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Nonsmooth contact dynamics—what is it? 
 Differential problem with variational inequality constraints  – 

DVI 

 Truly, a Differential Problem with Equilibrium Constraints 
Friction Model 

Newton Equations Non-Penetration Constraints 

Generalized Velocities 



Contact dynamics applications 

 Granular Flow,  
 Masonry Stability,  
 Rock Dynamics.  
 Agent-Based Modeling 

(Pedestrian Evacuation 
Dynamics).  

 Physics-based graphics 
simulations. 

 Most common 
approaches by far are 
smoothing approaches 
(DEM)  



Question 1: Should we do smoothing? 

  Recall, DVI (for C=R+) 

  Smoothing  

  Followed  by forward Euler. 
Easy to implement!! 

  Compare with the complexity 
of time-stepping 

  But does it give good results? 



Applying ADAMS to granular flow 

  ADAMS is the workhorse of 
engineering dynamics. 

  ADAMS/View Procedure for 
simulating.  

  Spheres: diameter of 60 mm 
and a weight of 0.882 kg. 

  Forces:smoothing with 
stiffness of 1E5, force 
exponent of 2.2, damping 
coefficient of 10.0, and a 
penetration depth of 0.1 



ADAMS versus ChronoEngine 

Conclusion 1: Often, time stepping is more promising,  



Time stepping scheme -- original 

  A measure differential inclusion solution can be obtained by time-stepping 
(Stewart, 1998, Anitescu 2006) 

Speeds 

Forces 

Bilateral constraint 
equations 

Contact constraint 
equations 

Coulomb 3D friction 
model 

Stabilization 

 terms 

COMPLEMENTARITY! 

Reaction 
impulses 



Time Stepping -- Convex Relaxation 

  A modification (relaxation, to get convex QP with conic constraints): 

But In any case, 
converges to same 
MDI as unrelaxed 
scheme. 

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ] 

(For small µ and/or 
small speeds, almost 
no one-step 
differences from the 
Coulomb theory) 



Cone complementarity 

  Aiming at a more compact formulation:  

           



Cone  complementarity problem at each step 

  Also define:  

  Then:       

becomes.. 

This is a CCP, 

CONE COMPLEMENTARITY  
PROBLEM 



Cone complementarity—Decomposable 
cones. 

  Here we introduced the convex cone 

  ..and its polar cone: 

CCP: 

In R^3 is i-th friction cone 

is  R 



General: The iterative method 

  Question 3: How to efficiently solve the Cone Complementarity Problem 
for large-scale systems? 

  Our method: use a fixed-point iteration 

  with matrices: 
  ..and a non-extensive 
orthogonal projection  
operator onto feasible set 

NT= 



General: The iterative method 

 ASSUMPTIONS 

 Under the above assumptions, we 
can prove THEOREMS about convergence. 

 The method produces a bounded sequence  
with an unique accumulation point. 

Always satisfied in 
multibody systems 

Use ω overrelaxation 
factor to adjust this 

Essentially free 
choice, we use 
identity blocks 



The projection operator is easy and separable 

   For each frictional contact constraint: 

 For each bilateral constraint, simply do nothing. 
 The complete operator: 



Simulating the PBR nuclear reactor 

 Problem of bidisperse granular 
flow with dense packing.  

 Previous attempts: DEM methods 
on supercomputers at Sandia 
Labs regularization) 

 40 seconds of simulation for 
440,000 pebbles needs 1 week 
on 64 processors dedicated 
cluster (Rycroft et al.) 

Simulations with DEM.  Bazant et al. (MIT and  Sandia laboratories). 



Simulating the PBR nuclear reactor 
  160’000 Uranium-Graphite 

spheres, 600’000 contacts on 
average 

  Two millions of primal 
variables, six millions of dual 
variables 

  1 day on a Windows station… 
  But we are limited by the 2GB 

user mode limit, 64 bit port in 
progress—but linear scaling.. 

 We estimate 3CPU days, 
compare with 450 CPU days 
for an incomplete solution in 
2006 !!! 

  Answer 3: Our approach is 
efficient for large scale!! 



In addition, we can approach efficiently 
approach many engineering problems (see 
website for papers) 



Scaling/constraint accuracy test: 

  Size-segregation in shaker, with thousands of steel spheres 

Note: solution beyond 
reach of Lemke-type  LCP 
solvers! 



Tests 

 Feasibility accuracy increases with number of iterations: 

Speed violation in constraints Position error in constraints (penetration) 

(with example of 300 spheres in shaker) 



Tests: Scalability 
 CPU effort per contact, since our contacts are the problem variables. 
 Penetration error was uniformly no larger than 0.2% of diameter.   

Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres 



Preliminary Results for GS on large problems 
on GPU  

CPU GPU 

Number of Bodies CCP Time CD Time Step Time CCP Time CD Time Step Time CCP Speedup CD Speedup Step Speedup 

8000 5.26725 0.10655 5.47370 0.39600 0.12288 0.54658 13.3010 0.8671 10.0144 

16000 11.18999 0.23601 11.63754 0.74096 0.15337 0.95315 15.1020 1.5388 12.2095 

32000 23.28647 0.55861 24.28257 1.46889 0.21752 1.80878 15.8531 2.5680 13.4249 

64000 49.16970 1.36559 51.44442 3.12925 0.36476 3.75152 15.7130 3.7438 13.7130 

128000 103.66658 3.80176 109.34287 6.97682 0.74488 8.27050 14.8587 5.1038 13.2208 



Future work 

 N non symmetric, but positive semidefinite.  
 Parallelizing the algorithms: block Jacobi with Gauss 

Seidel blocks, or coloring GS (50% there).  
 Huge scale simulation. Multigrid for rigid multibody 

dynamics? 
 Including a good collision model– here we are at a loss 

with rigid body theory – may need some measure of 
deformability – convolution complementarity. 

 Involving other physics … fluid flow.  
 Compare with experimental data.  



Comparison with experimental data PBR 



Packing statistics 



Conclusions 

 We have defined a new algorithm for complementarity 
problems with conic constraints. 

 We have shown that it can solve  very large problems 
in granular flow far faster than DEM. 

 It is the first iterative algorithm that provably converges 
for nonsmooth rigid body dynamics.  

 Its scalability is decent.  
 We have created a multithreaded implementation and 

GPU port increases computational speed by a factor 
comparable to the number of stream processors. 


