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Motivation: Granular Materials 

 The motion of a large, 
dense set of rigid particles:  
grand challenge of physics.  

 Despite centuries of study, 
and interest from DaVinci, 
Newton,  there is no 
satisfactory continuum 
theory or hybrid theory.  

 Difficulty:  co-existing gas, 
liquid, and solid phases. 

 I will use granular materials/
dynamics for “rigid 
multibody dynamics”  

1 million particle simulation 



Granular Materials: Perspectives 

 Important? The second-most manipulated material in 
industry after water (Richard, Nature Materials 2005). 

 Applications range from pharmaceutical, food, 
powders, petrochemical, nuclear, automotive, and 
semiconductor industries up to geological granular 
flows – some examples later. 

 The absence of a continuum theory makes particle-by-
particle computational approaches the only general first 
principles computing approach – we need HPC (1 
cubic meter of sand has 1 trillion particles ) 



(Dry) Granular materials: equations 

 Equations of motion: mixture of ordinary differential 
equations and variational inequalities/complementarity 
conditions. 

Friction Model 

Newton Equations Non-Penetration Constraints 

Generalized Velocities 



Granular materials: abstraction: DVI 

 Differential variational inequalities Mixture of differential 
equations and variational inequalities. 

 Target Methodology (only hope for stability): time-
stepping schemes.  



Our Inquiry 

 Can we derive iterative, and thus suitable for parallelism 
algorithms to simulate large-scale DVI, particularly granular 
dynamics, in a time-stable manner while being truthful to 
the physics of the respective applications? 

 Stability => Time Stepping, as opposed to smoothing, DEM 



Step 1 on the road. Time stepping scheme 
with fixed time step (no collision stop/restart) 

  A measure differential inclusion solution can be obtained by time-stepping 
(Stewart, 1998, Anitescu, 2006): *PEC (approximated by LCP) 

Speeds 

Forces 

Bilateral constraint 
equations 

Contact constraint 
equations 

Coulomb 3D friction 
model 

Stabilization 

 terms 

COMPLEMENTARITY! 

Reaction 
impulses 



Pause: Efficiency 

 This scheme allows fixed time steps for plastic 
collisions, major improvement in efficiency.  

 Nevertheless, the PATH solver very useful and used in 
computer graphics (Lemke, exponential worst-case 
complexity), starts to take extremely long times past 
~1000s of  granules (Anitescu and Hart 04)… and we 
aim for 1 trillion.  

 The main difficulty: the time-stepping subproblem is not 
convex.  

 Question: How do I create an algorithm  that has a 
prayer to scale?  

 Answer: Relax the problem inspired by the physics.  



Time Stepping -- Convex Relaxation– Step 2 

  A modification (relaxation, to get convex QP with conic constraints): 

But In any case, 
converges to same 
MDI as unrelaxed 
scheme. 

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ] 

(For small m and/or 
small speeds, almost 
no one-step 
differences from the 
Coulomb theory) 



What is physical meaning of the relaxation? 

 Origin 

 Behavior 



Cone complementarity 

  Aiming at a more compact formulation:  

           



Cone complementarity 

  Also define:  

  Then:      

becomes.. 

This is a CCP, 

CONE COMPLEMENTARITY  
PROBLEM 



An iterative method- Step 3 

  Convexification opens the path to high performance computing.  
  How to efficiently solve the Cone Complementarity Problem for large-

scale systems? 

  Our method: use a fixed-point iteration (Gauss-Seidel-Jacobi) 

  with matrices: 
  ..and a non-extensive 
separable projection  
operator onto feasible set 

KT= 



General: The iterative method 

 ASSUMPTIONS 

 Under the above assumptions, we 
can prove convergence. 
 The method produces in absence of jamming a bounded sequence  
with an unique accumulation point 
 Method is relatively easy to parallelize, even for GPU! 

Always satisfied in 
multibody systems 

Use w overrelaxation 
factor to adjust this 

Essentially free 
choice, we use 
identity blocks 



Challenge: simulating PBNR 

 Generation IV nuclear reactor 
with continuously moving fuel.  

 Previous attempts: DEM methods 
on supercomputers at Sandia 
Labs regularization) 

 40 seconds of LAMMPS 
simulation for 440,000 pebbles 
needs 3 days on 64 processors 
dedicated cluster (Rycroft et al.) 

Simulations with DEM.  Bazant et al. (MIT and  Sandia laboratories). 



Simulating the PBR nuclear reactor  
  160’000 Uranium-Graphite 

spheres, 600’000 contacts on 
average 

 One step: Two millions of 
primal variables, six millions of 
dual variables. 4000 0.01 ms 
steps. 

  1 day on a Windows station; 
shows linear performance. 

 We estimate (extrapolate) 3 
CPU days, compare with 192 
CPU days for smoothing 
(DEM-LAMMPS) under-
resolved solution in 2006 !!! 



Validation 

 In our experience, time-stepping would not have 
worked at this number of particles without the convex 
relaxation. 

 Also, we are aware that our convergence result does 
not apply for nonzero restitution.  

 Did we destroy the physics and the predictive power of 
the scheme?  

 We believe not, at least in the dense granular flow 
case. Evidence, based on particle statistics: 



DVI: Time-stepping validation : Hopper 
(Tasora & A 2009) 



Hopper experiment and simulation: Images 

t=0s t=0.6s t=1.2s 



Hopper Results: Velocity (Tasora &A 2009) 

 Note that there are sphere measurement errors of 2%, 
and particle-wall friction variations of 10% (reduced by 
climate control).  

 So we declare validation a success for convex method. 



The algorithm 

 Development of an efficient algorithm for fixed point iteration: 

   avoid temporary data, exploit sparsity. Never compute explicitly the N matrix! 

   implemented in incremental form. Compute only deltas of multipliers. 

   O(n) space requirements and   supports premature termination 



The algorithm is specialized, for minimum 
memory use! COM: Constraint <-> Body 

The rest “in place” per-body or per-constraint for Gauss-Jacobi  



GPU : The attraction. 

•  Your PC graphic board is a supercomputer (0.32TF, GT8800).  
•  5.7 TF: IBM BG/L $1,400K (2007) – NVIDIA Tesla $7K (2008) 



NVIDIA TESLA C1060 
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  30 Stream Multiprocessors. 
  240 Scalar Processors 

  4 GB device memory 

 Memory Bandwidth: 102 GB/s 

  Clock Rate: 1.3GHz 

  Approx. $1,250 



Parallel CCP on GPU: The 30,000 Feet 
Perspective 

 Relies on a Gauss-Jacobi iteration: the first step.  
 The GPU is viewed as a compute device that: 

–  Is a co-processor to the CPU or host 
–  Has its own DRAM (device memory) 
–  Runs many threads in parallel (30K) 

  Data-parallel portions (such as per-body “in-place”) of an application 
are executed on the device as kernels which run in parallel on many 
threads 

 Each simulation time step invokes multiple GPU calls 
–  For each of these calls, parallelism can be on a  
•  “Per body” basis (work is done on different bodies in parallel) 
•  “Per contact” basis (different contact events are processed in parallel) 
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GPU: The CCP Pre-Processing 
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GPU: The CCP Loop 
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GPU implementation: Reactor benchmark 

 GPU implementation of the Anitescu-Tasora algorithm. 
(Tasora et al., (4)), NVIDIA with 16 stream processors. 

CPU GPU 
Number of 

Bodies CCP Time CD Time Step Time CCP Time CD Time Step Time 
CCP 

Speedup 
CD 

Speedup 
Step 

Speedup 

128000 
103.6665

8 3.80176 
109.3428

7 6.97682 0.74488 8.27050 14.8587 5.1038 13.2208 



Conclusions and future work.  

 Granular dynamics is a topic of enormous practical 
importance. 

 Time-stepping promises performance, stability and 
predictive power for  granular dynamics.  

 The convex relaxation works and is important for 
attaining  many-million capability. 

 The convex relaxation was VALIDATED 

 Involving other physics such as fluid flow.  
 Appropriate benchmarks for smoothing and time-

stepping for large numbers of particles  



Challenges and Open Questions. 

 For large scale granular flow, can one solve the 
subproblem in O(N)? 

 Can one define a successful multigrid approach for the 
subproblem? 

 Given the conceptual connection between multigrid 
and homogenization, can one derive some form of 
continuum equations, at least for more regimes than 
known today? 

 Multi-GPU dynamics algorithm implementation 



What does convergence mean here ? 
 Measure differential inclusion (Stewart 98) 



Convergence result. 

No Jamming ! 



 Smoothing versus time-stepping 

  Recall, DVI (for C=R+) 

  Smoothing  

  Followed  by forward Euler. 
Easy to implement!! 

  Compare with the complexity 
of time-stepping 

  But does it give good results? 



Applying ADAMS to granular flow 

  ADAMS is the workhorse of 
engineering dynamics. 

  ADAMS/View Procedure for 
simulating.  

  Spheres: diameter of 60 mm 
and a weight of 0.882 kg. 

  Forces:smoothing with 
stiffness of 1E5, force 
exponent of 2.2, damping 
coefficient of 10.0, and a 
penetration depth of 0.1 



ADAMS versus ChronoEngine 

Often, time stepping is more promising. We follow this direction.  



Performance   

 Things are very much in flux. 
 Subject (granular dynamics) is old, but there are no 

clear large scale computational benchmarks, since the 
concern was “Can one do it at all”.  

 Our focus has been porting to GPU and various 
applications, and parameter choices are far from 
stable.  

 This makes much harder toe-to-toe comparison with 
smoothing methods, though for small configurations, 
time-stepping advantage is clear (see ADAMS). 

 Our experience (such as the PBR) suggest that we get, 
at least for GS, a factor of 50 reduction in effort due to 
the method for up to 1 mill particles, but we must test it 
for more and larger configurations.  



PBR: GPU performance (Negrut et al, 2009) 

 It scales, but we still need “time-to-solution” 
comparisons between the various methods.  



Speedup - GPU vs. CPU (Bullet library) 
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GPU: NVIDIA Tesla C1060 
CPU: AMD Phenom II Black X4 940 (3.0 GHz) 



Multi-GPU Collision Detection 

Processor: AMD Phenom II X4 
940 Black 

Memory: 16GB DDR2 

Graphics: 4x NVIDIA Tesla 
C1060 

Power supply 1: 1000W 

Power supply 2: 750W 

Assembled Quad GPU Machine 
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Processing Overview 

Thread 
0 

Thread 
1 

Thread 
3 

Thread 
2 

GP
U 0 

GP
U 1 

GP
U 3 

GP
U 2 

Open 
MP 

Quad Core AMD 
Microprocessor  

Tesla C1060 
4x4 GB Memory 
4x30720 threads 

Main Data Set 

Results 
16 GB RAM 

CUDA 
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Multi-GPU Collision Detection  

 Split and organize data into Chunks  

 Relying on OpenMP threads, one for each GPU 

 Divide chunks into groups, GPUs work on chunk after chunk 

 Combine collision data per group 

 Combine collision data for all groups 
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Results – Contacts vs. Time (0.5 billion 
bodies) 
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Performance: Conclusions 
 It works: We currently run 1 million particles for 40 

seconds in a few hours on a 2.66Ghs Intel GPU with a 
C1060 NVIDIA Tesla GPU (about 30K/1000K threads). 
Collision detection ~ 0.5 bill bodies on hybrid - 4GPU.   

 In 06, LAMMPS-DEM was doing 400K particles under-
resolved in 3 days on a 64 node cluster.  

 In terms of capability per equipment dollars, progress is 
obvious – perhaps best HPC angle on GPU.  

 Algorithmically, we need to establish relevant 
benchmarks to substantiate our “about 50 times 
improvement is due to the algorithm”.  
–  With what smoothing settings do we run LAMMPS-

DEM?  
–  Which statistics do we consider? Etc. 



Some capabilities now available in our/your 
office: granular flow. 



Some capabilities now available in your 
office: Vehicle Design 



Some capabilities available in your office: 
tracked vehicle simulation 



Thanks 

 Alessandro Tasora 
–  University of Parma,  

 Dan Negrut, 
–  University of 

Wisconsin 
 Department of Energy, 

Office of science Applied 
Math Program.  

 NSF 



Validation of convex relaxation time-
stepping: PBR (Tasora &A 09_) 



Validation: PBR: Packing statistics (Tasora & 
A, 09) 

 The reactor is not far from “random” jamming. (VF 0.6) 



Short history and taxonomy of no-smoothing-
methods in  granular dynamics. 

  Piecewise DAE (Haug, 86) 
–  Plus : Uses well understood DAE technology 
–  Minus: The density of switches, switching consistency, and 

Painleve (discontinuous velocity) are problems. 
  Acceleration-force time-stepping (Glocker & Pfeiffer, 1992, Pang & 

Trinkle, 1995). Piecewise DAE + complementarity for switching.  
–  Plus: No consistency problem.  
–  Minus: Density of switches and Painleve. 

  Velocity-impulse time-stepping. (Moreau, 196*, Stewart and 
Trinkle, 1996, A & Potra, 1997). Weak convergence: MDI 
–  Plus: No consistency, or Painleve. Some have fixed time 

stepping (Moreau, 198*, Anitescu & Hart 04, Anitescu, 06). 
–  Minus: Nonzero restitution coefficient is tough—but its value is 

disputable in any case 



PBNR: The pebble bed nuclear reactor 

 The PBNR nuclear reactor: 
- Fourth generation design 
- Inherently safe, by Doppler 
broadening of fission cross 
section 

- Helium cooled > 1000 °C 
- Can crack water (mass 
production 
of hydrogen) 

- Continuous cycling of 400,000+ 
graphite spheres in a pebble 
bed. 

- Question. Does it work *OK*? 

Granular  
flow 



The projection operator is easy to compute 
and separable 

   For each frictional contact constraint: 

 For each bilateral constraint, simply do nothing. 
 The complete operator: 



Cone complementarity—Decomposable 
cones. 

  Here we introduced the convex cone 

  ..and its polar cone: 

CCP: 

In R^3 is i-th friction cone 

is  R 



Extensions: Nonlinear Model Predictive 
Control NLMPC (Zavala and A, 09) 

 Parametric Optimization, such as Nonlinear Model 
Predictive Control, is One Particular Case of DVI. 

 NLMPC is used in energy, petrochemical, chemical … 
 Here, the VI are the optimality conditions of the 

NLMPC parametric optimization problem. 

 Extension from DVI: Time-stepping, which solves one 
linear VI per step inexactly, converges to the NLMPC 
solution. Important for real-time implementation.   

 Also solved by projected Gauss-Seidel (and Aug Lag).  



Numerical Tests 
    - Compare Against Smoothing Heath, 2004, Ohtsuka, 2004 

      -  

1)  2)  

Residual 

Time 

Smoothing is Numerically Unstable 
AL Time-Stepping Stands Relatively Large Initial Errors 

Set-Point Change 

Numerical Study: Polymerization Reactor NLMPC 



Minimize Annual Heating and Cooling Costs 

NLP with 100,000 Constraints & 20,000 Degrees of 
Freedom 

Time-Varying Electricity Prices and Temperature 

Energy Balances 

www.columbia.edu/cu/gsapp/BT/
LEVER/  

Thermal management of buildings (Zavala et al., 09) 

Results in 20-80% 
reduction in energy 

costs.  



Smaller tests for algorithmic behavior 

  Example: size-segregation in shaker, with thousands of steel 
spheres 

Note: solution beyond 
reach of Lemke-type  LCP 
solvers! 



Tests: Feasibilitiy 

 Feasibility accuracy increases with number of iterations, method is 
consistent: 

Speed violation in constraints Position error in constraints (penetration) 

(with example of 300 spheres in shaker) 



Tests: Scalability 
 CPU effort per contact, since our contacts are the problem variables. 
 Penetration error was uniformly no larger than 0.2% of diameter.   

Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres 



General: Theory 

We thus have an iterative and parallel-friendly algorithm. 



DVI and Painleve paradoxes 

 Unfortunately, there exist configurations for which no 
continuous solutions of the DVI will exist.  

 Such configurations are called Painleve paradoxes, 
and appear only when friction is present. (Baraff 91, 
Stewart 98). 

 We need weaker solution concepts. We use the one of 
measure differential inclusion (Stewart,98).  



Differential Variational Inequalities– why do 
it? 

 Contact Dynamics. 
–  Rigid-Bodies: Differential Operator is ODE. 
–  Deformable Bodies: Differential Operator is PDE. 
–  Granular Flow, Masonry Stability, Rock Dynamics… 

 Finance: Option Pricing-- American Options. PDE-
based. 

 See Luo, Pang et al, and Kinderlehrer and Stampacchia 
Monographs.. 



It is a hybrid system – where is the 
switching?  

 When bodies enter contact (collision, plastic in the 
previous formulation) 

 Stick-Slip transition. 



Simulating the PBR nuclear reactor 
  160’000 Uranium-Graphite 

spheres, 600’000 contacts on 
average 

  Two millions of primal 
variables, six millions of dual 
variables 

  1 CPU day on a single 
processor… 

 We estimate 3CPU days, 
compare with 150 CPU days 
for DEM (Rycroft, Grest, et 
al.)  !!! 



Examples 

  Example: size-segregation in shaker, with thousands of steel 
spheres 

Note: solution beyond 
reach of Lemke-type  LCP 
solvers! 



Tests 

 Feasibility accuracy increases with number of iterations: 

Speed violation in constraints Position error in constraints (penetration) 

(with example of 300 spheres in shaker) 



Tests: Scalability 
 CPU effort per contact, since our contacts are the problem variables. 
 Penetration error was uniformly no larger than 0.2% of diameter.   

Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres 



IBM BlueGene/L—GPU 
comparison 

  Entry model: 1024 dual core nodes 

  5.7 Tflop (compare to 0.5 Tflop for NVIDIA Tesla GPU) 

  Dedicated OS 

  Dedicated power management solution 

  Require dedicated IT support 

  Price (2007): $1.4 million 

  Same GPU power (2008): 7K!!! 



In addition, we can approach efficiently 
approach many engineering problems (see 
website for papers) 



Brick Wall Example… 

  Times reported are in seconds for one second long simulation 
  GPU: NVIDIA GeForce 8800 GTX 



Granular materials: applications 

 Important? The second-most manipulated material in 
industry after water (Richard, Nature Materials 2005). 

 Applications range from pharmaceutical, food, powders, 
petrochemical, nuclear, automotive, and semiconductor 
industries up to geological granular flows – some 
examples later.  

 Two perhaps non-intuitive but crucial energy 
applications.  
–  Circulating granular catalysts in refineries.  
–  Fluidized bed coal gasification (“clean coal”).  



Granular materials: Challenges, need for HPC 

 The absence of a continuum theory makes particle-by-particle 
computational approaches the only general first principles 
computing approach – we need HPC. 

 1 m^3 of sand: ~1 trillion granules. Enormous … but just about 
within reach.  

 In addition, the source of many open or difficult questions.  
–   Is there a “random” close packing of spherical particles?  (A 

maximum volume fraction of a random sphere population, 
Torquato et al., 2000). Postulated at ~0.636. Jamming. 

–  Nothing is known of the same when there is friction.  
–  The Kepler conjecture, proven in the last decade: in the 

deterministic case, the maximum space-filling volume 
fraction is the one of the cannonball arrangement: 0.7405 



Are all interesting DVI problems over R+? No.  

  Conic Complementarity IS NATURAL in granular dynamics (and MD). 
  Coulomb model. 

 Most previous time-stepping  discretize friction cone to use LCP… 
  Can we accommodate non-R+ cones naturally?  



Granular materials: abstraction: DVI 

 Differential variational inequalities (DVI, Stewart and 
Pang, 03-08): Mixture of differential equations and 
variational inequalities. 

 In the case of complementarity, 

  Many, but not all of our conclusions will be extensible 
or applicable to this form of DVI,  
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DVI: time-stepping methods    

 Our target methodology are time stepping methods. 

 Implicit in the VI variable, implicit-explicit in state, with 
possible linearization of the structural functions f,F. 

 Promises much larger time steps than smoothing with  
explicit integration: key to its stability and superior 
performance.  
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Other applications of DVI: 

 Physics-based virtual reality.  
 Automotive design 
 Dynamics of multicristalline 

materials: evolution of the 
boundary between phases. 

 Porous Media Flow.  
 ….. 
 Generally appears  any time 

dynamics and “switching” is 
encountered.  
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Content: The road to … 

 Solving DVI 
–  Smoothing versus hard constraints 
–  (1) Time Stepping  
–  Nonconvexity – (2) Convex Approximation:  
–  Some Theory 

 (3) Iterative Algorithms for the time-stepping 
subproblem. 

 Results 
–  Validation. 
–  GPU implementation 
–  Application Examples 

 Open problems/extensions.  



Time-stepping scheme 
 Write an implicit-explicit scheme AS IF Painleve paradoxes 

do not exist.  
 We use linearization (Anitescu and Hart, 04) NOT index 

reduction : results in constraint stabilization.  
 Proceed with a fixed time step. Collisions are forced to be 

“simultaneous” within one step.  



Further insight.  

 The key is the combination between relaxation and 
constraint stabilization. 

 If the time step is smaller than the variation in 
velocity then the gap function settles at  

 So the solution is the same as the original scheme 
for a slightly perturbed gap function. 



The algorithm 

 Development of an efficient algorithm for fixed point iteration: 

   avoid temporary data, exploit sparsity. Never compute explicitly the N matrix! 

   implemented in incremental form. Compute only deltas of multipliers. 

   O(n) space requirements and   supports premature termination 



The algorithm is specialized, for minimum 
memory use! COM: Constraint <-> Body 

The rest “in place” per-body or per-constraint for Gauss-Jacobi  



GPU : The attraction. 

•  Your PC graphic board is a supercomputer (0.32TF, GT8800).  
•  5.7 TF: IBM BG/L $1,400K (2007) – NVIDIA Tesla $7K (2008) 



NVIDIA TESLA C1060 
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  30 Stream Multiprocessors. 
  240 Scalar Processors 

  4 GB device memory 

 Memory Bandwidth: 102 GB/s 

  Clock Rate: 1.3GHz 

  Approx. $1,250 



Parallel CCP on GPU: The 30,000 Feet 
Perspective 

 Relies on a Gauss-Jacobi iteration: the first step.  
 The GPU is viewed as a compute device that: 

–  Is a co-processor to the CPU or host 
–  Has its own DRAM (device memory) 
–  Runs many threads in parallel (30K) 

  Data-parallel portions (such as per-body “in-place”) of an application 
are executed on the device as kernels which run in parallel on many 
threads 

 Each simulation time step invokes multiple GPU calls 
–  For each of these calls, parallelism can be on a  
•  “Per body” basis (work is done on different bodies in parallel) 
•  “Per contact” basis (different contact events are processed in parallel) 
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GPU: The CCP Pre-Processing 
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GPU: The CCP Loop 
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Collision detection on the GPU 

 For granular dynamics, the number of force multipliers 
(x) is, in principle proportional to the square of the 
number of bodies. 1 trillion bodies -> 10^24 multipliers. 

 Collision detection is used to reduce the active set to 
the one of the multipliers of pairs of bodies that could 
be in contact – brute force still N^2.  

 A binning strategy is used to reduce the complexity 
(Negrut et al. 2009)..  



Scalable Collision Detection (CD) 

 30,000 feet perspective: 

–  Carry out spatial partitioning of the volume occupied by the bodies 
•  Place bodies in bins (cubes, for instance) 

–  Follow up by brute force search for all bodies touching each bin 
•  Embarrassingly parallel 
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Key Components, CD Method 

 The method proposed draws on 

–  Sorting (Radix Sort) 
• O(N) parallel implementation 

–  Exclusive Prefix Scan 
• O(N) parallel implementation 

–  Fast binning operation for the simple convex geometries 
• On a rectangular grid it is very easy to figure out where the center 

of a sphere lands 
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