, ,=0.0. For the current simula-
tions we set kf=%kn and choose k,=2x10° gm/d. While
this is significantly less than would be realistic for graphite
pebbles, where we expect k,>10' gm/d, such a spring
constant would be prohibitively computationally expensive,
as the time step scales as &fock; " for collisions to be mod-
eled effectively. Previous simulations have shown that




Simulating the PBR nu

B 160°000 Uranium-Graphite
spheres, 600°000 contacts on
average

B Two millions of primal
variables, six millions of dual
variables

B 1 day on a Windows station...

B But we are limited by the 2GB
user mode limit, 64 bit port in
progress—nbut linear scaling..

B We estimate 3CPU days,
compare with 450 CPU days
for an incomplete solution in
2006 M

B Answer 3: Our approach is
efficient for large scale!!

AAAAAAAAAAAAAAAAAA




In addition, we can approach efficiently
approach many engineering problems (see
website for papers)




Scaling/constraint accuracy test:

M Size-segregation in shaker, with thousands of steel spheres

Note: solution beyond
reach of Lemke-type LCP
solvers!




Tests

MFeasibility accuracy increases with number of iterations:
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Tests: Scalability

BCPU effort per contact, since our contacts are the problem variables.
M Penetration error was uniformly no larger than 0.2% of diameter.

1400 | T T T T 0.8 ;
Potential contact points ‘
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Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres




Preliminary Results for GS on large problems
on GPU

120.0
* CPU y =0.0009x - 2.622
R2=0.99928
100.0 1 = GPU
Linear(CPU)

2

% 80.0 Linear{GPU)

n

o}

Q.

Q

£ 600 T

=

g

<

40.0
200 1 y = 6E-05x - 0.1413
R?=0.99686
—
0.0 — — : : :
0 20000 40000 60000 80000 100000 120000 140000
Number of Bodies
CPU GPU
Number of Bodies CCP Time CD Time Step Time CCP Time CD Time Step Time CCP Speedup CD Speedup Step Speedup
8000 5.26725 0.10655 5.47370 0.39600 0.12288 0.54658 13.3010 0.8671 10.0144

16000 11.18999 0.23601 11.63754 0.74096 0.15337 0.95315 15.1020 1.5388 12.2095
32000 23.28647 0.55861 24.28257 1.46889 0.21752 1.80878 15.8531 2.5680 13.4249
64000 49.16970 1.36559 51.44442 3.12925 0.36476 3.75152 15.7130 3.7438 13.7130
128000 103.66658 3.80176 109.34287 6.97682 0.74488 8.27050 14.8587 5.1038 13.2208
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Future work

B N non symmetric, but positive semidefinite.

M Parallelizing the algorithms: block Jacobi with Gauss
Seidel blocks, or coloring GS (50% there).

B Huge scale simulation. Multigrid for rigid multibody
dynamics?
¥ Including a good collision model- here we are at a loss

with rigid body theory — may need some measure of
deformability — convolution complementarity.

H Involving other physics ... fluid flow.
B Compare with experimental data.




Comparison with experimental data PBR
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Packing statistics

Porosity:
0.8
""""" Porosity at Y=0.833333
0.7 e Porosity at Y=4.5
S DEM comparison at Y=0.84
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Conclusions

B We have defined a new algorithm for complementarity
problems with conic constraints.

® \We have shown that it can solve very large problems
in granular flow far faster than DEM.

M It is the first iterative algorithm that provably converges
for nonsmooth rigid body dynamics.

M |ts scalability is decent.

B \We have created a multithreaded implementation and
GPU port increases computational speed by a factor
comparable to the number of stream processors.




