AAAAAAAAAAAAAAAAAA

Using High Performance Computing for the
Management under Uncertainty of Energy Systems

Mihai Anitescu

Mathematics and Computer Science Division
Argonne National Laboratory

With V. Zavala, E. Constantinescu, C. Petra, M. Lubin, S. Lee, Matt
Rocklin, T. Krause

Princeton, Oct 2010




Motivation: Management of Energy Systems under Ambient
Conditions Uncertainty



Ambient Condition Effects in Energy gystems

- Operation of 90% of Energy Systems is Affected by Ambient Conditions
- Power Grid Management: Demands (pouglas, et.al. 1999)
- Power Plants: Production Levels (General Electric)
- Petrochemical: Heating and Cooling (ExxonMobil)
- Buildings: Heating and Cooling (Braun, et.al. 2004)

- (Focus) Next Generation Energy Systems assume a major renewable energy penetration: Wind +
Solar + Fossil (Beyer, et.al. 1999)

- Efficiency (reduction of waste) becoming a major concern: Focus on optimal
management, not only optimal design

Question 1: What are the benefits versus the costs of anticipating weather conditions?




Variability/Uncertainty in Ambient Conditions

Weather Conditions (Temperature, Wind Speed, Humidity ...) have high variability/uncertainty
- Complex Physico-Chemical Phenomena, Spatio-Temporal Interactions

- Inherently Periodic (Day-Night, Seasonal)
2004 2005

<€ >€ >
1000
Total Ground Solar E
Radiation g 500 -
Chicago, IL §
0 |
0 365 730
Time [days]
. 30_ T T T T T T ]
Ambient Dry-Bulb &)
e 20| 1
Temperature 2
Pittsburgh, PA = 10
[«b)
g 0
)
= 10} _
0 50 100 150 200 250 300 350
Time [Days]

Question 2: How to Handle Uncertainty?



Hierarchical Management in Energy gystems
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Question 3: How to handle the management of energy systems under uncertainty?



Abstraction: Basic Operationa| gettmg
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Dynamic Uncertainty: Receding Horizon Optimization

Benefits: Accommodate Forecasts, Constraint Handling, Financial Objectives, Complex Models
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Digression about the Features of Stochastic
Programming for Energy Systems w Renewables

SAA Stochastic Programming Approximation.

: S
min 1
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=Stochastic programming/SAA is a well-studied paradigm of operations
research.

= Nevertheless, in energy systems, the distribution — at least of weather
forecast -- is not given. It has to be modeled from data using some knowledge
of the application (and sometimes, distribution modeling is more computing
intensive than obtaining the optimal decision).

=Energy Systems have a significant physical layer. Therefore one scenario can
have a significant number of degrees of freedom.



OUTLINE

= Question 1: What are the benefits versus the costs of anticipating weather
conditions?

= Question 2: How do we handle ambient conditions uncertainty?

= Question 3: How to handle the management of energy systems under
uncertainty?

= Sampling from the distribution of the ambient conditions (Q2).
— How do I manipulate this large uncertainty space?

= Benefits of considering uncertainty in energy systems (Q3, Q1)
— Use photovoltaic, building systems, energy dispatch problems as test cases.
— Does forecast matter?
— Does stochasticity matter?

= How do we solve the resulting stochastic programming problems? (Q3)
— ... Since they have a large physical layer.
— How do | obtain scalable algorithms for solving them



1. Sampling from the distribution of ambient conditions
(“uncertainty quantification” of ambient conditions). -
Question 2



Physical Model-Based Statistical Model of Ambient

Conditions
- Advanced Meteorological Models (WRF)

- Detailed, First Principles, Physico-Chemical Phenomena
- High Complexity 4-D Fields (10° States)

- Model Reconciled to Measurements From Multiple Stations

- Reconciliation Techniques:
- 3-D Var Courtier, et.al. 1998
- 4-D Var (Moving Horizon Estimation) navon et.al, 2007
- Extended and Ensemble Kalman Filter cversen, et.al. 1998
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Uncertainty representation in weather:

= The gold standard in weather forecast: Hidden Markov Model

= Assume a time-discretized process with imperfect initial state and forcing
information and noisy measurements.

The dynamic model is depicted as for k=0, ---, K

X = M(x{Lq) + Wy, (1)
Z% = H(xI") + V4, (2)
where
Wi = N(xi, Q)
and
Vi = N(0,R;).
We want find D(x§", ---, x/7)’s mean and variance.

= M: physical model, a multi-variable, multi-dimensional, time-dependent partial
differential equation (state size for 1 time step: 10r4—10/12)
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Uncertainty in dynamical systems: 2. the posterior.

= Under the typical 4D Var assumptions (normality of noise and input) we can
write down the posterior ...
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=  Avery difficult distribution to sample from.
= Solution: first, find the best estimate of the state.

= Then, approximate the prior covariance by an ergodic/Gaussian Process
method.
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Do | really need to do it by myself?

=  NWS gives excellent estimates for
large scale patterns, but:

= NWS gives me too coarse of a
resolution forecast for energy apps. |
need resolution because wind has
enormous variability

4 [\ 30% Wind

\/ \ |20% Wind

Power [MW]

[\ 10% Wind

= NOAA/NCEP gives me an even coarser
resolution for uncertainty forecast o
(200km). ,‘
= Data at heights relevant for wind 0 20 20 B 0 0 120

applications (100m) is most often not Time [nr]
reported (emphasis on surface).

Mihai Anitescu -- Stochastic Programming
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SteB 1: Moving Horizon Best State Estimation
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Step 2: Estimate the prior covariance matrix.

Reconciliation N(Xﬁa HE) Forecast

A |

x(t)

X0

to—N

Current Time

*Use some form of an ergodic hypothesis. Take dij c RIVx(2x30days)
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*Our uncertainty model for multi-period forecasting:
*Mean: Best Estimate.
*Covariance: Fixed correlations at current moment, variance adjusted from physical
data and best estimates update size.
*Sampling: Take samples, propagate through the model = empirical ensemble



Short-term wind speed prediction with uncertainty using
numerical weather prediction models

= Designed a multiscale UQ framework to generate forecasts with confidence intervals
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“ Mihai Anitescu -- Stochastic Programming
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2. Benefits of considering uncertainty in energy systems.
Question 1



Hybrid Photovoltaic-Hz System

PV-Generator

Solar
Radiation Load Demand
DC-Busbar
' pcibc
— / —
Power &——V\= ~ Converters = .
Losses 1
Electrolyzer Fuel Cell Secondary
Power € Battery
Losses I
H,
Buffer Storage
Power &
L@_ H,-Storage Losses
Compressor O, or Air

» Operating Costs Driven by Uncertain Radiation uieberg, 2004
* Performance Deteriorates by Multiple Power Losses




Hybrid Photovoltaic-H gystem

—

Effect of Forecast on Economics z, Anitescu, Krause 2009
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min tf—|—N
u(t) /te e(z(8), y(#), u(t), x())dt  \inimize Operating Costs + Maximize H, Production

d

== (), (1), u(t), x())

dt Energy Balances

0 = g(=(),y(®),u(®), x(t))

0 > h(z(),y(t),u(t), x(t)) State-of-Charge, Fuel Cell and Electrolyzer Limits
z2(0) = =y

* Forecast Horizon of One Year — Highest Achievable Profit

* Receding-Horizon with 1hr, 1 Day, ...,14 Days Forecast - 8,700 Problems in Each Scenario




Hybrid Photovoltaic-HZ System
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\
Hybrid Photovoltaic-HZ System

Load Satisfaction Deterministic (“Optimization on Mean”) vs. Stochastic

Deterministic Fails to Satisfy Load
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Therefore, the alternative to stochastic programming can turn out infeasible — considering

uncertainty matters for robustness !!

Handling Stochastic Effects Particularly Critical in Grid-Independent Systems




Thermal Management of Bmlamg Systems

Minimize Annual Heating and Cooling Costs
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Thermal Management of Building Systems

Effect of Forecast on Energy Costs
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Forecast Matters!



Thermal Management of Building Systems

Performance Optimizer using WRF and GP Model Forecasts
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Stochastic Unit Commitment with Wind Power (SAA)
min COST:LZ[Z chjk+c +c! ]

s s€S\ jeN keT
wind
Z psjk+ 2 p‘sjk :Dk’sE S’ke T
jG N je Nwind
Zpsjk+ z p:j”,fd >D,+R, ,se€S,keT
jEN jerind

ramping constr., min. up/down constr.

=  Wind Forecast — WRF(Weather Research and Forecasting) Model
— Real-time grid-nested 24h simulation

— 30 samples require 1h on 500 CPUs (Jazz@Argonne) 43} )
S
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Mihai Anitescu -- Stochastic Programming Zavala & al 2010.
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Wind power forecast and stochastic programming

= Unit commitment & energy dispatch with uncertain wind
power generation for the State of lllinois, assuming 20% wind NAN\N\/—

power penetration, using the same windfarm sites as the one  wind :
existing today. power

I

emmeeesss  Uncertainty Matters

W

=Full integration with 10 thermal units to meet demands.
Consider dynamics of start-up, shutdown, set-point changes

= The solution is only 1% more expensive then the one with
exact information. Solution on average infeasible at 10%.
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Mihai Anitescu -- Stochastic Programming
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We answered Q1 (uncertainty and forecast matters), how about
Q2 (how do | sample from ambient uncertainty?)



Ensemble forecast and uncertainty quantification with
WRF on Jazz

=  Computational domain setup /43_ - )
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= Jazz: 350 nodes; Intel Pentium IV Xeon@ 2.4GHz; 1 or
2 Gb RAM per node; Myrinet 2000 @ 0.25 GB/s, 6-8
usec latency

= 24 hours [simulation time] in one hour [real time] on
Jazz with 30 members on 500 processors;

Mathematics and Computer Science

30
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WRF scalability on Jazz

(C)

) ) —— Scalability on Jazz

= Two-level parallelization scheme — very - e- Linear Scalability
o . 1 member

scalable: (A) realizations are independent, 2

10+
(B) each is parallelized, and (C) explicit 24 hours

. \ ) | CPU | Wallclock

; 35 7 ) . H"Tﬁ:;l; [mm] \\
2 ; 1 157 N

25 120 110 100 90 80 - 8 95 °
.,Lonqimd;w/\/ 16 65 32p/member
32 15
' 10° 10’ 10°
/ / CPUs

v

= 24 hours [simulation time] -> one hour [real
(A) time] on Jazz with 30 members; [2 km];
(almost) linear scalability with area (C)

Grid Size = ¢/ lllinois [2km]: 500 processors
US:| #1-32km?® | 130 x 60
42 _6km? | 126 x 121 = [ ] US [2 km]: ~50,000 processors
linois: | #3 - 2km? | 202 x 232

= [ ] US[1 km]: ~400,000 processors

Mathematics and Computer Science

11/17/09
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3. How do we solve the resulting stochastic programming
problems (Question 3)



v

INTERIOR POINT METHODS FOR STOCHASTIC
PROGRAMMING

Mihai Anitescu -- Stochastic Programming
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Managament under uncertainty paradigm: stochastic
programming.

Two-stage stochastic programming with recourse (“here-and-now”)
Min{ £.(x,)+ E[Min f(x,a))}}
subj.xfo. Ayx, ' = b,
Alw)x,+ Bw)x = b(w)
%20, x(w)=0

» [ &) = (4(0). B(@).5(0).0@).c(0))
|

v v

continuous discrete Sample average approximation (SAA)
1 S
Min X)+— (x,
/.V X »X] 5X9 5+ - s Xg fO‘( ) S,z::'fl( l)
Sampling >&,E,,..., & subj.to.  A,X, - b,
Akxo + kak = bk’
. Inference | M samples | x.>0. r >0 Eel. S
Analysis 0 ? k ’

Mihai Anitescu -- Stochastic Programming
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Linear Algebra of Primal-Dual Interior-Point Methods

Convex quadratic problem IPM Linear System
1
Min —x' Ox+c'x O+A A |[x
: 4 =rhs
subj. to. Ax=0>b A 0 y
x=0
Multi-stage SP — & _
Hy B 0 0
Two-stage SP B 0 4 0
7 T
nested arrow-shaped linear system Ha B, 0 0
' i B 0 4, 0
(via a permutation) :
Hs B§ 0 0
BS 0 éS 0
0 4 0 4 0 45 Ho 4

Mihai Anitescu -- Stochastic Programming
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The Direct Schur Complement Method (DSC)

= Uses the arrow shape of H

_Hl G1T | _Ll | _Dl LlT L1To
Hz GzT Lz Dz LTz Lgo

HS GST LS DN LTS Lgo

_G1 Gz Gs Ho ] _LIO Lzo Lso Lc_ | Dc_ i LTC

= Solving Hz=r

LDI'=H, L ,=GL'D", i=1,..8,

1 1l

Implicit factorization

S
C=H, —ZGZ.HZ.‘IGZ.T,[L DL =C. }
i=1

C c C

w,=L'r, i=1...5, %O:L;Ivé
N — nD! S _ 7T _qr
i=1 l:

1,...S.

Back substitution Diagonal solve Forward substitution

Mihai Anitescu -- Stochastic Programming



High performance computing with DSC

Gondzio (OOPS) 6-stages 1 billion variables

Zavala et.al., 2007 (in IPOPT)
Our experiments (PIPS) — strong scaling is investigated

S0r

45

Mihai Anitescu -- Stochastic Programming

= Building energy system
* Almost linear scaling
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Scalability of DSC

...but not always the case, since first

Unit commitment ,
stage calculations can keep everyone

76.7% efficiency ... blocked

15 -
— — - Linear scaling y, /

—+—DSC Y,

12.5

of.5r
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e
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o
w0
5 L
3r N A ,
— — — Linear scaling 2 9 10 15 20 30
1.5} —e—DSC # Koras
1 1 1 1 1 J
80120240 400 600 1,000 Large number of 1st stage
# Cores ) o
variables: 38.6% efficiency
on Fusion @ Argonne
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BOTTLENECK SOLUTION 1: STOCHASTIC PRECONDITIONER

Mihai Anitescu -- Stochastic Programming
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Preconditioned Schur Complement (PSC)

LDIL =H., L, = GL'D ', i=1l,...N,

Dl L,D, L =M
C=H,-Y GH'G e
i=1

(separate process)

RY,

- -1 .
w,=L'r v.=D "w, i=0,...N

ro = (Vo —iLNiWi j ::>
i=1

::> Z; = L;T (vi _L{OZO)

2, = Kaylov(C, M. 7o)

Mihai Anitescu -- Stochastic Programming



The Stochastic Preconditioner

= The exact structure of Cis S
S
A
_( i
~ Il i for'nr Y T
Q0+_Z Ai (BiQi Bz' ) Az' AO
C: S i=1 .
o AO 0 _

= |IDsubset of nscenarios: K =1{k,k,,....k }
= The stochastic preconditioner (Petra & Anitescu, 2010)
~ 1 <& , ~1 . y!
S, =0, +;Z|:Aki (Bkl. le. Bk,.) Aki :
i=1
= For Cuse the constraint preconditioner (Keller et. al., 2000)

S, 4y
4, 0

M =

Mihai Anitescu -- Stochastic Programming



Quality of the Stochastic Preconditioner
~ ] ~—1 % ~ 1S L |
S, =0, +;l§|:Al€ (Bk,- Qki B’é) Ak,-:| Ss =0, +§;|:AI'T (BiQi BiT) Aii|

“Exponentially” better preconditioning (Petra & Anitescu 2010)
2

Pr(| (S S)—128>32p4exp[_ | }

2p°L" || S ||
Proof: Hoeffding inequality (p is dim on S; L is a bound on data)

max

Assumptions on the problem’s random data

1. Boundedness

not restrictive (=> L)
2. Uniform full rank of A(®) and B()

Mihai Anitescu -- Stochastic Programming
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Quality of the Constraint Preconditioner

4, 0 4, 0
P v

= M 'C has an eigenvalue 1 with order of multiplicity 27

= The rest of the eigenvalues satisfy

0<A

min(Sn_lSS) S A’(M_IC) S ﬂ“m (Sn_lSS)

ax

= Proof: based on Bergamaschi et. al., 2004.

Mihai Anitescu -- Stochastic Programming
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The Krylov Methods Used for Cz,=r,

T I
S¢ Ay || %o o

4, 0 ][V Ty

BiCGStab using constraint preconditioner M

= Preconditioned Projected CG (PPCG) (Gould et. al., 2001)
— Preconditioned projection onto the KerAO.

P=2,(218,2,) 7!

— Does not compute the basis Z,for Ker4,. Instead,

g = Pr iscomputed from —| |
4, 0 ||u 0

- Yo :(AOAOT)_le (’”01 _SNxo)

Mihai Anitescu -- Stochastic Programming
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Performance of the preconditioner

= Eigenvalues clustering & Krylov iterations
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IPM iteration

= Affected by the well-known ill-conditioning of IPMs.
S =S8, and S, =E[S(w)], where

50)=(0,+D,)+| 4'(@) (@) (0)+ D) ' B @) 4w)]

Mihai Anitescu -- Stochastic Programming
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The “Ugly” Unit Commitment Problem; PSC gets further

= DSC on P processes vs PSC on P+1 process
Optimal use of PSC — linear scaling

10

2.5+

—&— DSC
—6— PSC

— — — Linear scaling

10

15 20
# Cores
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30

120 scenarios - # cores

used for
preconditioner

Conclusion: PSC hides
the latency well, but it
eventually hits a
memory wall as well.

Factorization of tIXe preconditioner can not be hidden anymore; we need to accelerate it
as well; cannot solve larger problems where improvement would likely be larger

46



v

SOLUTION 2: PARALELLIZATION OF STAGE 1 LINEAR
ALGEBRA

Mihai Anitescu -- Stochastic Programming
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Parallelizing the 15t stage linear algebra

We distribute the 15t stage Schur complement system.

-1 4| 5

AO 0 5 Q dense symm. pos. def.,, Ao sparse full rank.

= (Cistreated as dense.
= Alternative to PSC for problems with large number of 1%t stage variables.
= Removes the memory bottleneck of PSC and DSC.

= We investigated Scalapack, Elemental (successor of PLAPACK)
— None have a solver for symmetric indefinite matrices (Bunch-Kaufman);
— LU or Cholesky only.
— So we had to think of modifying either.

Mihai Anitescu -- Stochastic Programming
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Cholesky-based LDL"like factorization

) A" L 0][7 I A . .

O = P _ |, where LL' =0, LL" = AQ7'4"
A 0 AL L -1\ 0 L'

= (Can be viewed as an “implicit” normal equations approach.

= In-place implementation inside Elemental: no extra memory needed.

= |dea: modify the Cholesky factorization, by changing the sign after processing p
columns.

= |t is much easier to do in Elemental, since this distributes elements, not blocks.
= Twice as fast as LU

=  Works for more general saddle-point linear systems, i.e., pos. semi-def. (2,2) block.

Mihai Anitescu -- Stochastic Programming
49



Distributing the 15t stage Schur complement matrix

All processors contribute to all of the elements of the (1,1) dense block
. o~ 1< ~ ~1
Q:Q0+EZ{AZT (Bl.Ql. Bf) AZ}
i=1
= Alarge amount of inter-process communication occurs.
= Possibly more costly than the factorization itself.

= Solution: use buffer to reduce the number of messages when doing a
Reduce_scatter.

LD approach also reduces the communication by half — only need to send lower
triangle.

Mihai Anitescu -- Stochastic Programming
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Large-scale performance

= Comparison of Scalapack (LU), Elemental(LU), and LDL' (1024 cores)

Units  Ist Stage Size Factor (Sec.) Reduce (Sec.)
(O+A) LU(S) LU(E) LDLT LU LDLT
300 23436+1224 16.59 20.04 6.71 54.32 26.35
640 49956+2584 60.67 83.24 36.77 256.95 128.59
1000  78030+4024 173.67 263.53 90.82 565.36 248.22/—

189 million variables

SAA problem:

= Strong scaling
= 90.1% from 64 to 1024 cores;
= 75.4% from 64 to 2048 cores.
=  >4,000 scenarios.

Mihai Anitescu -- Stochastic Programming

2048

1024

Speedup

256

2048

Total Walltime
T . B T
Linear Scaling
----- -~ | DLAT
...... o LU
Lo
......... "
=
«ﬂ""‘:‘“
=
64 256 1024
Processors
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A Parallel Interior-Point Solver for Stochastic Programming
(PIPS)

Convex QP SAA SP problems

Input: users specify the scenario tree

Object-oriented design based on OOQP

Linear algebra: tree vectors, tree matrices, tree linear systems

Scenario based parallelism; scales well to 2000, port to BG in progress
— tree nodes (scenarios) are distributed across processors
— inter-process communication based on MPI
— dynamic load balancing

Mehrotra predictor-corrector IPM

Mihai Anitescu -- Stochastic Programming
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Conclusions

= Forecast and accommodation of uncertainty of ambient conditions is crucial to
the economic performance AND reliability of energy systems.

= To achieve the accuracy of forecast with uncertainty required by energy
systems, we need high spatio-temporal resolution and high performance
computing (~ 1 mil cores ...)

= Stochastic programming is effective at providing optimal management
decisions in real time, if it used on ~thousands of processors.

Mihai Anitescu -- Stochastic Programming
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Future work

Better uncertainty models for weather forecast (how do we eliminate the nagging
alpha parameter and have a more solidly founded uncertainty approach).

= Do the conclusions hold when | have to add more details in the simulation (e.g
transmission lines, model the airflow in the building, etc ...)

= New math / stat for stochastic programming
— Asynchronous optimization
— SAA error estimate

= New scalable methods for a more efficient software

— Better interconnect between (iterative) linear algebra and sampling
e importance-based preconditioning
e multigrid decomposition

— Target: emerging exa architectures

Mihai Anitescu -- Stochastic Programming
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Weather Forecast; State of the Art

= Problem: given current and historical information from satellite and met towers
(and others), and physics of the atmosphere, estimate current state of the
atmosphere and forecast the future state.

= State of the atmosphere: described by a partial differential equation (with several
observables).

=  |ssues:

— Incomplete (and, actually, very sparse) spatial and spatial frequency coverage. For
example, wind data at 100 meters from surface is virtually inexistent. That is one of the
issues for which the model is most useful for; to correlate past observations with
unobservable spatial and spectral states of the atmosphere.

— A complex, but *reasonably* well understood physical model. For operational WRF
forecasts to run the US at 1 km”2 in for 24 hrs with 30 “particles” in 1hr we need 400K
processors. For many decisions lower resolution is sufficient.

= Incidentally, very useful in management of power grid, and energy apps if high
renewable penetration is considered.
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S1 score

Weather Forecast: Progress due to Increased Model

Resolution of Numerical Weather Prediction (NWP

75 T
1 ! '_',r'
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YY) PO RSN SHUR S i : . 60 4
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55 | . - 50 | —
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10 [l 1 1 L 1
1950 1960 1970 1980 1990 2000 1960 1965 1970 1975 1980 1085 1990 1995 2000
Year Year

Source: (Kalnay 2003)

M S1 skill factor (SB; error in the gradient of pressure at 500hPa) and SAC skill
factor (LB; correlation in latitudinal sea pressure variability) have improved
markedly due to model.

B Human is human + NWP
B Conclusion: model matters a lot in state estimation of weather forecast.
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Multi-stage SAA SP Problems — Scenario formulation

= Depth-first traversal of the scenario tree
= Nested half-arrow shaped Jacobian
= Block separable obj. func.

Mm—z X Ox, + Z c x,

i=0

s.t. Ao X, = b,
Ax,+ Bx = b
A4,x,+ B)x, = b,

Ax, + B x, = b,

A,x, + B,x, = b,
Ax, + Bgx, = b,

Ax, + Bx, = b

Ax, + Bx, = b

%20 x20 x20 x20 x,20 x20 x,20 x,20
Mihai Anitescu -- Stochastic Programming
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Tree Linear Algebra — Data, Operations & Linear Systems

1

= Data Min - % Ox+c'x

— Treevector: b, ¢, x, etc '2 A b

— Tree symmetric matrix: Q bkt AT

— Tree general matrix: A v
= Operations T

(U@V)n :un Qvn’vne T
T =T-{0}

(Ox), =0 x,,VneT
_ x a(6) =4 (ancestor map)
(4x), = Ay Xy + B, %, Vne T C(1)={2,3} (children map)

(A"y), =By, + >, Ay,

ceC(n) .

= Linear systems: for each non-leaf node a two-stage problem is solved via Schur
complement methods as previously described.

Mihai Anitescu -- Stochastic Programming
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Parallelization — Tree Distribution

The tree is distributed across processes.

Example: 3 processes

CPU 1

CPU 2

CPU 3

A

\ 4

(5)

Dynamic load balancing of the tree

— Number partitioning problem --> graph partitioning --> METIS

Mihai Anitescu -- Stochastic Programming
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Extra Slides
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* HMM is foundation

| need to deal with the minus infinity window, so | approximate by
means of a background. Of course now the background has to be
estimated.

* Now you need to estimate covariance background.

*Particle filters are one of the most common techniques. We need
derivatives if we want to do a good job. They do not do
operationally Kalman or other particle filters.

* 3DVar is more common, needs an uncertainty on top of it. We are
emulating the operation method.

* |f 3Dvar alone. Satelite data, and reason data.

Mihai Anitescu -- Stochastic Programming
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Hybrid Photovoltaic-H gystem

Profiles of Fuel Cell Power
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Possible data-based model of ambient conditions

Quantifying Model Uncertainty (Data-Based (Time-Series) vs. Physics-Based)

Solar Radiation Forecast with Gaussian Process (GP) Modeling zavala & A, 2008

T
500

N
[}
o

W
o
o

200

Radiation [W/m?]

100

Time [hr]

1. Input-Output Data Sets: Y, :=x; X, := [Xx—1, Xk—7]
2. Covariance Structure : V (X, X4,m) 1= o 4 1 - exp (— 51X — Xi]|?)
3. Apply Maximum Likelihood: 10gp(Y|n) = —3YV~1(X,X,n)Y—3log det(V(X,X,n))

4. Posterior Distribution: Y7 = V(XF X, 7" )V-1(X,X,7n*)Y Forecast Mean
VP = V(XFP, XP ) -V(XF, X, 7))V (X, X, n*)V(X, X, n*) Covariance



Data-based statistical model of ambient conditions

One-Day Ahead Forecast and Samples from Posterior Distribution
600

T
o True

—— Mean
— Mean +/ 6¢g
Samples

500

400 -

300 |

Radiation [W/m?]

200 |-

100 |

Time [hr]

Covariance Structure *Sort of* Makes Physical Sense, Wide Uncertainty Bounds



Temperature [°C]

Data-based statistical model of ambient conditions

Ambient Temperature Forecast with GP Modeling zavalg, A, et.al. 2009

40 T

T T T

T T
« Future —

T T
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Temperature C]
N
w

-80 -60 -40 -20 0 20 40 60 80 100 120

5 Days Ahead
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Time Step [-]

Time-Series Cannot Capture Physical Effects (Spatial), Inconsistent Uncertainty Bounds

GP (and all data-oriented approaches) Provide Accurate Interpolations but Poor

Extrapolations (e.g. Geostatistics)



Scalapack

=  (Classical block distribution of the matrix

Local Storage

}
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Distributed Matrix
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Processor Grid

= Blocked “down-looking” Cholesky - algorithmic blocks
= Size of algorithmic block = size of distribution block!
=  For cache-performance - large algorithmic blocks

= For good load balancing - small distribution blocks

=  Must trade off cache-performance for load balancing

=  Communication: basic MPI calls
= |nflexible in working with sub-blocks

Mihai Anitescu -- Stochastic Programming
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Elemental

=  Unconventional “elemental” distribution: blocks of size 1.

—] Local Storage
N
_———// - “
NN e
TN ———si [ |Procqg
L~ S~
: - - Tl
ININ 2
=
Ml \ ~

o - Processor Grid
Distributed Matrix

= Size of algorithmic block # size of distribution block
= Both cache-performance (large alg. blocks) and load balancing (distrib. blocks of size 1)
= Communication
=  More sophisticated MPI calls
= Overhead O(log(sqrt(p))), pis the number of processors.
=  Sub-blocks friendly
= Better performance in a hybrid approach, MPI+SMP, than Scalapack
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Closed loop simulation using WRF

= 24-hour simulation window — restart from assimilated solution (NARR) every 12 hours

= Restart ensemble with adjusted spread ,/—\/'\/\
based on error estimates: IV

vi =T+ (x—7) , i €[1,Ns] AN

. 12— 24 hr % 5 ; 5
v =max (1, min (vy5,4)) — —_—>
_ [Tyarn — 7| of | Ee— E—
Yo = MEANY VT |k=1...5 o : : : : :
7 8
E |
= Error is underestimated: increase uncertainty g |
g |
4 y T
X ﬂ{$ X
i
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Mathematics and Computer Science Local time from June 1™ [hours]
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Stochastic Dynamic Optimization

Solution Strategies

- Dynamic Programming, Taylor Series: Handling Constraints and Nonlinearity Cumbersome
- Polynomial Chaos: Dense Optimization, Multivariable Quadrature

- Sample Average Approximation (SAA): Sparse Optimization, Constraints, General Framework

min B | [ o), 500, u0), x(D)ds
u(t) x(t)e |ty
dz m
R CORORIONIO)

0 = g(z(t),y(t),u(t),x(t)) —-Vx(t) € Q

0 > h(z(t),y(t),u(t),x(t))
z(0) = =z _
Nonlinear Programming: Exploit Fine and Coarse Structures at Linear Algebra Level
min 1
u < ) (= Yk U XD . r ; -
S kgl Ki Q1 || Asy r1
s.t. c(zp, yp, 1, xx) = O K2 @2 || As2 | T2
h(Zk,yk,u,Xk) S 0 KS QS ASS rs
k=1,..,S Q1 @ - Q§ Duf| Au | |ru]




MOTIVATION
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Optimal management under uncertainty of energy systems

= Applications @Argonne — Anitescu, Constantinescu, Zavala
— Stochastic Unit Commitment with Wind Power Generation
— Energy management of Co-generation
— Economic Optimization of a Building Energy System

= Sources of large dimensional uncertainty in complex energy systems
— Weather
— Consumer Demand
— Market prices

Mihai Anitescu -- Stochastic Programming
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Economic Optimization of a Building Energy System

Proactive management - temperature forecasting & electricity prices
Minimize daily energy costs (SAA)

t+T

: 1 > elec elec as
min COST = EZ J I:Celec(T)¢cl (0)+C,,. (7)o" (1) +C,. 0, (T)]df
J=lt

aTj as elec elec ’ / i /
st. ==/ @)+6“ () =0 () =S¢ (/D)= T}(x.0)), T/ (0)=T;
o7’ o’T. . o7’ Y . o7’
=L, & (T/(0)-Ti(@,0) k=L =0, o"(T)(x,L)-T(0) )+ k=L =0
0T ox o) -
T7(0,x) =Ty (x),T€ 1,6 +T]
" <T/(t)<T", jell,...,S}
100
> 80 _
Z 60 1
(D)
S 40 -
=
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Horizon
Mihai Anitescu -- Stochastic Programming Zavala & al. 2009
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Creating the weather uncertaintz

Ensemble Forecast Approach — Use WRF (Weather Research Forecast) as Black-Box
Sample Prior and Propagate Samples of Posterior Through Model

Yii 1 = Xiltegj) = MM MOaG(t0)))
j times

B ; NS

1 NS 3 _ 7
~ (Y, 1= Y)Y, 1—-Y)
vs 12 Vi ]
40 : .
Confidence Ihterval
| / Fdrecast

Temperature [°C]
N
(6)]

207 e Validation Results, Pittsburgh Area 2006
15| ~Measurement - 5 Day Forecast and +/- 3s Intervals
10 . , . , . Building applications

20 40 60 80 100 120

Time Step [-]
Hours (August 15t-5th)
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Stochastic Unit Commitment with Wind Power (SAA)
min COST:LZ[Z chjk+c +c! ]

s s€S\ jeN keT
wind
Z psjk+ 2 p‘sjk :Dk’sE S’ke T
jG N je Nwind
Zpsjk+ z p:j”,fd >D,+R, ,se€S,keT
jEN jerind

ramping constr., min. up/down constr.

=  Wind Forecast — WRF(Weather Research and Forecasting) Model
— Real-time grid-nested 24h simulation

— 30 samples require 1h on 500 CPUs (Jazz@Argonne) 43} )
S
2 = = T T 1 " A A 1
42 i AOARN i
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Mihai Anitescu -- Stochastic Programming Zavala & al 2010.
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Wind power forecast and stochastic programming

= Unit commitment & energy dispatch with uncertain wind
power generation for the State of lllinois, assuming 20% wind NAN\N\/—

power penetration, using the same windfarm sites as the one  wind :
existing today. power

=Full integration with 10 thermal units to meet demands.
Consider dynamics of start-up, shutdown, set-point changes

= The solution is only 1% more expensive then the one with
exact information. Solution on average infeasible at 10%.
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