A Scalable Interior Point Solver for Stochastic Programming

Cosmin Petra and Mihai Anitescu

Mathematics and Computer Science Division
Argonne National Laboratory

SP XII Halifax
August 16-20, 2010
MOTIVATION
Optimal management under uncertainty of energy systems

- Applications @Argonne – Anitescu, Constantinescu, Zavala
 - Stochastic Unit Commitment with Wind Power Generation
 - Energy management of Co-generation
 - Economic Optimization of a Building Energy System

- Sources of large dimensional uncertainty in complex energy systems
 - Weather
 - Consumer Demand
 - Market prices
Economic Optimization of a Building Energy System

- **Proactive** management - temperature forecasting & electricity prices
- Minimize daily energy costs (SAA)

\[
\min \quad \text{COST} = \frac{1}{S} \sum_{j=1}^{S} \int_{t}^{t+T} \left[C_{\text{elec}}(\tau)\phi_{e}^{\text{elec}}(\tau) + C_{\text{elec}}(\tau)\phi_{h}^{\text{elec}}(\tau) + C_{\text{gas}}\phi_{h}^{\text{gas}}(\tau) \right] d\tau
\]

s.t. \[
C_{I} \frac{\partial T_{I}^{j}}{\partial \tau} = \phi_{h}^{\text{gas}}(\tau) + \phi_{h}^{\text{elec}}(\tau) - \phi_{c}^{\text{elec}}(\tau) - S\alpha' \left(T_{I}^{j}(\tau) - T_{w}^{j}(\tau,0) \right), \quad T_{I}^{j}(0) = T_{I}^{0}
\]

\[
\frac{\partial T_{w}^{j}}{\partial \tau} = \beta \frac{\partial^2 T_{w}^{j}}{\partial x^2}, \quad \alpha' \left(T_{I}^{j}(\tau) - T_{w}^{j}(\tau,0) \right) + k \frac{\partial T_{w}^{j}}{\partial \tau} \bigg|_{(\tau,0)} = 0, \quad \alpha'' \left(T_{w}^{j}(\tau,L) - T_{A}^{j}(\tau) \right) + k \frac{\partial T_{w}^{j}}{\partial \tau} \bigg|_{(\tau,L)} = 0
\]

\[
T_{w}^{j}(0,x) = T_{w}^{0}(x), \quad \tau \in [t,t+T]
\]

\[
T_{I}^{\min} \leq T_{I}^{j}(\tau) \leq T_{I}^{\max}, j \in \{1, \ldots, S\}
\]
Creating the weather uncertainty

Ensemble Forecast Approach – Use WRF (Weather Research Forecast) as Black-Box

Sample Prior and Propagate Samples of Posterior Through Model

\[Y_{[i,j]} := \chi_i(t_\ell+j) = \mathcal{M}(\mathcal{M}(\ldots\mathcal{M}(\chi_i(t_\ell)))) \text{ j times} \]

\[E[Y] \approx \bar{Y} := \frac{1}{NS} \sum_{i=1}^{NS} Y_{[i,:]} \]

\[V \approx \frac{1}{NS - 1} \sum_{i=1}^{NS} (Y_{[i,:]} - \bar{Y})(Y_{[i,:]} - \bar{Y})^T \]

Validation Results, Pittsburgh Area 2006
5 Day Forecast and +/- 3s Intervals
Building applications
Stochastic Unit Commitment with Wind Power (SAA)

\[
\begin{align*}
\text{min} \quad & \text{COST} = \frac{1}{N_s} \sum_{s \in S} \left(\sum_{j \in \mathcal{N}} \sum_{k \in \mathcal{T}} c^p_{sjk} + c^u_{jk} + c^d_{jk} \right) \\
\text{s.t.} \quad & \sum_{j \in \mathcal{N}} p_{sjk} + \sum_{j \in \mathcal{N}_{\text{wind}}} p_{sjk}^{\text{wind}} = D_k, s \in S, k \in \mathcal{T} \\
& \sum_{j \in \mathcal{N}} \overline{p}_{sjk} + \sum_{j \in \mathcal{N}_{\text{wind}}} p_{sjk}^{\text{wind}} \geq D_k + R_k, s \in S, k \in \mathcal{T} \\
\end{align*}
\]

ramping constr., min. up/down constr.

- Wind Forecast – WRF(Weather Research and Forecasting) Model
 - Real-time grid-nested 24h simulation
 - 30 samples require 1h on 500 CPUs (Jazz@Argonne)
Wind power forecast and stochastic programming

- Unit commitment & energy dispatch with uncertain wind power generation for the State of Illinois, assuming 20% wind power penetration, using the same windfarm sites as the one existing today.

- Full integration with 10 thermal units to meet demands. Consider dynamics of start-up, shutdown, set-point changes.

- The solution is only 1% more expensive then the one with exact information. Solution on average infeasible at 10%.
Management under uncertainty paradigm: stochastic programming.

- Two-stage stochastic programming with recourse (“here-and-now”)

\[
\min_{x_0} \left\{ f_0(x_0) + \mathbb{E} \left[\min_x f(x, \omega) \right] \right\}
\]

subject to:

- \(A_0 x_0 = b_0 \)
- \(A(\omega) x_0 + B(\omega) x = b(\omega) \)
- \(x_0 \geq 0, \quad x(\omega) \geq 0 \)

- \(\xi(\omega) := (A(\omega), B(\omega), b(\omega), Q(\omega), c(\omega)) \)

Sample average approximation (SAA)

\[
\min_{x_0, x_1, x_2, \ldots, x_S} \left\{ f_0(x) + \frac{1}{S} \sum_{i=1}^{S} f_i(x_i) \right\}
\]

subject to:

- \(A_0 x_0 = b_0 \)
- \(A_k x_0 + B_k x_k = b_k, \quad k = 1, \ldots, S \)
- \(x_0 \geq 0, \quad x_k \geq 0, \quad k = 1, \ldots, S \)
INTERIOR POINT METHODS FOR STOCHASTIC PROGRAMMING
Linear Algebra of Primal-Dual Interior-Point Methods

Convex quadratic problem
\[
\begin{align*}
\text{Min} & \quad \frac{1}{2} x^T Q x + c^T x \\
\text{subj. to.} & \quad A x = b \\
& \quad x \geq 0
\end{align*}
\]

IPM Linear System
\[
\begin{bmatrix}
Q + \Lambda & A^T \\
A & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} = rhs
\]

Multi-stage SP

Two-stage SP

\textit{nested} arrow-shaped linear system
(via a permutation)
The Direct Schur Complement Method (DSC)

- Uses the arrow shape of H

\[
\begin{bmatrix}
H_1 & \cdots & G_1^T \\
\vdots & \ddots & \vdots \\
G_s & G_s^T & H_0 \\
\end{bmatrix}
=
\begin{bmatrix}
L_1 & \cdots & \cdots \\
\vdots & \ddots & \vdots \\
L_s & L_s & L_c \\
\end{bmatrix}
\begin{bmatrix}
D_1 \\
\vdots \\
D_s \\
\end{bmatrix}
=
\begin{bmatrix}
L_1^T & \cdots & \cdots \\
\vdots & \ddots & \vdots \\
L_s^T & L_s & L_c^T \\
\end{bmatrix}
\begin{bmatrix}
L_1^T \\
\vdots \\
L_s^T \\
\end{bmatrix}
\]

- Solving $Hz = r$

\[
L_iD_iL_i^T = H_i, \quad L_{i0} = G_i L_i^{-T} D_i^{-1}, \quad i = 1, \ldots, S, \\
C = H_0 - \sum_{i=1}^{S} G_i H_i^{-1} G_i^T, \quad L_c D_c L_c^T = C.
\]

\[
w_i = L_i^{-1} r_i, \quad i = 1, \ldots, S, \\
w_0 = L_c^{-1} \left(r_0 - \sum_{i=1}^{S} L_{i0} w_i \right)
\]

\[
v_i = D_i^{-1} w_i, \quad i = 0, \ldots, S
\]

\[
z_0 = L_c^{-1} v_0
\]

\[
z_i = L_i^{-T} \left(v_i - L_{i0} z_0 \right), \quad i = 1, \ldots, S.
\]

Mihai Anitescu -- Stochastic Programming
High performance computing with DSC

- Gondzio (OOPS) 6-stages 1 billion variables
- Zavala et.al., 2007 (in IPOPT)
- Our experiments (PIPS) – **strong** scaling is investigated
 - Building energy system
 - Almost linear scaling
- Unit commitment
 - Relaxation solved
 - Largest instance
- **Building energy system**
 - Almost linear scaling
- **Unit commitment**
 - Relaxation solved
 - Largest instance
- **Building energy system**
 - Almost linear scaling
- **Unit commitment**
 - Relaxation solved
 - Largest instance

- **Unit commitment**
 - Relaxation solved
 - Largest instance

- **Building energy system**
 - Almost linear scaling
- **Unit commitment**
 - Relaxation solved
 - Largest instance

- **Building energy system**
 - Almost linear scaling
- **Unit commitment**
 - Relaxation solved
 - Largest instance

- **Building energy system**
 - Almost linear scaling
- **Unit commitment**
 - Relaxation solved
 - Largest instance
Scalability of DSC

Unit commitment
76.7% efficiency ...

...but not always the case, since first stage calculations can keep everyone blocked

Large number of 1st stage variables: 38.6% efficiency
BOTTLENECK SOLUTION 1: STOCHASTIC PRECONDITIONER
Preconditioned Schur Complement (PSC)

\[L_i D_i L_i^T = H, \quad L_{i0} = G_i L_i^{-T} D_i^{-1}, \quad i = 1, \ldots, N, \]
\[C = H_0 - \sum_{i=1}^{N} G_i H_i^{-1} G_i^T \]

(L_M D_M L_M^T = M
t (separate process)

\[w_i = L_i^{-1} r_i \]
\[\tilde{r}_0 = \left(r_0 - \sum_{i=1}^{N} L_{Ni} w_i \right) \]

\[v_i = D_i^{-1} w_i, \quad i = 0, \ldots, N \]
\[z_0 = \text{Krylov}(C, M, \tilde{r}_0) \]

\[z_i = L_i^{-T} \left(v_i - L_{i0}^T z_0 \right) \]
The Stochastic Preconditioner

- The exact structure of C is

\[
C = \begin{bmatrix}
\tilde{Q}_0 + \frac{1}{S} \sum_{i=1}^{S} A_i^T \left(B_i \tilde{Q}_i^{-1} B_i^T\right)^{-1} A_i & A_0^T \\
A_0 & 0
\end{bmatrix}.
\]

- IID subset of n scenarios: $\mathcal{K} = \{k_1, k_2, \ldots, k_n\}$

- The stochastic preconditioner (Petra & Anitescu, 2010)

\[
S_n = \tilde{Q}_0 + \frac{1}{n} \sum_{i=1}^{n} A_{k_i}^T \left(B_{k_i} \tilde{Q}_{k_i}^{-1} B_{k_i}^T\right)^{-1} A_{k_i}.
\]

- For C use the constraint preconditioner (Keller et. al., 2000)

\[
M = \begin{bmatrix}
S_n & A_0^T \\
A_0 & 0
\end{bmatrix}.
\]
Quality of the Stochastic Preconditioner

\[
S_n = \tilde{Q}_0 + \frac{1}{n} \sum_{i=1}^{n} \left[A_k^T \left(B_k \tilde{Q}_k^{-1} B_k^T \right)^{-1} A_k \right] \\
S_S = \tilde{Q}_0 + \frac{1}{S} \sum_{i=1}^{S} \left[A_i^T \left(B_i \tilde{Q}_i^{-1} B_i^T \right)^{-1} A_i \right]
\]

- "Exponentially" better preconditioning (Petra & Anitescu 2010)
 \[
 \Pr(\| \lambda(S_n^{-1} S_S) - 1 \| \geq \epsilon) \leq 2 p^4 \exp \left(- \frac{n \epsilon^2}{2 p^4 L^2 \| S_S \|_{\text{max}}^2} \right)
 \]
- **Proof**: Hoeffding inequality (p is dim on S; L is a bound on data)

- Assumptions on the problem’s random data
 1. Boundedness
 2. Uniform full rank of \(A(\omega) \) and \(B(\omega) \)

\[\text{not restrictive (} => L) \]
Quality of the Constraint Preconditioner

\[
M = \begin{bmatrix} S_n & A_0^T \\ A_0 & 0 \end{bmatrix}, \quad \quad C = \begin{bmatrix} S_S & A_0^T \\ A_0 & 0 \end{bmatrix}
\]

- \(M^{-1}C \) has an eigenvalue 1 with order of multiplicity 2r.

- The rest of the eigenvalues satisfy

\[
0 < \lambda_{\min}(S_n^{-1}S_S) \leq \lambda(M^{-1}C) \leq \lambda_{\max}(S_n^{-1}S_S).
\]

- Proof: based on Bergamaschi et. al., 2004.
The Krylov Methods Used for $Cz_0 = r_0$

\[
\begin{bmatrix}
S & A_0^T \\
A_0 & 0
\end{bmatrix}
\begin{bmatrix}
x_0 \\
y_0
\end{bmatrix} =
\begin{bmatrix}
r_0^1 \\
r_0^2
\end{bmatrix}
\]

- **BiCGStab** using constraint preconditioner M

- **Preconditioned Projected CG (PPCG)** (Gould *et al.*, 2001)
 - Preconditioned projection onto the $\text{Ker}A_0$.
 \[
P = Z_0 \left(Z_0^T S_n Z_0 \right)^{-1} Z_0^T
 \]
 - Does not compute the basis Z_0 for $\text{Ker}A_0$. Instead,
 \[
g = \text{Pr} \text{ is computed from } \begin{bmatrix}
S_n & A_0^T \\
A_0 & 0
\end{bmatrix}
\begin{bmatrix}
g \\
u
\end{bmatrix} = \begin{bmatrix}
r \\
0
\end{bmatrix}.
 \]
 - $y_0 = (A_0 A_0^T)^{-1} A_0 \left(r_0^1 - S_N x_0\right)$
Performance of the preconditioner

- Eigenvalues clustering & Krylov iterations

- Affected by the well-known ill-conditioning of IPMs.

\[S_n \approx S_N \quad \text{and} \quad S_N \approx \mathbb{E}[S(\omega)], \quad \text{where} \]

\[S(\omega) = (Q_0 + D_0) + \left[A^T(\omega)(B(\omega)(Q(\omega) + D(\omega))^{-1}B^T(\omega))^{-1}A(\omega) \right] \]
The “Ugly” Unit Commitment Problem; PSC gets further

- DSC on P processes vs PSC on P+1 process

Optimal use of PSC – linear scaling

- 120 scenarios - # cores used for preconditioner
- Conclusion: PSC hides the latency well, but it eventually hits a memory wall as well.

Factorization of the preconditioner can not be hidden anymore; we need to accelerate it as well; cannot solve larger problems where improvement would likely be larger.
SOLUTION 2: PARALLELIZATION OF STAGE 1 LINEAR ALGEBRA
Parallelizing the 1st stage linear algebra

- We distribute the 1st stage Schur complement system.
 \[C = \begin{bmatrix} \tilde{Q} & A_0^T \\ A_0 & 0 \end{bmatrix}, \quad \tilde{Q} \text{ dense symm. pos. def., } A_0 \text{ sparse full rank.} \]

- C is treated as dense.

- Alternative to PSC for problems with large number of 1st stage variables.

- Removes the memory bottleneck of PSC and DSC.

- We investigated ScaLapack, Elemental (successor of PLAPACK)
 - None have a solver for symmetric indefinite matrices (Bunch-Kaufman);
 - LU or Cholesky only.
 - So we had to think of modifying either.
Cholesky-based LDL^T-like factorization

\[
\begin{bmatrix}
\tilde{Q} & A^T \\
A & 0
\end{bmatrix} = \begin{bmatrix} L & 0 \\
AL^{-T} & L^{-1}
\end{bmatrix} \begin{bmatrix} I & L^T \quad L^{-1}A^T \\
-I & 0
\end{bmatrix}, \text{ where } LL^T = \tilde{Q}, \quad \overline{LL}^T = A\tilde{Q}^{-1}A^T
\]

- Can be viewed as an “implicit” normal equations approach.
- In-place implementation inside Elemental: no extra memory needed.
- Idea: modify the Cholesky factorization, by changing the sign after processing p columns.
- It is much easier to do in Elemental, since this distributes elements, not blocks.
- Twice as fast as LU
- Works for more general saddle-point linear systems, i.e., pos. semi-def. (2,2) block.
Distributing the 1st stage Schur complement matrix

- All processors contribute to all of the elements of the (1,1) dense block
 \[\tilde{Q} = \tilde{Q}_0 + \frac{1}{S} \sum_{i=1}^{S} A_i^T \left(B_i \tilde{Q}_i^{-1} B_i^T \right)^{-1} A_i\]

- A large amount of inter-process communication occurs.

- Possibly more costly than the factorization itself.

- Solution: use buffer to reduce the number of messages when doing a \textit{Reduce_scatter}.

- \textit{LDL}^T approach also reduces the communication by half – only need to send lower triangle.
Large-scale performance

- Comparison of ScaLapack (LU), Elemental(LU), and LDL^T (1024 cores)

<table>
<thead>
<tr>
<th>Units</th>
<th>1st Stage Size (Q+A)</th>
<th>Factor (Sec.)</th>
<th>Reduce (Sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$LU(S)$</td>
<td>$LU(E)$</td>
</tr>
<tr>
<td>300</td>
<td>23436+1224</td>
<td>16.59</td>
<td>20.04</td>
</tr>
<tr>
<td>640</td>
<td>49956+2584</td>
<td>60.67</td>
<td>83.24</td>
</tr>
<tr>
<td>1000</td>
<td>78030+4024</td>
<td>173.67</td>
<td>263.53</td>
</tr>
</tbody>
</table>

- Strong scaling
 - 90.1% from 64 to 1024 cores;
 - 75.4% from 64 to 2048 cores.
 - > 4,000 scenarios.

SAA problem: 189 million variables

Total Walltime

Diagram showing linear scaling, LDL^T, and LU with speedup on the y-axis and processors on the x-axis.
A Parallel Interior-Point Solver for Stochastic Programming (PIPS)

- Convex QP SAA SP problems
- Input: users specify the scenario tree
- Object-oriented design based on OOQP
- Linear algebra: tree vectors, tree matrices, tree linear systems
- Scenario based parallelism
 - tree nodes (scenarios) are distributed across processors
 - inter-process communication based on MPI
 - dynamic load balancing
- Mehrotra predictor-corrector IPM
Multi-stage SAA SP Problems – Scenario formulation

- Depth-first traversal of the scenario tree
- **Nested** half-arrow shaped Jacobian
- Block separable obj. func.

\[
\begin{align*}
\text{Min} \quad & \frac{1}{2} \sum_{i=0}^{7} x_i^T Q_i x_i + \sum_{i=0}^{7} c_i^T x_i \\
\text{s.t.} \quad & A_0 x_0 + A_1 x_0 + A_2 x_1 + A_3 x_1 + A_4 x_0 + A_5 x_4 + A_6 x_4 + A_7 x_4 + B_1 x_1 + B_2 x_2 + B_3 x_3 + B_4 x_4 + B_5 x_5 + B_6 x_6 + B_7 x_7 = b_0 \\
& = b_1 \\
& = b_2 \\
& = b_3 \\
& = b_4 \\
& = b_5 \\
& = b_6 \\
& = b_7 \\
x_0 & \geq 0 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0 \\
x_4 & \geq 0 \\
x_5 & \geq 0 \\
x_6 & \geq 0 \\
x_7 & \geq 0
\end{align*}
\]

Mihai Anitescu -- Stochastic Programming
Tree Linear Algebra – Data, Operations & Linear Systems

- **Data**
 - Tree vector: b, c, x, etc
 - Tree symmetric matrix: Q
 - Tree general matrix: A

- **Operations**

 \[(u \odot v)_n = u_n \odot v_n, \forall n \in T\]
 \[(Qx)_n = Q_n x_n, \forall n \in T\]
 \[(Ax)_n = A_{a(n)} x_{a(n)} + B_n x_n, \forall n \in T^*\]
 \[(A^T y)_n = B_n^T y_n + \sum_{c \in C(n)} A_c^T y_c\]

- **Linear systems:** for each non-leaf node a two-stage problem is solved via Schur complement methods as previously described.

\[
\begin{align*}
\text{Min} & \quad \frac{1}{2} x^T Q x + c^T x \\
\text{subj. to} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]

\[T^* = T - \{0\}\]
\[a(6) = 4 \text{ (ancestor map)}\]
\[C(1) = \{2, 3\} \text{ (children map)}\]
Parallelization – Tree Distribution

- The tree is distributed across processes.
- Example: 3 processes

- Dynamic load balancing of the tree
 - Number partitioning problem --> graph partitioning --> METIS
Conclusions

- The DSC method offers a good parallelism for SP in an IPM framework.

- The PSC method improves the scalability, by tackling the latency, though not the memory wall.

- Parallel direct linear algebra eliminates the memory wall; we will investigate their combination to reduce both.

- PIPS – solver for SP problems.

- PIPS is ready for larger problems: 100,000 cores.
Future work

- New math / stat
 - Asynchronous optimization
 - SAA error estimate

- New scalable methods for a more efficient software
 - Better interconnect between (iterative) linear algebra and sampling
 - importance-based preconditioning
 - multigrid decomposition
 - Target: emerging exa architectures

- PIPS
 - IPM hot-start, parallelization of the nodes
 - Ensure compatibility with other paradigms: NLP, conic progr., MILP/MINLP solvers
 - A ton of other small enhancements

- Ensure computing needs for important applications
 - Unit commitment with transmission constraints & market integration (Zavala)
References

Thank you for your attention!

Questions?