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Motivation: Hybrid Systems -- Dynamical 
Systems with Complementarity Constraints  

 

x = λF1(x) + (1− λ)F2 (x)
0 = g(x) − s1 + s2; s1 ≥ 0 ⊥ s2 ≥ 0
λ ≥ 0 ⊥ s1 ≥ 0; 1− λ ≥ 0 ⊥ s2 ≥ 0

 

x =
F1(x) g(x) < 0
F2 (x) g(x) > 0

⎧
⎨
⎪

⎩⎪

 

0 ≤ a ∈Rn ⊥ b ≥ 0 ∈Rn ⇔

0 ≤ a,b ∈Rn , a • b = 0

λF1(x) + (1− λ)F2 (x) g(x) = 0; λ ∈[0,1]{

 Complementarity Constraints 

 Some (all?) hybrid dynamical systems can be written as 
DSCC with smooth constitutive functions   

 Note: even existence is tricky (Stewart and A, 2010).  



Hybrid Systems  

 Motion of a large set of rigid 
bodies.  

 Dynamics of multicristalline 
materials (e.g nuclear fuel). 

 Nonlinear Model Predictive 
Control for Energy Systems 

 Porous Media Flow. 
 Mechanical Systems Design 
 ….. 

 Generally appears any 
time dynamics and 
switching or inequality 
constraints are 
encountered 



Further abstraction: DVI 

 Differential variational inequalities (DVI, Stewart and 
Pang, 03-08): Mixture of differential equations and 
variational inequalities. 

 In the case of complementarity, 



Our general inquiry 

 Does the DVI interpretation of hybrid systems offers 
novel insights and more efficient numerical algorithms 
for their simulation? 



DVI: time-stepping methods    

 Our target methodology are time stepping methods. 

 Implicit in the VI variable, implicit-explicit in state, with 
possible linearization of the structural functions f,F. 

 Puts much of the computational effort on solving the VI 
subproblem IF it can be solved.  



 Smoothing versus time-stepping 

  Recall, DVI (for C=R+) 

  Smoothing  

  Followed  by forward Euler. 
Easy to implement!! 

  Compare with the complexity 
of time-stepping 

  But does it give good results? 



Example: rigid body motion 

 Equations of motion: mixture of ordinary differential 
equations and variational inequalities/complementarity 
conditions. 

Friction Model 

Newton Equations Non-Penetration Constraints 

Generalized Velocities 

 The VI in time-stepping has a solution (Anitescu and Hart, 
04).  



Applying ADAMS to granular flow 

  ADAMS is the workhorse of 
engineering dynamics. 

  ADAMS/View Procedure for 
simulating.  

  Spheres: diameter of 60 mm 
and a weight of 0.882 kg. 

  Forces:smoothing with 
stiffness of 1E5, force 
exponent of 2.2, damping 
coefficient of 10.0, and a 
penetration depth of 0.1 



ADAMS versus ChronoEngine 

Often, time stepping is more promising. We follow this direction.  



Very Large Scale DVI: granular materials (GM) 

 GM: dense set of rigid particles:  
second-most used material after 
water (e.g pebble bed nuclear 
reactor, coal gasification, etc). 

 Despite centuries of study, there is 
no satisfactory continuum theory 
or hybrid theory.  

 Difficulty:  co-existing gas, liquid, 
and solid phases. 

 For predictive simulation, we must 
use particle-by-particle simulation.  

 1 m^3 of sand: ~10^10 particles.  
1 million particle simulation 



Convexification of the Subproblem 

 Nevertheless, the available solver (Lemke, the only 
one guaranteed to solve the cone-linearized 
subproblem), starts to take extremely long times past 
~1000s of  granules (Anitescu and Hart 04)… and we 
aim for 10^10. 

 The main difficulty: the time-stepping subproblem is not 
convex (Anitescu and Hart 04 b). 

 We proved (A, 06) that there is a time-stepping DVI 
with convex subproblems that converge in the same 
sense (measure differential inclusion). 



Convex Subproblem: Conic Vi – Conic 
Complementarity Problem 

  The convex constraint cone 

CCP: 

  It’s polar cone 



The Friction Cones and their Projectors 

 The friction cone. 

 The projection operator: 



Large scale Cone Complementarity Problems 

 For conic problems, the prevailing methods of current 
interest are interior-point approaches.  

 Nevertheless, it is hard to deal with them iteratively and 
even more so to implement them matrix-free. 

 To our knowledge, matrix-free large-scale conic 
complementarity problems (or conic optimization, for 
that matter) have been rarely developed (except 
perhaps Tseng and co-authors, but not tested on this 
scale). 

 We propose a methods for CCP, extension of 
Mangasarian’s algorithm for LCP.  



Matrix-free method for CCP 

  Use a fixed-point iteration (Gauss-Seidel-Jacobi), generalization of 
Mangasarian’s algorithm for common complementarity to CONES 

KT= 



Convergence of iterative method for CCP 

 ASSUMPTIONS 

 Theorem (A & Tasora, in press): The method produces in absence of 
jamming a bounded sequence which is convergent.  



Simulating the PBR nuclear reactor 
  160’000 Uranium-Graphite 

spheres, 600’000 contacts on 
average 

 One step: Two millions of 
primal variables, six millions of 
dual variables. 4000 0.01 ms 
steps. 

  1 day on a Windows station; 
shows linear performance. 

 We estimate (extrapolate) 3 
CPU days, compare with 192 
CPU days for smoothing 
(DEM-LAMMPS) under-
resolved solution in 2006 !!! 



DVI: Convexification validation : Hopper 
(Tasora & A 2009) 



Hopper experiment and simulation: Images 

t=0s t=0.6s t=1.2s 



Hopper Results: Velocity (Tasora &A 2009) 

 Note that there are sphere measurement errors of 2%, 
and particle-wall friction variations of 10% (reduced by 
climate control).  

 So we declare validation a success for convex method. 



GPU implementation 
 It works: 1 million particles for 40 seconds in 4 hours 

on a 2.66Ghs Intel GPU with a C1060 NVIDIA Tesla 
GPU (about 30K managed/1000K executed threads).  

 In 06, LAMMPS-DEM was doing 400K particles in 3 
days on a 64 node cluster (but we switched to CUDA 
before we can do MPI comparison, capability only).  

 Algorithmically, we need to substantiate our “about 50 
times improvement is due to the algorithm”.  
–  With what smoothing settings do we run LAMMPS-

DEM? (since we are both underresolved)  
–  Which statistics do we consider? Etc. 
–  We have no doubt both methods will have a role.  

 In the pipeline: Multi GPU = (MPI + GPU?).  



Some capabilities now available in your 
office: Vehicle Design 



Extensions: Nonlinear Model Predictive 
Control NLMPC (Zavala and A, 09) 
 Parametric Optimization, such as Nonlinear Model 

Predictive Control, is One Particular Case of DVI. 
 Here, the VI are the optimality conditions of the 

NLMPC parametric optimization problem. 

 Extension from DVI: Time-stepping, which solves one 
linear VI per step inexactly, converges to the NLMPC 
solution. Important for real-time implementation.   

 Also solved by projected Gauss-Seidel (and Aug Lag).  

 

s ' = 1
x(t)∈SOL(K;F(t, s,i))
s(0) = 0



Applications:  
    - Data Assimilation, Model Predictive Control, Dynamic Games  
    - Weather Forecasting, Power Flow Control, Buildings Control, Energy Management, … 

DAE-Constrained Optimization Parametric NLP 

Discretization 

 Our framework ensures that the system can stay stable even 
as the quadra7c approxima7on is solved matrix free ! 
(inexactly)  ‐‐‐ see Victor Zavala’s poster. 



NLMPC ‐‐ High performance compu6ng; solving the QP. 

26 

  strong scaling is inves7gated 
•  Almost linear scaling  … some7mes, see Cosmin’s talk 

  Unit commitment  

•  Relaxa7on solved 

•  Largest instance 

•  28.9 millions variables 

•  1000 cores 

12 x  

on Fusion @ 
Argonne  



Conclusions and future work.  

 DVI represents a set of challenging problems, including 
granular dynamics and NLMPC 

 Time-stepping promises performance, stability and 
predictive power for  granular dynamics. 

 Convexification was validated and opens the road for 
HPC for Cone CP in time-stepping.  

 We defined a new algorithm for CCP for use in time-
stepping for DVI tested on 1 mill particles.  

 Future: Multi-GPU, other physics, NLMPC on GPU? 



Challenges and Open Questions. 

 For large scale granular flow, can one solve the 
subproblem in O(N) (multigrid)? 

 Existence and uniqueness of the DVI? (Note that 
convexification is validated) 

 Does the DVI formulation allow unrealistic or 
undesirable artifacts (Zeno phenomena, Pang et al.) 
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Control of Chemical Reactor           
Closed-Loop Transitions 

Optimal Control Problem          

Time 

Set-Point 

System 

Time-Dependent Parameters 

Cooling 
Agent 

Reactant Concentration 

Temperature 

Set-Point 

Product A 

Product B 



Numerical Tests          

Time 

Residual 

Sampling Time Restricted by PGS Iterations,  Warm-Smart Helps 



Numerical Tests 
    - Compare Against Smoothing Heath, 2004, Ohtsuka, 2004 

      -  

1)  2)  

Residual 

Time 

Smoothing is Numerically Unstable 
AL Time-Stepping Stands Relatively Large Initial Errors 

Set-Point Change 

Numerical Study: Polymerization Reactor NLMPC 



Minimize Annual Heating and Cooling Costs 

NLP with 100,000 Constraints & 20,000 Degrees of 
Freedom 

Time-Varying Electricity Prices and Temperature 

Energy Balances 

www.columbia.edu/cu/gsapp/BT/
LEVER/  

Thermal management of buildings (Zavala et al., 09) 

Results in 20-80% 
reduction in energy 

costs.  



Granular materials: applications 

 Important? The second-most manipulated material in 
industry after water (Richard, Nature Materials 2005). 

 Applications range from pharmaceutical, food, powders, 
petrochemical, nuclear, automotive, and semiconductor 
industries up to geological granular flows – some 
examples later.  

 Two perhaps non-intuitive but crucial energy 
applications.  
–  Circulating granular catalysts in refineries.  
–  Fluidized bed coal gasification (“clean coal”).  



Granular materials: Challenges 

 The absence of a continuum theory makes particle-by-particle 
computational approaches the only general first principles 
computing approach. 

 1 m^3 of sand: ~1 trillion granules. Enormous … but just about 
within reach.  

 In addition, the source of many open or difficult questions.  
–   Is there a “random” close packing of spherical particles?  (A 

maximum volume fraction of a random sphere population, 
Torquato et al., 2000). Postulated at ~0.636. Jamming. 

–  Nothing is known of the same when there is friction.  
–  The Kepler conjecture, proven in the last decade: in the 

deterministic case, the maximum space-filling volume 
fraction is the one of the cannonball arrangement: 0.7405 



Are all interesting DVI problems over R+? No.  

  Conic Complementarity IS NATURAL in granular dynamics (and MD). 
  Coulomb model. 

 Most previous time-stepping  discretize friction cone to use LCP… 
  Can we accommodate non-R+ cones naturally?  



Other applications of DVI: 

 Physics-based virtual reality.  
 Automotive design 
 Dynamics of multicristalline 

materials: evolution of the 
boundary between phases. 

 Porous Media Flow.  
 ….. 
 Generally appears  any time 

dynamics and “switching” is 
encountered (e.g. your 
gearbox).  



Our Inquiry 

 Can we efficiently simulate large-scale DVI, particularly 
granular dynamics, while being truthful to the physics of 
the respective applications? 

 Granular flow best illustrates the difficulties, but many 
results and techniques extend to general DVI (NLMPC).    



Content 

 Solving DVI 
–  Smoothing versus hard constraints 
–  Time Stepping 
–  Nonconvexity -- Convex Approximation 
–  Some Theory 

 Iterative Algorithms for the time-stepping subproblem. 
 Results 

–  Validation. 
–  GPU implementation 
–  Application Examples 

 Extension to NLMPC – parametric Optimization 
 Open problems/extensions.  



Short history and taxonomy of no-smoothing-
methods in  granular dynamics. 

  Piecewise DAE (Haug, 86) 
–  Plus : Uses well understood DAE technology 
–  Minus: The density of switches, switching consistency, and 

Painleve (discontinuous velocity) are problems. 
  Acceleration-force time-stepping (Glocker & Pfeiffer, 1992, Pang & 

Trinkle, 1995). Piecewise DAE + complementarity for switching.  
–  Plus: No consistency problem.  
–  Minus: Density of switches and Painleve. 

  Velocity-impulse time-stepping. (Moreau, 196*, Stewart and 
Trinkle, 1996, A & Potra, 1997). Weak convergence: MDI 
–  Plus: No consistency, or Painleve. Some have fixed time 

stepping (Moreau, 198*, Anitescu & Hart 04, Anitescu, 06). 
–  Minus: Nonzero restitution coefficient is tough—but its value is 

disputable in any case 



Time-stepping scheme 
 Write an implicit-explicit scheme AS IF Painleve paradoxes 

do not exist.  
 We use linearization (Anitescu and Hart, 04) NOT index 

reduction : results in constraint stabilization.  



Time stepping scheme -- original 

  A measure differential inclusion solution can be obtained by time-stepping 
(Stewart, 1998, Anitescu, 2006): *PEC (approximated by LCP) 

Speeds 

Forces 

Bilateral constraint 
equations 

Contact constraint 
equations 

Coulomb 3D friction 
model 

Stabilization 

 terms 

COMPLEMENTARITY! 

Reaction 
impulses 



Time Stepping -- Convex Relaxation 

  A modification (relaxation, to get convex QP with conic constraints): 

But In any case, 
converges to same 
MDI as unrelaxed 
scheme. 

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ] 

(For small m and/or 
small speeds, almost 
no one-step 
differences from the 
Coulomb theory) 



What does convergence mean here ? 
 Measure differential inclusion (Stewart 98) 



Convergence result. 

No Jamming ! 



What is physical meaning of the relaxation? 

 Origin 

 Behavior 



Further insight.  

 The key is the combination between relaxation and 
constraint stabilization. 

 If the time step is smaller than the variation in 
velocity then the gap function settles at  

 So the solution is the same as the original scheme 
for a slightly perturbed gap function. 



Cone complementarity 

  Aiming at a more compact formulation:  

           



Cone complementarity 

  Also define:  

  Then:      

becomes.. 

This is a CCP, 

CONE COMPLEMENTARITY  
PROBLEM 



The algorithm 

 Development of an efficient algorithm for fixed point iteration: 

   avoid temporary data, exploit sparsity. Never compute explicitly the N matrix! 

   implemented in incremental form. Compute only deltas of multipliers. 

   O(n) space requirements and   supports premature termination 



The algorithm is specialized, for minimum 
memory use! COM: Constraint <-> Body 

The rest “in place” per-body or per-constraint for Gauss-Jacobi  



GPU : The attraction. 

•  Your PC graphic board is a supercomputer (0.32TF, GT8800).  
•  5.7 TF: IBM BG/L $1,400K (2007) – NVIDIA Tesla $7K (2008) 



Parallel CCP on GPU: The 30,000 Feet 
Perspective 

 Relies on a Gauss-Jacobi iteration: the first step.  
 The GPU is viewed as a compute device that: 

–  Is a co-processor to the CPU or host 
–  Has its own DRAM (device memory) 
–  Runs many threads in parallel (30K) 

  Data-parallel portions (such as per-body “in-place”) of an application 
are executed on the device as kernels which run in parallel on many 
threads 

 Each simulation time step invokes multiple GPU calls 
–  For each of these calls, parallelism can be on a  
•  “Per body” basis (work is done on different bodies in parallel) 
•  “Per contact” basis (different contact events are processed in parallel) 

53 



GPU: The CCP Pre-Processing 

54 



GPU: The CCP Loop 

55 



PBNR: The pebble bed nuclear reactor 

 The PBNR nuclear reactor: 
- Fourth generation design 
- Inherently safe, by Doppler 
broadening of fission cross 
section 

- Helium cooled > 1000 °C 
- Can crack water (mass 
production 
of hydrogen) 

- Continuous cycling of 400,000+ 
graphite spheres in a pebble 
bed. 

- Question. Does it work *OK*? 

Granular  
flow 



Challenge: simulating PBNR 

 Generation IV nuclear reactor 
with continuously moving fuel.  

 Previous attempts: DEM methods 
on supercomputers at Sandia 
Labs regularization) 

 40 seconds of LAMMPS 
simulation for 440,000 pebbles 
needs 3 days on 64 processors 
dedicated cluster (Rycroft et al.) 

Simulations with DEM.  Bazant et al. (MIT and  Sandia laboratories). 



Validation 

 In our experience, time-stepping would not have 
worked at this number of particles without the convex 
relaxation. 

 Also, for performance, we need relatively large time 
steps.  

 Did we destroy the physics and the predictive power of 
the scheme?  

 We believe not, at least in the dense granular flow 
case. Evidence, based on particle statistics: 



Validation of convex relaxation time-
stepping: PBR (Tasora &A 09_) 



Validation: PBR: Packing statistics (Tasora & 
A, 09) 

 The reactor is not far from “random” jamming. (VF 0.6) 



Performance   

 Things are very much in flux, particularly due to 
appearance of GPU. 

 Subject (granular dynamics) is old, but there are no 
clear large scale computational benchmarks, since the 
concern was “Can one do it at all”.  

 Our focus has been porting to GPU and various 
applications, and parameter choices are far stable.  

 This makes much harder toe-to-toe comparison with 
smoothing methods, though for small configurations, 
time-stepping advantage is clear (see ADAMS). 

 Our experience (such as the PBR) suggest that we get, 
at least for GS, a factor of 50 reduction in effort due to 
the method for up to 1 mill particles, but we must test it 
for more and larger configurations.  



PBR: GPU performance (Negrut et al, 2009) 

 It scales, but we still need “time-to-solution” 
comparisons between the various methods.  



Some capabilities now available in our/your 
office: granular flow. 
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Smaller tests for algorithmic behavior 

  Example: size-segregation in shaker, with thousands of steel 
spheres 

Note: solution beyond 
reach of Lemke-type  LCP 
solvers! 



Tests: Feasibilitiy 

 Feasibility accuracy increases with number of iterations, method is 
consistent: 

Speed violation in constraints Position error in constraints (penetration) 

(with example of 300 spheres in shaker) 



Tests: Scalability 
 CPU effort per contact, since our contacts are the problem variables. 
 Penetration error was uniformly no larger than 0.2% of diameter.   

Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres 



Collision detection on the GPU 

 For granular dynamics, the number of force multipliers 
(x) is, in principle proportional to the square of the 
number of bodies. 1 trillion bodies -> 10^24 multipliers. 

 Collision detection is used to reduce the active set to 
the one of the multipliers of pairs of bodies that could 
be in contact – brute force still N^2.  

 A binning strategy is used to reduce the complexity 
(Negrut et al. 2009)..  



General: Theory 

We thus have an iterative and parallel-friendly algorithm. 



DVI and Painleve paradoxes 

 Unfortunately, there exist configurations for which no 
continuous solutions of the DVI will exist.  

 Such configurations are called Painleve paradoxes, 
and appear only when friction is present. (Baraff 91, 
Stewart 98). 

 We need weaker solution concepts. We use the one of 
measure differential inclusion (Stewart,98).  



Differential Variational Inequalities– why do 
it? 

 Contact Dynamics. 
–  Rigid-Bodies: Differential Operator is ODE. 
–  Deformable Bodies: Differential Operator is PDE. 
–  Granular Flow, Masonry Stability, Rock Dynamics… 

 Finance: Option Pricing-- American Options. PDE-
based. 

 See Luo, Pang et al, and Kinderlehrer and Stampacchia 
Monographs.. 



It is a hybrid system – where is the 
switching?  

 When bodies enter contact (collision, plastic in the 
previous formulation) 

 Stick-Slip transition. 



Simulating the PBR nuclear reactor 
  160’000 Uranium-Graphite 

spheres, 600’000 contacts on 
average 

  Two millions of primal 
variables, six millions of dual 
variables 

  1 CPU day on a single 
processor… 

 We estimate 3CPU days, 
compare with 150 CPU days 
for DEM (Rycroft, Grest, et 
al.)  !!! 



Examples 

  Example: size-segregation in shaker, with thousands of steel 
spheres 

Note: solution beyond 
reach of Lemke-type  LCP 
solvers! 



Tests 

 Feasibility accuracy increases with number of iterations: 

Speed violation in constraints Position error in constraints (penetration) 

(with example of 300 spheres in shaker) 



Tests: Scalability 
 CPU effort per contact, since our contacts are the problem variables. 
 Penetration error was uniformly no larger than 0.2% of diameter.   

Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres 



IBM BlueGene/L—GPU 
comparison 

  Entry model: 1024 dual core nodes 

  5.7 Tflop (compare to 0.5 Tflop for NVIDIA Tesla GPU) 

  Dedicated OS 

  Dedicated power management solution 

  Require dedicated IT support 

  Price (2007): $1.4 million 

  Same GPU power (2008): 7K!!! 



In addition, we can approach efficiently 
approach many engineering problems (see 
website for papers) 



Brick Wall Example… 

  Times reported are in seconds for one second long simulation 
  GPU: NVIDIA GeForce 8800 GTX 


