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Motivation

On-Line Optimization: MPC, MHE, RTO, Finance
Minutes Seconds

Data Updated at Predefined Sampling Times
Decisions Obtained by Solving NLP/QP with Current Data
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Objective: Accommodate Large-Scale Dynamic Models in Suitable Time Scales

Property: Problems Close to Each Other! Can we exploit this to ensure stability?



An abstract view of the issues

Rolling horizon optimal control: F(w,t)=0=w=w(f) the optimal control manifold.
*  We already wrote the optimality conditions to get it here
* F can be an operator that includes differential equations for dynamics, which can be
discretized somehow.
* w includes state variables, control variables and Lagrange multipliers
The variable w cannot be computed instantly, so we must allow it a time At ,
*  The problem becomes Fow(@),t")=0; Fow(E""),r*HY=0; "'=t"+Ar
Better, but we cannot guarantee that we find a solution in Ar even now. What if we solve
the subproblem inexactly, e.g only its linearization or an inexact linearization?

FwW . t)+V FW* W —w")+ V. FW* 1At + 1" =0;
Could it work? Yes, if we can track the manifold (stability):

w* —w(e)|<0((ar))

Can we track the manifold with as little computation per time step as possible, particularly
when inequality constraints are included (limited ramps, limited resources, sufficient
supply ) ? --- This becomes our central investigation issue.

Can we do this in the limit of rapidly increasing information? Ay _(



Outline of the Talk

1. Nonlinear Programming

2. Generalized Equations
- Single QP per Sampling Time
- Stability of NLP Error as At — 0

3. Augmented Lagrangean Strategy
- Cheap Strategies for QP Solution — Projected Gauss Seidel

4. Numerical Case Study

5. Conclusions and Future Work



1. Nonlinear Programming



Nonlinear Programming
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Interior-Point: - Fixed Matrix Structure - No Symbolic Factorization Needed

Active-Set: - Changing Matrix Structure
- Each Internal QP Iteration is as Expensive as Quter IP Iteration

Newton Steps Accurate but Overhead is High. Limits attainable At !



Nonlinear Programming

A “Fast” NLP Solver is NOT Enough ...

Approximate NLP Strategies
- One Quadratic Program (QP) Per Sampling Time de Oliveira & Biegler; 1995, Diehl, et.al., 2001, Ohtsuka, 2004

- Accurate But Slow vs. Approximate But Fast?
- The Dynamic System Escapes if we Insist in Accurate Solution ...
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Time-Dependent QP
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Linearization Point

Issues:
- Stability of NLP Error, Changing Active Sets
- Solving the QP as Quickly as Possible (If At — O Cheap Steps are Enough!)



1. Generalized Equations



Generalized Equations

Generalized Equations (GE) rovinson, 1977, 1980

—F(w,t) € Ny (w) <— Normal Cone Operator (compare with NLE)

First-Order KKT Conditions of zTGIIEI]/ flw,t), W ={w]|w >0}

—Vuf(w*, )T (w* —w) >0, Vw e W

Canonical Linearized Generalized Equation (LGE)

6 € F(wiy, to) + VwF (wiy, to) (w — wiy) + Ny (w)  w(d) = 1)~ (5] <— Solution Operator

Definition (robinson, 1977): LGE is Strongly Regular at wy, if 3 L, > 0 s.t. ||lw(é) — ’w,fo|| < Ly 6|

Theorem: o1 is Lipschitzian if:
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Generalized Equations

Context of NLP ;nei)rg f(z,t), s.t. c(x,t) =0

Solution of Perturbed LGE w; = [Z; A\t{] Around wiko KKT Conditions of Perturbed QP
, min Ve f(af (O Az + 32827V e L(w],, to) Az
% % * LS
0 € F(wto(f) + vwF(wtoa to)(w — wto) + Ny (w) s.t. c(a:}fof‘f)!—i— Vwc(xfo,to)TAac =0
H Ax > —xj
Canonical Form 0

b€ F(wztoatO) + VwF(w;oa tO)(w — wfo) +NW(’U)) With 0= F(wzkoatO) - F(wzkoat)

From Lipschitz Continuity and Mean Value Theorem

lwi — @el| < Lyllr(wi,t) — 4|
< Lyl (F(wiy, to) + Fu(wy, to) (wi — wiy) — F(wf, ) — (F(wfy,to) — F(wy, 1)) |
< Lyl Fuw(wiy, to) (wi — wiy) — F(wg,t) + F(wi,, )|
< LAt?
Optimal Solution ’w;gk ------------- 3 wy F Sglumn
r(wg, ) )

- Strong Regularity Requires SSOC and LICQ

- NLP Error is Bounded by LGE Perturbation

- One QP solution from exact manifold is second-order
accurat

Linearization Point



Generalized Equations

But I am never EXACTLY on the manifold: Stability of uncentered NLP Error

wtk—l—l - wtk+2 w2<
zTth (~./7 e
wtk_|_1 w Time-Dependent QP
wfk tg+2 min Vaof (@, tey1) T Az + 2827V 00 £(i1,, 1) Az
s.t. c(Zyy,, tg41) + Vac(y, t)TAz=0
Az > —Ty,

Theorem

- Al: LGE is Strongly Regular at w%kk

- A2: Wt Exists in Neighborhood and 36, > 0 s.t. ||w;, — wy, || < Ly |lr (@1, tr) | < Lydr
For sufficiently small At ,

||1I)tk — w:‘;” < L¢5T — ||U_th;_|_1 H < L?,b(sr

*
W14

Analysis Straightforward Using Residual Bounds
Stability Holds Even if QP Solved to O(At?) Accuracy



2. Augmented Lagrangean Strategy: what if I am limited in memory and
sometimes forced to terminate early even the QP resolution?



Augmented Lagrangean

Iterative Linear Algebra to Solve QP

- Direct Linear Solvers Cannot be Terminated Early (Wasted Overhead)
- Complicated by Changing Active-Sets

Alternative: Barrier & Apply Iterative Solver to Indefinite KKT System (Smoothing)

nr

min f(xz,t) : o N (2)
T min ¢(xz,t) ;= f(x,t) p In(z
s.t. c(z,t) =0 < > @:1 ( )
z>0 s.t. c(z,t) =0

meﬁ(@tk, tr) + Ztk ch(ftk, tr) Ax _ ngb(ftk, tk+1) + Vmc(ftk, tk—l—l)j‘tk
Vec(Zyy, tr) ! AN c(Ztys tht1)

1%
No Active-Set Change |

- Truncated Newton with PCG, QMR *
- Barrier Linearization Leads to Large Errors
- Fast Indefinite Preconditioner Needed

- Plus, barrier introduces a large parameter which
may severely affect stability

I
B

Wtg 1" Active-Set Change




Augmented Lagrangean

Proposal: Augmented Lagrangean Penalty and Apply Projected Gauss-Seidel to QP

min f(x,t) | | . )
st c(zt) =0 «—s TN La(z, A t) == f(z,t) + A" c(z, ) c(:c,t)H

x>0

S.t. x>0

min VwEA(ftk, j‘tk’ tk_|_1)TA£C + %ACBTng;LA(CEtk, j\tk’ tp) Ax
s.t. Ax > —ftk

Close to Manifold Hessian of Augmented Lagrangean Remains at Least Positive Semi-Definite

Projected Gauss Seidel

_ 1
min  —w! Muw —+ bl w
w>o For k= 0,1,...,njer
k41 1 k+1 k
w i<t 7>
wf-i_l = max (wf_l_l,ozi) , 1=1,...n

- Detects Multiple Active-Set Efficiently Mmorales er.al. 2008, Tasora et.al. 2009

- High Accuracy Requires Large Number of Iterations = Not if 2t Small! Ideal for us!



Augmented Lagrangean

Algorithm:
Given Ty, A,, At, p, and npgs,

1. Evaluate V,LA(Zt, M,y tet1, p) and Vo La(Tt,, Aty try p).

Compute Az, applying npgs iterations to QP

W N

Update 5tk+1 < Etk+Aitk+l and th+1 < j\tk—l—p C(ftk_H, tk_|_1).
| J

k+—k—+1 !
First-Order Multiplier Update, Hestenes 1969
Avoids Major Operations

P

AuglLag Penalty Acts as Parametric Perturbation of Lagrange Multipliers

Theorem
*
- Al: Augmented Lagrangean - LGE is Strongly Regular at Wy¢,

- A2: ’U_th Exists in Neighborhood and 3 6r > 0 s.t. ||wy, — wy || < Lyllr (W, tg)[] < Lydr
For sufficiently small At and sufficiently large P,

- Conditions More Strict Due to Multiplier Error
- Tune "PGS to Keep QP Solution Error O(At2)



Augmented Lagrangean

1
min  —w! Muw + bl w

w>o 2 For k=0,1,...,njer
k41 1 k+1
(2 1<t 71>1

wf_'_l max (wf_'_l,ozi) , 1=1,...,n

Remarks:

1. Projected GS is Powerful Paradigm for Linear MPC

- Fixed Matrix, Block Parallelizable (Multi-Thread)

2. Even if Dynamic System is SLOW....
- Solve QP at High Frequency (Open-Loop) to Keep Track of Solution Manifold

- Once Control is Needed, the Solution is Very Close, use as Warm-Start



3. Numerical Case Study



Numerical Case Study

Control of Polymerization Reactor

u()” T

Cooling

Closed-Loop Transitions

Set-Point
Product A
27(0)] /=

zT (t) Temperature

System

VO

Zc (t ) Reactant Concentration

Time ¢

Converted to NLP by Applying Implicit Euler Scheme

Product B



Numerical Case Study

Numerical Tests
- Comparison Against Barrier Smoothing rearh, 2004, Ohsuka, 2004
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Smoothing is Numerically Unstable — Active-Set Changes
Augmented Lagrangean Stands Relatively Large Initial Errors



Numerical Case Study

Effect of Time Step At

r ~ 3
s r(wtoatO) ~ O(].O )
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Sampling Time Restricted by Time Needed to Perform PGS Iterations



Numerical Case Study

Optimal vs. Approximate Profiles
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4. Conclusions and Future Work



Conclusions and Future Work

Motivation
- Accurate Search Steps Not Necessarily Best in Time-Critical Environments
- Cheap Strategies to Ensure At — O and Still Guarantee Error Stability

Generalized Equations
- Powerful Framework for Analysis of On-Line NLP Strategies

Augmented Lagrangean Strategy
- Projected Gauss-Seidel for High-Frequency QP Solutions

Work Needed

- Convergence

- Time-Adaptive Schemes

- Multi-Thread Implementations, Industrial Examples

- Avoid Augmented Lagrangean -- Projection Methods for General QPs
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