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Objective: Integrative Study of Weather Forecast-Based Optimization
Questions: 1: Can I do a good job in modeling weather uncertainty?
2: Is it worth it (economically)?

Research Problem

Interaction Weather Conditions - Operations
On-Line Stochastic Optimization

Need for Consistent Uncertainty Information
Uncertainty Quantification

Time-Series vs. Physics-Based Models

Case Studies
Photovoltaic-H,, Building Thermal Control
Conclusions and Future Work
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Research Problem—Why?

- Operation of 90% of Energy Systems is Affected by Ambient Conditions
- Power Grid Management: Predict Demands (Douglas, et.al. 1999)
- Power Plants: Production Levels (General Electric)
- Petrochemical: Heating and Cooling Utilities (ExxonMobil)
- Buildings: Heating and Cooling Needs (Braun, et.al. 2004)
- Next Generation: Wind + Solar + Fossil (Beyer, et.al. 1999)

- Efficiency (Waste) Becoming a Major Concern: Focus on management, not only
design

Benefits of Anticipating Weather Conditions?
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Research Problem

Weather Conditions (Temperature, Radiation, Wind Speed, Humidity ...)

- Complex Physico-Chemical Phenomena, Spatio-Temporal Interactions
- Inherently Periodic (Day-Night, Seasonal)
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How to Handle Uncertainty?




On-Line Stochastic Optimization




Hierarchical Operations

Energy Manager
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Optimization Traditionally Reactive, Uncertainty Handling Non-Systematic_
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Receding Horizon Optimization

Benefits: Accommodate Forecasts, Constraint Handling, Financial Objectives, Complex Models
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Stochastic Dynamic Optimization

Solution Strategies

- Dynamic Programming, Taylor Series: Handling Constraints and Nonlinearity Cumbersome
- Polynomial Chaos: Dense Optimization, Multivariable Quadrature

- Sample Average Approximation (SAA): Sparse Optimization, Constraints, General Framework
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Uncertainty Quantification




Uncertaintx Quantification
Quantifying Model Uncertainty (Data-Based (Time-Series) vs. Physics-Based)

Solar Radiation Forecast with Gaussian Process (GP) Modeling Zavaia & 4, 2008
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1. Input-Output Data Sets: Y; :=xr  X; = [xg—1, Xp—7]

2. Covariance Structure :  V(X;,X;,m) :=no +n1 - exp (—=[1X; — X;||2)
3. Apply Maximum Likelihood: '09p(Y[n) = —3YV~1(X, X,n)Y—3log det(V(X, X, 7))

4. Posterior Distribution: YZ = V(XZ, X, 7 )V~ 1(X,X,n*)Y Forecast Mean
VP = V(XP XP ) - V(XP, X, n*)V (X, X, n*)V(X, X n*) Covariance




Uncertainty Quantification

One-Day Ahead Forecast and Samples from Posterior Distribution
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Covariance Structure *Sort of* Makes Physical Sense, Wide Uncertainty Bounds




Uncertaintx Quantification

Ambient Temperature Forecast with GP Modeling zavaia, 4, et.al. 2009
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Time-Series Cannot Capture Physical Effects (Spatial), Inconsistent Uncertainty Bounds

GP Provides Accurate Interpolations but Poor Extrapolations (e.g. Geostatistics)
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Uncertaintx Quantification

- Advanced Meteorological Models (WRF)
- Detailed Physico-Chemical Phenomena
- High Complexity 4-D Fields (10° States)

- Model Reconciled to Measurements From Multiple Stations

- Reconciliation Techniques:
- 3-D Var courtier, et.al. 1998
- 4-D Var (Moving Horizon Estimation) ~Navon et.al, 2007
- Extended and Ensemble Kalman Filter Eversen, et.al. 1998
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http://www.emc.ncep.noaa.gov/gmb/ens/ http://www.meteomedia.com/
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4-D Var and Moving Horizon Estimation
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Uncertainty in Current State Ly ?

Needed To Quantify Future Forecast




Ensemble Forecast AEBroach

Reconciliation N ( X, 11 E) Forecast
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Covariance Matrix is Huge (10° x 10%) But ...

- Spatial Correlations Decay Exponentially Constantinescu, et.al., 2007

- Covariance Can be Approximated Using Gaussian Kernels Zavala, Constantinescu & 4, 2009
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Ensemble Forecast AEBroach

Ensemble Forecast Approach — Use WREF as Black-Box
Propagate Samples of Posterior Through Model
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Case Studies




szrid Photovoltaic-Hz sttem
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* Operating Costs Driven by Uncertain Radiation vieperg, 2004
* Performance Deteriorated by Multiple Power Losses




szrid Photovoltaic-Hz sttem

Effect of Forecast on Economics z, 4nitescu, Krause 2009

4 I I I | | I I
3l Chicago, IL -
3 2004
> 2+ i
o 1 4
0 } . bl ||[| Akl { ] | Al |||| |Jn||| l|||‘|| |||I|||Ih I‘ IHIIIIIH ||||1 lJlIll Rh LA e 16 D WL
0 50 100 150 200 250 350
Time [Days]
True Futut:f Radiation
min tf—!—N
u(t) /te v(2(2), y(t), u(t), x(t))dt  Minimize Operating Costs + Maximize H,
© = £, y0u@),x@)  Production
dt Energy Balances
0 = g(=(),y(®),u(®), x(t))
0 > h(z(t),y(®),u(t),x(t)) State-of-Charge, Fuel Cell and Electrolyzer
2(0) = Limits

* Forecast Horizon of One Year — Highest Achievable Profit

* Receding-Horizon with 1hr, 1 Day, ...,14 Days Forecast - 8,700 Problems in Each

Scenario




szrid Photovoltaic-Hz sttem
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szrid Photovoltaic-Hz sttem

Profiles of Fuel Cell Power
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szrid Photovoltaic-Hz sttem

Load Satisfaction Deterministic (“Optimization on Mean”) vs. Stochastic

Deterministic Fails to Satisfy Load
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Handling Stochastic Effects Particularly Critical in Grid-Independent Systems




Thermal Management of Building sttems

Minimize Annual Heating and Cooling Costs
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Time-Varying Electricity Prig& Peak & IOff-Pleak
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Thermal Management of Building Systems

Effect of Forecast on Energy Costs
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Forecast Leads to 20-80% Cost Reduction (Depends on Insulation Quality)
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Exploit Comfort Zone and Weather Info to Heat/Cool when Cheaper Braun, 1990




Thermal Management of Building sttems

Performance Optimizer using WRF and GP Model Forecasts
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Conclusions and Future Work




Conclusions and Future Work

Integrative Study of Weather Forecast-Based Optimization
WRF Model + Ensemble Approach + Stochastic Receding-Horizon
Important Economic Benefits, Niche Market is Huge
New Algorithms and Formulations Needed

*  We showed that stochastic formulation matters (deterministic results in
big losses).

e  We showed that weather forecast inclusions results in 20-80% cost
reduction

* Weather uncertainty is a hard, important, problem that data-only
methods (such as GP) are unlikely to crack

Future and On-Going Work
Convergence of SAA Approximations for Stochastic Receding-Horizon
Variance Reduction Control Formulations

Integration Gaussian Process + WRF Forecasts




Conclusions and Future Work

Integrative Study of Weather Forecast-Based Optimization

WRF Model + Ensemble Approach + Stochastic Receding-Horizon
Important Economic Benefits, Niche Market is Huge
New Algorithms and Formulations Needed

Future and On-Going Work

Convergence of SAA Approximations for Stochastic Receding-Horizon
Variance Reduction Control Formulations

Integration Gaussian Process + WRF Forecasts
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