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Motivation: Hybrid Systems -- Dynamical
Systems with Complementarity Constraints

a complementary to b

B Complementarity Constraints A

0<aeR"1b20eR" & a
0<a,beR", aeb=0

—
b

B Some (all?) hybrid dynamical systems can be written as
DSCC with smooth constitutive functions

._{ F(x) g(x)<0 i = AF,(x)+ (1= DF,(x)

F(x) g(x)>0 — 0=g(x)—s,+5,:520Ls,>0

A>20L1ls 20, 1-4>20Ls,20

L AF@+(1-DEX) g@)=0; A€[0.1]
B Note: even existence is tricky (Stewart and A, 2010).




Hybrid Systems

B Motion of a large set of rigid
bodies.

B Dynamics of multicristalline
materials (e.g nuclear fuel).

B Nonlinear Model Predictive
Control for Energy Systems

B Porous Media Flow. B Generally appears any
B Mechanical Systems Design time dynamics and
-~ switching or inequality
""" constraints are
encountered




Further abstraction: DVI

B Differential variational inequalities (DVI, Stewart and
Pang, 03-08): Mixture of differential equations and
variational inequalities.

y = f(ty(t),z(t))
x(t) € SOL(K;F(ty(t),))
y(0) = o

r € SOL(K:F(t,y, )< (z —x2) ' F(t,y,2) > 0,Vz € K
® In the case of complementarity, K = R"

y = f(tyt),x(t))

0 < x(t); F(t,y(t),z(t))
0 = x(t)"F(t,y(t), z(t))
y(O) = Yo




Our general inquiry

B Does the DVI interpretation of hybrid systems offers
novel insights and more efficient numerical algorithms
for their simulation?




DVI: time-stepping methods

B Our target methodology are time stepping methods.

o= fLy(d), ()
z(t) € SOL(K;F(t y(t),)) ‘
y(O) = Yo

yh,(i—l—l) — i hf g{h,(z’—l—l)’ 01"+ (1 - Ql)yh,(z’—l—l)’xh,(i—kl))
2D e SOL(K; F(E0HY gyt 4 (1 — G)ym D 1))
y(0) = wo.

® Implicit in the VI variable, implicit-explicit in state, with
possible linearization of the structural functions f,F.

B Puts much of the computational effort on solving the VI
subproblem IF it can be solved.




Smoothing versus time-stepping

x=1(t,x(t).u(t))
m Recall, DVI (for C=R+) ™ 220 L F (t,x(t).u(t))2 0

x=f(tx().u(?));
u, F, (t,x(t),u (t))z g, i=12

B Smoothing

MﬁF(tn—l n-1 nl) e

® Followed by forward Euler._>

Easy to implement!! = +hf(t AU )

B Compare with the complexity X" =x"+hf (t"’“,x””,u”+l );
of time-stepping ————————jp
un+l 2 O J_ F (tn+1 , xn+1 ’un+l )Z O

B But does it give good results?




Example: rigid body motion

M Equations of motion: mixture of ordinary differential
equations and variational inequalities/complementarity
conditions.

Newton Equations Non-Penetration Constraints

+1.(q,v) +k(t,q,v)

Generalized Velocities

dt
cflj) > 0 L CI)(j)(q)zo, =27.,p

( ) 5”] = argmin [[th§”)[31+(th§”][32}
u<f)c,§f)z\/(/31<f)+/32(”)2

M= = Z ((1) <J)+ﬁ1(1>tu> ﬁ(” ;

dt j=1,2,...

B The VI in time-stepping has a solution (Anitescu and Hart,
04).




B ADAMS is the workhorse of
engineering dynamics.

B ADAMS/View Procedure for
simulating.

B Spheres: diameter of 60 mm
and a weight of 0.882 kg.

B Forces:smoothing with
stiffness of 1E5, force
exponent of 2.2, damping
coefficient of 10.0, and a
penetration depth of 0.1




ADAMS versus ChronoEngine

Table 2: Number of rigid bodies v. CPU time in ChronoEngine

Number of Spheres Max Number of Mutual | CPU time (seconds)
Table 1: Number of rigid bodies v. CPU time in ADAMS Contacts [-]
Number of Spheres Max Number of Mutual | CPU time (seconds) 1 1 0.70
Contacts [-] 2 3 0.73
! : o 4 14 0.73
4 14 775 8 44 0.76
3 44 2536 16 152 0.82
16 152 102.78 32 560 1.32
32 560 644.4 64 2144 2.65
The following graph shows the nonlinear increase in the CPU time as the number of 128 8384 6.17
colliding bodies increases. 236 33152 1530
CPU ti . Number of sph inCh Engi =0.0563x + 0.0446
CPU time v. Number of Spheres in ADAMS o aoaco 20007 1 154 Wme:¥. Number of sphores In ChronoEngine. 'y . 0'9‘;82
R® = 0.9985 18
700
16
600 / *
// 14 =
500 / 12 //
% 400 T 10 /
2 300 2 8 -
° 5}
55 6 /,/
/ L
100 2 / /
0 Ty ] -~ *
0 5 10 15 20 25 30 35 2
0 50 100 150 200 250 300
Number of Spheres [-]
Number of spheres []

Often, time stepping is more promising. We follow this direction.
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Very Large Scale DVI: granular materials (GM)

B GM: dense set of rigid particles:
second-most used material after
water (e.g pebble bed nuclear
reactor, coal gasification, etc).

M Despite centuries of study, there is
no satisfactory continuum theory
or hybrid theory.

M Difficulty: co-existing gas, liquid,
and solid phases.

B For predictive simulation, we must

use particle-by-particle simulation. 4 .0 particle simulation
B 1 m”*3 of sand: ~10*10 particles.




Convexification of the Subproblem

B Nevertheless, the available solver (Lemke, the only
one guaranteed to solve the cone-linearized
subproblem), starts to take extremely long times past
~1000s of granules (Anitescu and Hart 04)... and we
aim for 10710.

B The main difficulty: the time-stepping subproblem is not
convex (Anitescu and Hart 04 b).

® We proved (A, 06) that there is a time-stepping DVI
with convex subproblems that converge in the same
sense (measure differential inclusion).




Convex Subproblem: Conic Vi—- Conic
Complementarity Problem

B The convex constraint cone

N =DLM™'D¢
) r=DIM"1k + be

(@ )o(ow

i€ A(ql.€) 1€0n

M [t's polar cone

(@ ) @(@n)

i€ A(q.€)

ic0n

CCP: (Nye+r)e-_° L ~c€X




The Friction Cones and their Projectors

M The friction cone.

B The projection operator:

vi e A(q'V,€)

Y < Hin H-i = i
1
Yy < ——n IT, = {0,0,0}
Hi 1 "
"‘r‘- . /,l ; A}I
Y = HiYn N Yy > _Eﬁ,"n H-i,n, — W
l..'H'_ )
H-i,u - A}*ul IA‘ —
r‘,-
H'I',”L-‘ — An'.'l.' lli.fI\‘II'"n,

1




Large scale Cone Complementarity Problems

M For conic problems, the prevailing methods of current
Interest are interior-point approaches.

B Nevertheless, it is hard to deal with them iteratively and
even more so to implement them matrix-free.

M To our knowledge, matrix-free large-scale conic
complementarity problems (or conic optimization, for
that matter) have been rarely developed (except

perhaps Tseng and co-authors, but not tested on this
scale).

B We propose a methods for CCP, extension of
Mangasarian'’s algorithm for LCP.




Matrix-free method for CCP
(Nye+r)e =T 1L ~e.€7

B Use a fixed-point iteration (Gauss-Seidel-Jacobi), generalization of
Mangasarian’s algorithm for common complementarity to CONES

Y = NIy (" —wB" (NY +r+ K" (v —~7)) +(1 = \)~"

0 K2 Ki3 -+ K1,

’]1-[711 0 0 00 I\’Q:} I\’an

0 I 0 :
po| "}2]712 | 00 0 - Kap,




Convergence of iterative method for CCP

Al The matrix N of the problem (CCP) is symmetric and positive semi-
definite.

A2 There exists a positive number, o > 0 such that, at any iteration », »r =
0.1.2...., we have that B" = o/

A3 There exists a positive number. 7 > 0 such that, at any iteration », »r =

0.1.2...., we have that (" Tt —2")T ((/\W'B")_l + K" — l) (2"t —a") =

2
)’ ||.‘I."r+1 — .'I.'"'l 2 .

BTheorem (A & Tasora, in press): The method produces in absence of
jamming a bounded sequence which is convergent.




Simulating the PBR nuclear reactor

i
|

B 160’000 Uranium-Graphite
spheres, 600°000 contacts on
average

B One step: Two millions of
primal variables, six millions of
dual variables. 4000 0.01 ms
steps.

W 1 day on a Windows station;
shows linear performance.

B \We estimate (extrapolate) 3
CPU days, compare with 192
CPU days for smoothing
(DEM-LAMMPS) under-
resolved solution in 2006 !!!

AAAAAAAAAAAAAAAAAA



DVI: Convexification validation : Hopper
(Tasora & A 2009)

S L




Hopper experiment and simulation: Images
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Hopper Results: Velocity (Tasora &A 2009)

Profiles of vertical speeds
Or q
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©
£
>
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B Note that there are sphere measurement errors of 2%,

and particle-wall friction variations of 10% (reduced by
climate control).

B So we declare validation a success for convex method.




GPU implementation

M |t works: 1 million particles for 40 seconds in 4 hours
on a 2.66Ghs Intel GPU with a C1060 NVIDIA Tesla
GPU (about 30K managed/1000K executed threads).

o In 06, LAMMPS-DEM was doing 400K particles in 3
days on a 64 node cluster (but we switched to CUDA
before we can do MPI| comparison, capability only).

B Algorithmically, we need to substantiate our “about 50
times improvement is due to the algorithm”.

— With what smoothing settings do we run LAMMPS-
DEM? (since we are both underresolved)

— Which statistics do we consider? Etc.

— We have no doubt both methods will have a role.
B |n the pipeline: Multi GPU = (MPI + GPU?).




Some capabilities now available in your
office: Vehicle Design
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Extensions: Nonlinear Model Predictive
Control NLMPC (Zavala and A, 09)

B Parametric Optimization, such as Nonlinear Model
Predictive Control, is One Particular Case of DVI.

M Here, the VI are the optimality conditions of the
NLMPC parametric optimization problem.

min__. f(z,s), s.t.g(z,5)=0
yo = fyt),x(t)) s =1
z(t) € SOL(K;F(t,y(t),-)) x(t) € SOL(K; F(t,s,))
= Yo 5(0)=0
B Extension from DVI. Time-stepping, which solves one

linear VI per step inexactly, converges to the NLMPC
solution. Important for real-time implementation.

B Also solved by projected Gauss-Seidel (and Aug Lag).




Real-Time NLMPC as DVI

Applications:
- Data Assimilation, Model Predictive Control, Dynamic Games

- Weather Forecasting, Power Flow Control, Buildings Control, Energy Management, ...

u(g)“?(t) /tt_l_T @ (2(7), y(7),u(7),n(t)) dr

Ss.t. ;l—j = £(2(1),y(r),u(r),n(t)) Discretizati(i ;2[)? f($777(t))
O g(z(7),y(7),u(r),n(t)) s.t. c(xz,n(t)) =0

0 > h(z(7),y(7),u(r),n(t))

DAE-Constrained Optimization Parametric NLP

B Our framework ensures that the system can stay stable even
as the quadratic approximation is solved matrix free !
(inexactly) --- see Victor Zavala’s poster.



NLMPC -- High performance computing; solving the QP.

= strong scaling is investigated

* Almost linear scaling ... sometimes, see Cosmin’s talk

= Unit commitment

* Relaxation solved

12.5 4
) Fd
* Largest instance .
7.5}
=
g
12 x £ -
3 -
— — — Linear scaling
| | | l 1.5} —_— DSC
-92 -91 o[90 -89 -88 -g87 1301 20240 400 600 1,000
ongitude W # Cores
. _ on Fusion @
* 28.9 millions variables Argonne

* 1000 cores

26



Conclusions and future work.

M DVI represents a set of challenging problems, including
granular dynamics and NLMPC

B Time-stepping promises performance, stability and
predictive power for granular dynamics.

B Convexification was validated and opens the road for
HPC for Cone CP in time-stepping.

® \We defined a new algorithm for CCP for use in time-
stepping for DVI tested on 1 mill particles.

M Future: Multi-GPU, other physics, NLMPC on GPU?




Challenges and Open Questions.

M For large scale granular flow, can one solve the
subproblem in O(N) (multigrid)?

M Existence and uniqueness of the DVI? (Note that
convexification is validated)

B Does the DVI formulation allow unrealistic or
undesirable artifacts (Zeno phenomena, Pang et al.)
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Numerical Case Study

Control of Chemical Reactor

Set-Point Closed-Loop Transitions
u ( t ) Product A
Cooling =T ( t )
System Product B
Time t

Zc (t ) Reactant Concentration

zT (t) Temperature

Optimal Contyeli®Problem
D / L

t+T
min | (wT<zT—zT>2+wc<zo—z P2+ w(u — u)?)
u\T

dzc 20 — </ Tlme-Dependent Parameters

s.t. - Ly kozoexp | — ~Fa ,  2¢(0)
dr 0
f
d _
T ST AT pozoexp | ——2| + au(zp — zr"),  2r(0)
dT 7] zT

gzn < ZC < Zmaa:

, Tzn i 1 I Zmaw’ umzn S ) S umaw. -




Numerical Case Study

Numerical Tests
N; = 25, p= 100

Do, to) ~ O(103
/T(WO 0) (107)

102 | bl
10 — — At=0.125 []
0 -— - At=0.050
10 — At=0.010 H
T(U_Jh t) _2 _ |
Residual =
10_4 o
10_6 I :
0 20 40 60 80 100 120 140

Time t

Sampling Time Restricted by PGS Iterations, Warm-Smart Helps




Numerical Study: Polymerization Reactor NLMPC

Numerical Tests
- Compare Against Smoothing Heath, 2004, Ohtsuka, 2004

1) n-log(x — ™) 4 - log (2™ — ) 2) p-sart(x — ™) gy - sqrt(z™eT — )
~npgg = 25, At = 0.025, p = 100

I I / L~ e T e

10 i T NI NP LG w’li\‘ﬂ\/\/ .L ,,‘_,kV) }To.&»\-,‘&;_»_, — Sqrt Barrier F
— = Log Barrier
10° - | — Auglag
10 b
r(We, ) 10° e— r(w¢,,tg) = O(10<) o S
Residual 10° . —=Set-Point Change | -
esiaua : .
107} ‘ -
10_6_ | I |
0 20 40 60 80 100 120 140

Time ¢

Smoothing is Numerically Unstable




Thermal management of buildings (Zavala et al., 09)

Minimize Annual Heating and Cooling Costs
) [N [CEee®) + CnDen(o)

aTy

Cr5- = en(1) = @e(r) = 8-’ - (Ty(1) — Ty (7,0))
OTw _ ,6_82TW
or Ox2
o (T1(7) = Ty (r0) = kT
o (T D) = Ta()) = k- Y| Energy Balances
T;(0) = Tf
Tw(0,2) = Tiy(z)
NLP with 100,000 Constraints & 20,000 Degrees of
Freedom
Time-Varying Electricity Prices and Temperature
£ | Results in 20-80%
i | reduction in energy
2 ol | LAY costs.

0 50 700 150 200 250 300 _ 350
Time [Days]




Granular materials: applications

B Important? The second-most manipulated material in
industry after water (Richard, Nature Materials 2005).

B Applications range from pharmaceutical, food, powders,
petrochemical, nuclear, automotive, and semiconductor
industries up to geological granular flows — some
examples later.

B Two perhaps non-intuitive but crucial energy
applications.

— Circulating granular catalysts in refineries.
— Fluidized bed coal gasification (“clean coal”).




Granular materials: Challenges

B The absence of a continuum theory makes particle-by-particle
computational approaches the only general first principles
computing approach.

B 1 m”3 of sand: ~1 trillion granules. Enormous ... but just about
within reach.

M |n addition, the source of many open or difficult questions.

— Is there a “random” close packing of spherical particles? (A
maximum volume fraction of a random sphere population,
Torquato et al., 2000). Postulated at ~0.636. Jamming.

— Nothing is known of the same when there is friction.

— The Kepler conjecture, proven in the last decade: in the
deterministic case, the maximum space-filling volume
fraction is the one of the cannonball arrangement: 0.7405




Are all interesting DVI problems over R+? No.

B Conic Complementarity IS NATURAL in granular dynamics (and MD).
B Coulomb model.

( 1(’ ), 2“ ) jZargmin

Vi B (VA" B, |

u(f)c;f)z\/(ﬁl(”+ﬁ2(” )2 |:(

L N e R D =Ny
[ Y 2 )
(o) ,u(]) (thl(’)) +(sz‘§’))
B ek L vt c K
\ % ) e
\ )

B Most previous time-stepping discretize friction cone to use LCP...
B Can we accommodate non-R+ cones naturally?




Other applications of DVI:

B Physics-based virtual reality.
B Automotive design

B Dynamics of multicristalline
materials: evolution of the
boundary between phases.

B Porous Media Flow.

B Generally appears any time
dynamics and “switching” is
encountered (e.g. your
gearbox).




Our Inquiry

B Can we efficiently simulate large-scale DVI, particularly
granular dynamics, while being truthful to the physics of
the respective applications?

B Granular flow best illustrates the difficulties, but many
results and techniques extend to general DVI (NLMPC).




Content

® Solving DVI
— Smoothing versus hard constraints
— Time Stepping
— Nonconvexity -- Convex Approximation
— Some Theory
M lterative Algorithms for the time-stepping subproblem.
B Results
— Validation.
— GPU implementation
— Application Examples
B Extension to NLMPC — parametric Optimization
B Open problems/extensions.

AAAAAAAAAAAAAAAAAA -




Short history and taxonomy of no-smoothing-
methods in granular dynamics.

B Piecewise DAE (Haug, 86)
— Plus : Uses well understood DAE technology

— Minus: The density of switches, switching consistency, and
Painleve (discontinuous velocity) are problems.

B Acceleration-force time-stepping (Glocker & Pfeiffer, 1992, Pang &
Trinkle, 1995). Piecewise DAE + complementarity for switching.

— Plus: No consistency problem.
— Minus: Density of switches and Painleve.

® Velocity-impulse time-stepping. (Moreau, 196*, Stewart and
Trinkle, 1996, A & Potra, 1997). Weak convergence: MDI

— Plus: No consistency, or Painleve. Some have fixed time
stepping (Moreau, 198*, Anitescu & Hart 04, Anitescu, 06).

— Minus: Nonzero restitution coefficient is tough—but its value is
disputable in any case




Time-stepping scheme

B Write an implicit-explicit scheme AS IF Painleve paradoxes
do not exist.

B We use linearization (Anitescu and Hart, 04) NOT index
reduction : results in constraint stabilization.




Time stepping scheme -- original

B A measure differential inclusion solution can be obtained by time-stepping
(Stewart, 1998, Anitescu, 2006): *PEC (approximated by LCP)

M(z+1) _ol) = Z (,D;;‘,, + Di; + D;{,) +
i€ A(qD e)
Speeds ". = [ [ [ _Reacltion
- ) TR )
i€un
— . O
h ot
0< }lq)i(q(l)) FRVZTAPRIESY (
1
Loy, 20, i€ A" e
; ; . (1) COMPLEMENTARITY!
( fus | -v) — arginiin pivyi Z\/ (vi )2+ (~i)2 (S A(q 76)
v (7D, +7.D))] (
q(l+1) _ q(l) 4+ h,v(l—i—l)? (




Time Stepping -- Convex Relaxation

B A modification (relaxation, to get convex QP with conic constraints):

M@ —o)y = 3 (D, +7.D, +7.D.) + (For small m and/or
i€ A(qV) e)
,(q ) O D D small speeds, almost
+ > (V) +hf, (1 .q" 0 0) ( no one-step
1€G :
| € - differences from the
p T - .
0— E\pz(qm) + VP Ut 4 - 1€ Gs Coulomb theory)
0< %df’"(q(”) + VD D) [ (DT 0)? 4 (D )2 }
i (1)
L 7,20, i€ Ag" ¢ But In any case,

converges to same
MDI as unrelaxed
scheme.

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ]




What does convergence mean here ?

B Measure differential inclusion (Stewart 98)

M~ fulq,v) ~ klt,,0) € FO).

Definition If v is a measure and K (-) is a convex-set valued mapping, we
say that v satisfies the differential inclusions

if, for all continuous ¢ > 0 with compact support, not identically 0, we
have that

[ o(t)v(dt)

Jo@dt s




Convergence result.

H1 The functions n)(q), tgj ) (q), téj )(q) are smooth and globally
Lipschitz, and they are bounded in the 2-norm.

H2 The mass matrix M i1s positive definite.

H3 The external force increases at most linearly with the velocity and
position.

H(éL The uniform pointed friction cone assumption holds. No Jamming !

Then there exists a subsequence hy — 0 where
o ¢"*(.) — ¢(-) uniformly.
o v () — v(-) pointwise a.e.

o dv"(.) — dv(-) weak * as Borel measures. in [0,T], and every such
subsequence converges to a solution (¢(-), v(+)) of MDIL.




What is physical meaning of the relaxation?

® Origin

B Behavior

= |
s =~ Optimization method
By,
25 4
.,
()
2t K"ik
’%%
=15 ﬁf*
Q‘”
€
%H
T &
®
%
®
®
&
05t %
=
)
%
&
&
o L L X ——
0 05 15 2 25 3
X
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Comparison between methods
T T

x10° LGP algorithm versus optimization based algorithm
T T T T
= LGP method
=~ Qptimization method




Further insight.

B The key is the combination between relaxation and
constraint stabilization.

0< %(D(j) (qm ) + qu)m (qa) )v(”” e (fov)z + (Dj’fv)z

M If the time step is smaller than the variation in
velocity then the gap function settles at

1 ' ' t t
0 ~ Z(D(]) (q(l) )_‘u(J)\/(DLZl, V)2 4 Dé’ v)2

M So the solution is the same as the original scheme
for a slightly perturbed gap function.




Cone complementarity

B Aiming at a more compact formulation:

_ . 1.
b = {lD”,O‘O.}l(I)’?.O.O.....I—<I>’"A.0.O}

h 2 2
_ A‘Ill A“il Ail A,I.Q AI.:) Ajf-) ,«I.”.,-‘l AI‘,IA A‘]‘HA
7.,4 —_— ,‘” . l'll . l'l‘ - ’l” - I'll - f'l' PRI " n - I' u - I’ v
1., owl 1_ . 0Ow? 1 Owns
by = Pl D — e
h ot h ot h ot
2 N
7[5 - by IThs«= s 'b }

Dy = [D"|D"?|...|D""a], i€ A(q',e) D'=|[D;|D,|D,]
WDy = [VUVI2|. . |[VIns], icGg be € R™ — {b4, bis)

Ve € R" = {v 4, v5}

De = [D4|Djg]




Cone complementarity

B Also define:
(1
k( ) — Mo & hft(t([)- q(l)’ U(l))
N=DLM'D¢

r=DLM "k + be

B Then:

This is a CCP,
CONE COMPLEMENTARITY

PROBLEM

(Nye+7r)e =T° 1L ~eeX

becomes..




The algorithm

mDevelopment of an efficient algorithm for fixed point iteration:

[v] . j -th variable data
g ||b

[ 1.1 7] e=[E:.]
(| s = [MJ[E L) i -th constraint data
gy Obk Od Og

B avoid temporary data, exploit sparsity. Never compute explicitly the N matrix!

B implemented in incremental form. Compute only deltas of multipliers.

B O(n) space requirements and supports premature termination




The algorithm is specialized, for minimum
memory use!

(1) // Pre-compute some data for friction constraints (21) // Mn iteration logp
(2) for i:=1tona (22) r7:=0to rpar
(3) s, =M~'D’ (23) // Loop on frictipnal conXraints
(4) 9o = Dl’Tffz (24 for i :=1to ny
) e = Tracete %) 5.7 = (7" | wni (DVTw" +8,));
(6) // Pre-compute some data for bilateral constraints [ P41 i i
(7) for i :=1 to ng 26) Ya = Alljr (60 ) + (1 =A)va
(8) s = M-IV (27) Ay = A

i iT i . i
(%) g = VIS (28) vi= v+ sl Ay
(10) = 97 (29) // Loop on bilateral constraints
(11) (30) for i :=1 to ng
(12) // Initialize impulses 31 50T = (A5 — ont (VST b))
(13) if warm start with initial guess ¢ (31) 1; 1 ( b ‘)?b,( +.i fl))) ’
514; 1 V2 = (32) W= ALy (+o{, )+ @@=
15 else o Ltr+l a4l A
(16) 72 -0 (33) A b _j‘ib ; 7‘+1"b ’
(17) (34) vi=v+s; Ay
(18) // Initialize speeds ~ (35)
(19)  v=3T"A s+ 2T+ Mk (36) return vg, v
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GPU : The attraction.

Floating Point Operations per Second for the CPU and GPU

350 ~
G80

G80 = GeForce 8800 GTX
300 A G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX
NV40 = GeForce 6800 Ultra
NV35 = GeForce FX 5950 Ultra G71
250 7 |NV30 = GeForce FX 5800

G70-512

200 G70

» i

o —+—Intel CPU

o

i

O 150 | —-—(I\:Ij\éIBIA GeForce
100 -

NV40 Intel Core2 Duo 3.0 GHz

\
/

Jan-03  Jul-03 Feb-04 Aug-04 Mar-05 Sep-05 Apr-06 Nov-06

50 -

&
A

* Your PC graphic board is a supercomputer (0.32TF, GT8800).
« 5.7 TF: IBM BG/L $1,400K (2007) — NVIDIA Tesla $7K (2008)




Parallel CCP on GPU: The 30,000 Feet
Perspective

B Relies on a Gauss-Jacobi iteration: the first step.

B The GPU is viewed as a compute device that:
— Is a co-processor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel (30K)

W Data-parallel portions (such as per-body “in-place™) of an application
are executed on the device as kernels which run in parallel on many
threads

B Each simulation time step invokes multiple GPU calls

— For each of these calls, parallelism can be on a

» “Per body” basis (work is done on different bodies in parallel)
» “Per contact” basis (different contact events are processed in parallel)




GPU: The CCP Pre-Processing

1. (GPU, body-parallel) Force kernel. For each body, compute applied
external forces f(tV), q(V, v()) (for example, gravitational and gyroscopic
forces). Produce the force F; and the torque C; acting at CM of each

body j.

2. (GPU, contact-parallel) Contact preprocessing kernel. For each con-

tact ¢, given contact normal and position, compute in-place the matrices
DT D! and D! . and the contact residual b; = {%@i(q), 0,0}7.

1,VA 7 7,W A 1,wB’

3. (GPU, body-parallel) Velocity Initialization kernel. For each body 7,
initialize body velocity corrections: AFTY — g mj_le and Aw§l+1) _
hJ7'C;.

J




GPU: The CCP Loop

4.

(GPU, contact-parallel) CCP iteration kernel. For each contact ¢, do
vt = X\ My, (7" —wn; (Dv"+b;)) + (1 — Ay, Store AfyrH =

i +1 — 77 in contact buffer. Compute updates to the velocities of the two
connected bodies A and B (like Ar( = _1DZ oA AT Aw UH)

J AlDZ v, AT, and store them in the reduction buffer.

. (GPU, reduction-slot-parallel]) Run body-velocity reduction kernel.

. (GPU, body-parallel) Body velocity updates kernel. For each j body,

(1+1) _ r(l) JFAr(z+1) (1+1) _

add the cumulative velocity updates: r; and w;

(1) (I+1)
w; + Aw w; )

Repeat from step 4 until convergence or until number of CCP iterations
reached r > 7,44

. (GPU, body-parallel) Time integration kernel. For each j body, per-

form time integration as q( T = qjl) + hL(q (l))v§l+1)

. (CPU, serial) If post processing required, fetch body data structures and

contact multipliers from GPU memory to host memory.




PBNR: The pebble bed nuclear reactor

B
BThe PBNR nuclear reactor: T
-Fourth generation design T

_% H ':Ld\

-Inherently safe, by Doppler
broadening of fission cross

section ;
-Helium cooled > 1000 °C GJ‘TIEW' g
-Can crack water (mass =

production = N

of hydrogen) - 1 (b
-Continuous cycling of 400,000+ % }/
graphite spheres in a pebble L c;rbide

bed . porous buffer

pyrocarbon

-Question. Does it work *OK*?




Challenge: simulating PBNR

B Generation IV nuclear reactor
with continuously moving fuel.

M Previous attempts: DEM methods
on supercomputers at Sandia
Labs regularization)

M 40 seconds of LAMMPS
simulation for 440,000 pebbles
needs 3 days on 64 processors
dedicated cluster (Rycroft et al.)

model a frictionless wall, ,=0.0. For the current simula-
tions we set /cz:%k?1 and choose k,=2x10° gm/d. While
this is significantly less than would be realistic for graphite
pebbles, where we expect k,>10% gm/d, such a spring
constant would be prohibitively computationally expensive,
as the time step scales as &fock; " for collisions to be mod-
eled effectively. Previous simulations have shown that




Validation

M |[n our experience, time-stepping would not have
worked at this number of particles without the convex
relaxation.

B Also, for performance, we need relatively large time
steps.

B Did we destroy the physics and the predictive power of
the scheme?

B \We believe not, at least in the dense granular flow
case. Evidence, based on particle statistics:




Validation of convex relaxation time-
stepping: PBR (Tasora &A 09
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Validation: PBR: Packing statistics (Tasora &
A, 09)

Porosity:
0.8
---------- Porosity at Y=0.833333
0.7 - Porosity at Y=4.5
T DEM comparison at Y=0.84
0.6
2
8 05
o
o
i, N
0.4 ==SrtEmr s s T S ane. .:,:,.:-.__:_;'_.:':_‘_:_‘_j}j_:.h‘ﬁ-.-;_-_:=._,":_.-_-:t_-..,.gr_\_l_y'
0.3
0.2"- : : : : : : — :
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Radius [m]

B The reactor is not far from “random” jamming. (VF 0.6)




Performance

B Things are very much in flux, particularly due to
appearance of GPU.

B Subject (granular dynamics) is old, but there are no
clear large scale computational benchmarks, since the
concern was “Can one do it at all”.

B Our focus has been porting to GPU and various
applications, and parameter choices are far stable.

B This makes much harder toe-to-toe comparison with
smoothing methods, though for small configurations,
time-stepping advantage is clear (see ADAMS).

B Our experience (such as the PBR) suggest that we get,
at least for GS, a factor of 50 reduction in effort due to
the method for up to 1 mill particles, but we must test it
for more and larger configurations.




PBR: GPU performance (Negrut et al, 2009)

120.0
® CPU y = 0.0009x - 2.622
R?=0.99928
100.0 A " GPU
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=
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40.0
20.0 A y = 6E-05x - 0.1413
R?=0.99686
B
e
0.0 = — = T - . r
0 20000 40000 60000 80000 100000 120000 140000
Number of Bodies

M |t scales, but we still need “time-to-solution”
comparisons between the various methods.




Some capabilities now available in our/your
office: granular flow.
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Smaller tests for algorithmic behavior

B Example: size-segregation in shaker, with thousands of steel
spheres

Note: solution beyond
reach of Lemke-type LCP
solvers!




Tests: Feasibilitiy

MFeasibility accuracy increases with number of iterations, method is

consistent:
0 0.003 = I I T I
. ! I P 1 I 5 E max iterations = 80
max iterations = 80 : : max iterations = 40 —-—-—
075 R max iterations =40 —---- _ 0.0025 =-----o--i- Max iterations =20 ------- -
e B max iterations =20 ------ : : max iterations = '1'0 _____________
max iterations = 10 - : : ; : : ;
02 R T S X B e i Mt ey
o 015 = & 00015 e B e
0.1 _— 0.001 f=--stst -+ ceepeeseees e
HBE A G g
d : RS
B R T AR
A S U S S
0 50 100 150 200 250 300
time steps tme steps
Speed violation in constraints Position error in constraints (penetration)

(with example of 300 spheres in shaker)
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Number of contacts

Tests: Scalability

BCPU effort per contact, since our contacts are the problem variables.
BMPenetration error was uniformly no larger than 0.2% of diameter.

1400 , : . I . 08

Potential contact points

1200 Active contact points — . 0.7

04
03

02 -

average CPU time [s] per step

0.1 -

05

I - l
200 | | | | | 0

0 50 100 150 200 250 300 0 2000 4000 6000 8000 10000 12000 14000

time steps

Number of contacts in time, 300 spheres

number of contacts

CPU time per step for 300-1500 spheres




Collision detection on the GPU

B For granular dynamics, the number of force multipliers
(x) is, in principle proportional to the square of the
number of bodies. 1 trillion bodies -> 10724 multipliers.

y o= fy(h), z(t))
z(t) € SOL(K; F(t,y(t),"))

Yo

B Collision detection is used to reduce the active set to
the one of the multipliers of pairs of bodies that could
be in contact — brute force still N*2.

H A binning strategy is used to reduce the complexity
Negrut et al. 2009)..




General: Theory

min f(z) = 12" Nz +rTx

(0C) st. x; €Y, 1 =1,2,...,n.

Theorem Assume that 2 € T and that the sequences of matrices B” and
K" are bounded. Then we have that

f(xr-l-l) ~ e < -8 er+1 _ erQ

for any iteration index r, and any accumulation point of the sequence z" is a

solution of (CCP).

Corollary Assume that the friction cone of the configuration is pointed The
algorithm produces a bounded sequence, and any accumulation point results
in the same velocity solution

We thus have an iterative and parallel-friendly algorithm.




DVI and Painleve paradoxes

B Unfortunately, there exist configurations for which no
continuous solutions of the DVI will exist.

y = fy(),x(t))
z(t) € SOL(K; F(t,y(t),"))

Yo

B Such configurations are called Painleve paradoxes,
and appear only when friction is present. (Baraff 91,
Stewart 98).

B \We need weaker solution concepts. We use the one of
measure differential inclusion (Stewart,98).




Differential Variational Inequalities— why do
it?

B Contact Dynamics.
— Rigid-Bodies: Differential Operator is ODE.
— Deformable Bodies: Differential Operator is PDE.
— Granular Flow, Masonry Stability, Rock Dynamics...

B Finance: Option Pricing-- American Options. PDE-
based.

B See Luo, Pang et al, and Kinderlehrer and Stampacchia
Monographs..




It is a hybrid system — where is the
switching?

B When bodies enter contact (collision, plastic in the
previous formulation)

B Stick-Slip transition.




Simulating the PBR nuclear reactor

B 160°000 Uranium-Graphite
spheres, 600°000 contacts on
average

B Two millions of primal
variables, six millions of dual
variables

B 71 CPU day on a single
processor...

B We estimate 3CPU days,
compare with 150 CPU days
for DEM (Rycroft, Grest, et
al.) M

AAAAAAAAAAAAAAAAAA



Examples

B Example: size-segregation in shaker, with thousands of steel
spheres

Note: solution beyond
reach of Lemke-type LCP
solvers!




Tests

M Feasibility accuracy increases with number of iterations:

0.3 0.003 = T T T T
. ! I b 1 | z E max iterations = 80
& ! max iterations = 80 : max iterations =40 - -~
025 b=t max iterations =40 ——--- 0.0025 f=--------i- max iterations = 20 ---- - - -
25 [=p---ieeeteee- ax iterations = 20 - - - - - - - : t oot o1
max lerations =20 --- -+ ) maxitemtions =10
= IS g | | | |
I~ i< ) ) 5 i e e e e e
< 01 q = P T e
0.001 : -~
0.0005 e
0 50 100 150 200 250 300
time steps time steps
Speed violation in constraints Position error in constraints (penetration)

(with example of 300 spheres in shaker)
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Number of contacts

Tests: Scalability

BCPU effort per contact, since our contacts are the problem variables.
BMPenetration error was uniformly no larger than 0.2% of diameter.

1400 , : . I . 08

Potential contact points

1200 Active contact points — . 0.7
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0.1 -

05
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0 50 100 150 200 250 300 0 2000 4000 6000 8000 10000 12000 14000

time steps

Number of contacts in time, 300 spheres

number of contacts

CPU time per step for 300-1500 spheres




IBM BlueGene/L—GPU
comparison

B Entry model: 1024 dual core nodes

W 5.7 Tflop (compare to 0.5 Tflop for NVIDIA Tesla GPU)
B Dedicated OS

B Dedicated power management solution

B Require dedicated IT support

B Price (2007): $1.4 million

B Same GPU power (2008): 7K!!!




In addition, we can approach efficiently
approach many engineering problems (see
website for papers)




Brick Wall Example...

B Times reported are in seconds for one second long simulation
B GPU: NVIDIA GeForce 8800 GTX

THE UNIVERSITY

WISCONSIN

M AUVINON BriCkS

Sequential Version GPU Co-processing

Version
1000 43 6
2000 87 10

8000 319 42




