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Optimal management under uncertainty of energy systems

= Applications @Argonne — Anitescu, Constantinescu, Zavala
— Stochastic Unit Commitment with Wind Power Generation
— Energy management of Co-generation
— Economic Optimization of a Building Energy System

= Sources of large dimensional uncertainty in complex energy systems
— Weather
— Consumer Demand
— Market prices
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Economic Optimization of a Building Energy System

= Proactive management - temperature forecasting & electricity prices
= Minimize daily energy costs (SAA)
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Creating the weather uncertaintz

Ensemble Forecast Approach — Use WRF (Weather Research Forecast) as Black-Box
Sample Prior and Propagate Samples of Posterior Through Model
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Stochastic Unit Commitment with Wind Power (SAA)
min COST:LZ[Z chjk+c +c! ]
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wind
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ramping constr., min. up/down constr.

=  Wind Forecast — WRF(Weather Research and Forecasting) Model
— Real-time grid-nested 24h simulation

— 30 samples require 1h on 500 CPUs (Jazz@Argonne) 43} )
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Wind power forecast and stochastic programming

= Unit commitment & energy dispatch with uncertain wind
power generation for the State of lllinois, assuming 20% wind NAN\N\/—

power penetration, using the same windfarm sites as the one  wind :
existing today. power

=Full integration with 10 thermal units to meet demands.
Consider dynamics of start-up, shutdown, set-point changes

= The solution is only 1% more expensive then the one with
exact information. Solution on average infeasible at 10%.
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Managament under uncertainty paradigm: stochastic
programming.

Two-stage stochastic programming with recourse (“here-and-now”)
Min{ £.(x,)+ E[Min f(x,a))}}
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INTERIOR POINT METHODS FOR STOCHASTIC
PROGRAMMING

Mihai Anitescu -- Stochastic Programming
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Linear Algebra of Primal-Dual Interior-Point Methods

Convex quadratic problem IPM Linear System
1
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The Direct Schur Complement Method (DSC)

= Uses the arrow shape of H
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= Solving Hz=r

LDI'=H, L ,=GL'D", i=1,..8,

1 1l

Implicit factorization
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Back substitution Diagonal solve Forward substitution
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High performance computing with DSC

Gondzio (OOPS) 6-stages 1 billion variables

Zavala et.al., 2007 (in IPOPT)
Our experiments (PIPS) — strong scaling is investigated
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= Building energy system
* Almost linear scaling
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Scalability of DSC

...but not always the case, since first

Unit commitment ,
stage calculations can keep everyone

76.7% efficiency ... blocked
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BOTTLENECK SOLUTION 1: STOCHASTIC PRECONDITIONER

Mihai Anitescu -- Stochastic Programming

14



Preconditioned Schur Complement (PSC)
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The Stochastic Preconditioner

= The exact structure of Cis S
S
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~ Il i for'nr Y T
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= |IDsubset of nscenarios: K =1{k,k,,....k }
= The stochastic preconditioner (Petra & Anitescu, 2010)
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= For Cuse the constraint preconditioner (Keller et. al., 2000)
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Mihai Anitescu -- Stochastic Programming



Quality of the Stochastic Preconditioner
~ ] ~—1 % ~ 1S L |
S, =0, +;l§|:Al€ (Bk,- Qki B’é) Ak,-:| Ss =0, +§;|:AI'T (BiQi BiT) Aii|

“Exponentially” better preconditioning (Petra & Anitescu 2010)
2

Pr(| (S S)—128>32p4exp[_ | }

2p°L" || S ||
Proof: Hoeffding inequality (p is dim on S; L is a bound on data)

max

Assumptions on the problem’s random data

1. Boundedness

not restrictive (=> L)
2. Uniform full rank of A(®) and B()
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Quality of the Constraint Preconditioner

4, 0 4, 0
P v

= M 'C has an eigenvalue 1 with order of multiplicity 27

= The rest of the eigenvalues satisfy

0<A

min(Sn_lSS) S A’(M_IC) S ﬂ“m (Sn_lSS)

ax

= Proof: based on Bergamaschi et. al., 2004.
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The Krylov Methods Used for Cz,=r,

T I
S¢ Ay || %o o

4, 0 ][V Ty

BiCGStab using constraint preconditioner M

= Preconditioned Projected CG (PPCG) (Gould et. al., 2001)
— Preconditioned projection onto the KerAO.

P=2,(218,2,) 7!

— Does not compute the basis Z,for Ker4,. Instead,
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Performance of the preconditioner

= Eigenvalues clustering & Krylov iterations
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= Affected by the well-known ill-conditioning of IPMs.
S =S8, and S, =E[S(w)], where

50)=(0,+D,)+| 4'(@) (@) (0)+ D) ' B @) 4w)]
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The “Ugly” Unit Commitment Problem; PSC gets further

= DSC on P processes vs PSC on P+1 process
Optimal use of PSC — linear scaling
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30

120 scenarios - # cores

used for
preconditioner

Conclusion: PSC hides
the latency well, but it
eventually hits a
memory wall as well.

Factorization of tIXe preconditioner can not be hidden anymore; we need to accelerate it
as well; cannot solve larger problems where improvement would likely be larger
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SOLUTION 2: PARALELLIZATION OF STAGE 1 LINEAR
ALGEBRA

Mihai Anitescu -- Stochastic Programming
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Parallelizing the 15t stage linear algebra

We distribute the 15t stage Schur complement system.

-1 4| 5

AO 0 5 Q dense symm. pos. def.,, Ao sparse full rank.

= (Cistreated as dense.
= Alternative to PSC for problems with large number of 1%t stage variables.
= Removes the memory bottleneck of PSC and DSC.

= We investigated Scalapack, Elemental (successor of PLAPACK)
— None have a solver for symmetric indefinite matrices (Bunch-Kaufman);
— LU or Cholesky only.
— So we had to think of modifying either.

Mihai Anitescu -- Stochastic Programming
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Cholesky-based LDL"like factorization

~ AT L O [ LT L_lAT o )
L? O}ZLL‘T ZH 1}{0 I }’WhereLLuQ,LLT:AQIAT

Can be viewed as an “implicit” normal equations approach.
In-place implementation inside Elemental: no extra memory needed.

Idea: modify the Cholesky factorization, by changing the sign after processing p
columns.

It is much easier to do in Elemental, since this distributes elements, not blocks.
Twice as fast as LU

Works for more general saddle-point linear systemes, i.e., pos. semi-def. (2,2) block.

Mihai Anitescu -- Stochastic Programming
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Distributing the 15t stage Schur complement matrix

All processors contribute to all of the elements of the (1,1) dense block
. o~ 1< ~ ~1
Q:Q0+EZ{AZT (Bl.Ql. Bf) AZ}
i=1
= Alarge amount of inter-process communication occurs.
= Possibly more costly than the factorization itself.

= Solution: use buffer to reduce the number of messages when doing a
Reduce_scatter.

LD approach also reduces the communication by half — only need to send lower
triangle.

Mihai Anitescu -- Stochastic Programming
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Large-scale performance

= Comparison of Scalapack (LU), Elemental(LU), and LDL' (1024 cores)

Units  Ist Stage Size Factor (Sec.) Reduce (Sec.)
(O+A) LU(S) LU(E) LDLT LU LDLT
300 23436+1224 16.59 20.04 6.71 54.32 26.35
640 49956+2584 60.67 83.24 36.77 256.95 128.59
1000  78030+4024 173.67 263.53 90.82 565.36 248.22/—

189 million variables

SAA problem:

= Strong scaling
= 90.1% from 64 to 1024 cores;
= 75.4% from 64 to 2048 cores.
=  >4,000 scenarios.

Mihai Anitescu -- Stochastic Programming
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A Parallel Interior-Point Solver for Stochastic Programming
(PIPS)

Convex QP SAA SP problems

Input: users specify the scenario tree

Object-oriented design based on OOQP

Linear algebra: tree vectors, tree matrices, tree linear systems

Scenario based parallelism
— tree nodes (scenarios) are distributed across processors
— inter-process communication based on MPI
— dynamic load balancing

Mehrotra predictor-corrector IPM

Mihai Anitescu -- Stochastic Programming
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Multi-stage SAA SP Problems — Scenario formulation

= Depth-first traversal of the scenario tree
= Nested half-arrow shaped Jacobian
= Block separable obj. func.

Mm—z X Ox, + Z c x,

i=0

s.t. Ao X, = b,
Ax,+ Bx = b
A4,x,+ B)x, = b,

Ax, + B x, = b,

A,x, + B,x, = b,
Ax, + Bgx, = b,

Ax, + Bx, = b

Ax, + Bx, = b

%20 x20 x20 x20 x,20 x20 x,20 x,20
Mihai Anitescu -- Stochastic Programming
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Tree Linear Algebra — Data, Operations & Linear Systems

1

= Data Min - % Ox+c'x

— Treevector: b, ¢, x, etc '2 A b

— Tree symmetric matrix: Q bkt AT

— Tree general matrix: A v
= Operations T

(U@V)n :un Qvn’vne T
T =T-{0}

(Ox), =0 x,,VneT
_ x a(6) =4 (ancestor map)
(4x), = Ay Xy + B, %, Vne T C(1)={2,3} (children map)

(A"y), =By, + >, Ay,

ceC(n) .

= Linear systems: for each non-leaf node a two-stage problem is solved via Schur
complement methods as previously described.

Mihai Anitescu -- Stochastic Programming
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Parallelization — Tree Distribution

The tree is distributed across processes.

Example: 3 processes

CPU 1

CPU 2

CPU 3

A

\ 4

(5)

Dynamic load balancing of the tree

— Number partitioning problem --> graph partitioning --> METIS

Mihai Anitescu -- Stochastic Programming
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Conclusions

The DSC method offers a good parallelism for SP in an IPM framework.

The PSC method improves the scalability, by tackling the latency, though not
the memory wall.

Parallel direct linear algebra eliminates the memory wall; we will investigate
their combination to reduce both.

PIPS — solver for SP problems.

PIPS is ready for larger problems: 100,000 cores.

Mihai Anitescu -- Stochastic Programming
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Future work

New math / stat
— Asynchronous optimization
— SAA error estimate

New scalable methods for a more efficient software

— Better interconnect between (iterative) linear algebra and sampling
e importance-based preconditioning
e multigrid decomposition

— Target: emerging exa architectures

PIPS
— |IPM hot-start, parallelization of the nodes
— Ensure compatibility with other paradigms: NLP, conic progr., MILP/MINLP solvers
— A ton of other small enhancements

Ensure computing needs for important applications
— Unit commitment with transmission constraints & market integration (Zavala)

Mihai Anitescu -- Stochastic Programming
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Thank you for your attention!

Questions?
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