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- Operation of 90% of Energy Systems is Affected by Ambient Conditions 
     - Power Grid Management: Predict Demands (Douglas, et.al. 1999)  
     - Power Plants:  Production Levels  (General Electric) 

     - Petrochemical:  Heating and Cooling Utilities (ExxonMobil) 

     - Buildings: Heating and Cooling Needs (Braun,  et.al. 2004) 

     - Next Generation: Wind + Solar + Fossil  (Beyer, et.al. 1999) 

- Efficiency (Waste) Becoming a Major  Concern: Focus on management, not only 
design 

Benefits of Anticipating Weather Conditions? 



Weather Conditions (Temperature, Radiation, Wind Speed, Humidity …)  
     - Complex Physico-Chemical Phenomena, Spatio-Temporal Interactions 
     - Inherently Periodic (Day-Night, Seasonal) 
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How to Handle Uncertainty? 
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Optimization Traditionally Reactive, Uncertainty Handling Non-Systematic  
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Benefits: Accommodate Forecasts, Constraint Handling, Financial Objectives, Complex Models 

Deterministic 

Stochastic  

Complexity (Solution Time) 
1,000 – 10,000 Differential-Algebraic Equations 

100-1000 Scenarios 



Solution Strategies 
    - Dynamic Programming, Taylor Series: Handling Constraints and Nonlinearity Cumbersome 
    -  Polynomial Chaos: Dense Optimization, Multivariable Quadrature 
    -  Sample Average Approximation (SAA):  Sparse Optimization, Constraints, General Framework 

Nonlinear Programming: Exploit Fine and Coarse Structures at Linear Algebra Level 
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Quantifying Uncertainty Key Enabler  
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SAA Stochastic Programming 
Approximation. 

 Stochastic programming is a well-studied paradigm of operations research.  
 Nevertheless, one weakness is that it assumes a distribution is given.  
 In most applications of interest, the distribution is not given. It has to be 
modeled from data using some knowledge of the application.  
 If the uncertainty originates in weather forecast, there is a strong empirical and 
theoretical basis to create the distribution, or, at least to sample from it.  
 To our knowledge this is the first time even a moderately complex energy 
system was managed using stochastic programming with real and operational 
weather uncertainty.  





Solar Radiation Forecast with Gaussian Process (GP) Modeling Zavala & A, 2008 

1. Input-Output Data Sets:   

2. Covariance Structure :   

3. Apply Maximum Likelihood:    

4. Posterior Distribution:    Forecast Mean 

Covariance 

Quantifying Model Uncertainty (Data-Based (Time-Series) vs. Physics-Based) 



One-Day Ahead Forecast and Samples from Posterior Distribution 

Covariance Structure *Sort of* Makes Physical Sense, Wide Uncertainty Bounds 



Ambient Temperature Forecast with GP Modeling Zavala, A, et.al. 2009 

One Hour Ahead 

5 Days Ahead 

Time-Series  Cannot Capture Physical Effects (Spatial), Inconsistent Uncertainty Bounds 

GP  (and all data-oriented approaches) Provide Accurate Interpolations but Poor 

Extrapolations (e.g. Geostatistics) 



- Advanced Meteorological Models (WRF) 
    - Detailed Physico-Chemical Phenomena 
    - High Complexity 4-D Fields (106 States)  

-  Model Reconciled to Measurements From Multiple Stations 

- Reconciliation Techniques: 
    - 3-D Var Courtier, et.al. 1998 

    - 4-D Var (Moving Horizon Estimation)   Navon  et.al., 2007 

    - Extended and Ensemble Kalman Filter Eversen, et.al. 1998    

http://www.meteomedia.com/ http://www.emc.ncep.noaa.gov/gmb/ens/ 



Uncertainty in dynamical systems: 1. Data 

  Assume a time-discretized process  with imperfect initial state and forcing 
information and noisy measurements. 
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Uncertainty in dynamical systems: 2. the posterior.  

  Under the typical 4D Var assumptions (normality of noise and input) we 
can write down the posterior … 

   A very difficult distribution to sample from.  
  Solution: first, find the best estimate of the state.  
  Then, approximate the prior covariance by an ergodic/Gaussian Process 

method. 
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Current Time 

Reconciliation Forecast 

• Use some form of an ergodic hyptohesis. Take 

• “Guess” the diagonal of the variance matrix  



Covariance Matrix is Huge and low rank (106 x 106) But … 
     - Spatial Correlations Decay Exponentially Constantinescu, et.al., 2007 

      - Covariance Can be Approximated Using Gaussian Kernels  Zavala, Constantinescu & A, 2009  



Ensemble Forecast Approach – Use WRF as Black-Box 
     Sample Prior and Propagate Samples of Posterior Through Model 

Confidence Interval 

Forecast 

Measurement 
Validation Results, Pittsburgh Area 2006  

5 Day Forecast and +/- 3s Intervals 

Hours (August 1st-5th ) 
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•  Operating Costs Driven by Uncertain Radiation Ulleberg, 2004 

•  Performance Deteriorated by Multiple Power Losses 

Load Demand 
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Effect of Forecast on Economics Z., Anitescu, Krause 2009 

Minimize Operating Costs + Maximize H2 
Production 
Energy Balances 

State-of-Charge, Fuel Cell and Electrolyzer 
Limits 

•  Forecast Horizon of One Year – Highest Achievable Profit 

•  Receding-Horizon with 1hr, 1 Day, …,14 Days Forecast - 8,700 Problems in Each 

Scenario 

True Future Radiation 

Chicago, IL 
2004 



 Reactive   
(Steady-State) 

Proactive  
1Day 

•  Costs Reduced By 300% From 1-Hr to 14-Day Forecast 

•  Close-to-Optimal Profit Achieved with Short Forecasts 

14 Day 

1Hr 



Profiles of Fuel Cell Power 

Short Forecasts = Aggressive Controls  

Long Forecasts =  Smooth Controls  



Load Satisfaction Deterministic (“Optimization on Mean”) vs. Stochastic 

Deterministic Fails to Satisfy Load 

Therefore, the alternative to stochastic programming can turn out infeasible !! 

Handling Stochastic Effects Particularly Critical in Grid-Independent Systems 



Pittsburgh, PA  2006 

Minimize Annual Heating and Cooling Costs 

NLP with 100,000 Constraints & 20,000 Degrees of Freedom 

Time-Varying Electricity Prices  Peak & Off-Peak 

Energy Balances 

www.columbia.edu/cu/gsapp/BT/
LEVER/  



1hr 

24 hr 

Forecast Leads to 20-80% Cost Reduction (Depends on Insulation Quality) 

Exploit Comfort Zone and Weather Info to Heat/Cool when Cheaper Braun, 1990 

Comfort Zone 

24hr Forecast 
  1hr Forecast 

Effect of Forecast on Energy Costs 



Performance Optimizer using WRF and GP Model Forecasts 
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WRF Model Provides Coarse Forecasts 
(Km, Hour Scales) 

Gaussian Process Model to Create    
High-Fidelity Forecasts 

(Meters, Minutes) 
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