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Objective: Integrative Study of Weather Forecast-Based Optimization
Questions: 1: Can I do a good job in modeling weather uncertainty?
2: Is it worth it (economically)?

Research Problem

Interaction Weather Conditions - Operations
On-Line Stochastic Optimization

Need for Consistent Uncertainty Information
Uncertainty Quantification

Time-Series vs. Physics-Based Models

Case Studies
Photovoltaic-H,, Building Thermal Control
Conclusions and Future Work
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Research Problem—Why?

- Operation of 90% of Energy Systems is Affected by Ambient Conditions
- Power Grid Management: Predict Demands (Douglas, et.al. 1999)
- Power Plants: Production Levels (General Electric)
- Petrochemical: Heating and Cooling Utilities (ExxonMobil)
- Buildings: Heating and Cooling Needs (Braun, et.al. 2004)
- Next Generation: Wind + Solar + Fossil (Beyer, et.al. 1999)

- Efficiency (Waste) Becoming a Major Concern: Focus on management, not only
design

Benefits of Anticipating Weather Conditions?
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Research Problem

Weather Conditions (Temperature, Radiation, Wind Speed, Humidity ...)

- Complex Physico-Chemical Phenomena, Spatio-Temporal Interactions
- Inherently Periodic (Day-Night, Seasonal)
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How to Handle Uncertainty?




On-Line Stochastic Optimization




Hierarchical Operations

Energy Manager

Supervisory Level
(Set-Point Optimization)

Regulatory Level
(Set-Point Tracking)
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Optimization Traditionally Reactive, Uncertainty Handling Non-Systematic_
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Receding Horizon Optimization

Benefits: Accommodate Forecasts, Constraint Handling, Financial Objectives, Complex Models
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Complexity (Solution Time)
1,000 — 10,000 Differential-Algebraic Equations
100-1000 Scenarios




Stochastic Dynamic Optimization

Solution Strategies

- Dynamic Programming, Taylor Series: Handling Constraints and Nonlinearity Cumbersome
- Polynomial Chaos: Dense Optimization, Multivariable Quadrature

- Sample Average Approximation (SAA): Sparse Optimization, Constraints, General Framework
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Basic Operational Setting

Stochastic
A Optimization
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Quantifying Uncertainty Key Enabler

A

Argonne

NATIONAL LABORATORY




Digression about the Suitability of Stochastic
Programming for Energy Systems w Renewables

SAA Stochastic Programming
Approximatiosn.
" % kgl ¢ (2ks Yk, Wy Xk)
s.t. c(zp,yp,u,xx) =0
h(zg, yr, u, xx) <O

k=1,..58

=Stochastic programming is a well-studied paradigm of operations research.
=Nevertheless, one weakness is that it assumes a distribution is given.

*In most applications of interest, the distribution is not given. It has to be
modeled from data using some knowledge of the application.

=If the uncertainty originates in weather forecast, there is a strong empirical and
theoretical basis to create the distribution, or, at least to sample from: it.

=To our knowledge this is the first time even a moderately complex energy
system was managed using stochastic programming with real and operational
weather uncertainty.
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Uncertaintx Quantification
Quantifying Model Uncertainty (Data-Based (Time-Series) vs. Physics-Based)

Solar Radiation Forecast with Gaussian Process (GP) Modeling Zavaia & 4, 2008
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1. Input-Output Data Sets: Y; :=xr  X; = [xx—1, Xk—7]

2. Covariance Structure :  V(X;,X;,n) :=mno + n1 - exp <_%||Xj - X412)
3. Apply Maximum Likelihood: 109p(Y[n) = —3YV~1(X, X,n)Y—3log det(V(X, X,n))

4. Posterior Distribution: YI = V(XF, X, 7 )V~ 1(X,X,n*)Y Forecast Mean
VP = V(XP XP ) -V(XP, X, n*)V (X, X, n*)V(X, X n*) Covariance




Uncertainty Quantification

One-Day Ahead Forecast and Samples from Posterior Distribution

600

o True

—— Mean

— Mean +/- 64
Samples

500

400 -

300

Radiation [W/m 2]

200 -

100

Time [hr]

Covariance Structure *Sort of* Makes Physical Sense, Wide Uncertainty Bounds




Temperature [°C]

Uncertaintx Quantification

Ambient Temperature Forecast with GP Modeling zavaia, 4, et.al. 2009
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Time-Series Cannot Capture Physical Effects (Spatial), Inconsistent Uncertainty Bounds

GP (and all data-oriented approaches) Provide Accurate Interpolations but Poor

Extrapolations (e.g. Geostatistics)
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Uncertaintx Quantification

- Advanced Meteorological Models (WRF)
- Detailed Physico-Chemical Phenomena
- High Complexity 4-D Fields (10° States)

- Model Reconciled to Measurements From Multiple Stations

- Reconciliation Techniques:
- 3-D Var courtier, et.al. 1998
- 4-D Var (Moving Horizon Estimation) ~Navon et.al, 2007
- Extended and Ensemble Kalman Filter Eversen, et.al. 1998

http://www.emc.ncep.noaa.gov/gmb/ens/ http://www.meteomedia.com/
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Uncertainty in dynamical systems: 1. Data

B Assume a time-discretized process with imperfect initial state and forcing

information and noisy measurements.

The dynamic model is depicted as for k=0, ---, K

in
Xk =
obs  _
Zk =

where

Wy =

and

Vi =

We want find D(x{", ---, x/?)’s mean and variance.

M(xi"1) + Wy, (1)
H(x{" + Vi, (2)
N (X, Q;7)
N@©O,R.").




Uncertainty in dynamical systems: 2. the posterior.

B Under the typical 4D Var assumptions (normality of noise and input) we
can write down the posterior ...

- exp ( o %f(Xin,ZObs)) |
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P(wk s L1, 5 |ZO s 21 329 4t 42 )— Cka P(ZObs)
k
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+Z 22— b (1 ) TR (20 — Ry (1,2

B A very difficult distribution to sample from.
B Solution: first, find the best estimate of the state.

B Then, approximate the prior covariance by an ergodic/Gaussian Process
method.




SteB 1: Moving Horizon Best State Estimation
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Uncertainty in Current State Ly ?

Needed To Quantify Future Forecast




SteB 2: Estimate the Brior covariance matrix.

Reconciliation N ( X, 11 E) Forecast
A A
xOr——1
o e e
ti_N ty Lot N

Current Time

*Use some form of an ergodic hyptohesis. Take  d;; € RV % (2x30days) 7
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*“Guess” the diagonal of the variance matrix




SteE 2 b: Fit to a Gaussian Process.

Covariance Matrix is Huge and low rank (10° x 10°) But ...

- Spatial Correlations Decay Exponentially Constantinescu, et.al., 2007

- Covariance Can be Approximated Using Gaussian Kernels Zavala, Constantinescu & 4, 2009
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Ensemble Forecast AEBroach
Ensemble Forecast Approach — Use WREF as Black-Box
Sample Prior and Propagate Samples of Posterior Through Model
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Case Studies




szrid Photovoltaic-Hz sttem
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* Operating Costs Driven by Uncertain Radiation viieperg, 2004
* Performance Deteriorated by Multiple Power Losses




szrid Photovoltaic-Hz sttem

Effect of Forecast on Economics z, 4nitescu, Krause 2009
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* Forecast Horizon of One Year — Highest Achievable Profit

* Receding-Horizon with 1hr, 1 Day, ...,14 Days Forecast - 8,700 Problems in Each

Scenario




szrid Photovoltaic-HZ sttem
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szrid Photovoltaic-Hz sttem

Profiles of Fuel Cell Power
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szrid Photovoltaic-Hz sttem

Load Satisfaction Deterministic (“Optimization on Mean”) vs. Stochastic

Deterministic Fails to Satisfy Load
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Therefore, the alternative to stochastic programming can turn out infeasible !!

Handling Stochastic Effects Particularly Critical in Grid-Independent Systems




Thermal Management of Building sttems

Minimize Annual Heating and Cooling Costs
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Thermal Management of Building Systems

Effect of Forecast on Energy Costs
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Exploit Comfort Zone and Weather Info to Heat/Cool when Cheaper Braun, 1990




Thermal Management of Building sttems

Performance Optimizer using WRF and GP Model Forecasts
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Conclusions and Future Work




Conclusions and Future Work

Integrative Study of Weather Forecast-Based Optimization
WRF Model + Ensemble Approach + Stochastic Receding-Horizon
Important Economic Benefits, Niche Market is Huge
New Algorithms and Formulations Needed

*  We showed that stochastic formulation matters (deterministic results in
big losses).

e  We showed that weather forecast inclusions results in 20-80% cost
reduction

* Weather uncertainty is a hard, important, problem that data-only
methods (such as GP) are unlikely to crack

Future and On-Going Work
Convergence of SAA Approximations for Stochastic Receding-Horizon
Variance Reduction Control Formulations
Integration Gaussian Process + WRF Forecasts
Including Uncertainty from Energy Markets in the Formulation




Conclusions and Future Work

Integrative Study of Weather Forecast-Based Optimization

WRF Model + Ensemble Approach + Stochastic Receding-Horizon
Important Economic Benefits, Niche Market is Huge
New Algorithms and Formulations Needed

Future and On-Going Work

Convergence of SAA Approximations for Stochastic Receding-Horizon
Variance Reduction Control Formulations

Integration Gaussian Process + WRF Forecasts
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