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Uncertainty Quantification

B Uncertainty analysis of model predictions: given data about uncertainty parameters
P . — .
U € RP 3nd a code that creates output fromit Y = f(u)characterlze V.

B End-goal management under uncertainty: Choose the decision variables in a way that chooses
the optimal outcome while accounting for the uncertainty.

U Challenge one: create model for U € RP from data. It does not need to be probabilistic (see
Helton and Oberkampf RESS special issue) but it tends to be. What is the statistical model*?

O Challenge two: uncertainty propagation. Since Jis expensive to compute, we cannot expect to
compute a statistic of y very accurately from direct simulations alone (and there is also curse of
dimensionality; exponential growth of effort with dimension). How do | propagate the model if
the code is very computationally intensive?

L Challenge three: design under uncertainty. How do | compute the best decision for systems with
a large number of states AND a high-dimensional uncertainty space?



Uncertainty Propagation at Higher End of
Computational Scale

High performance computing techniques, and modern approaches to complex physical and
engineering research lead to the use of complex simulation models. At higher resolution scale,
they require very large computing times even on advanced architectures.

In general, analysis of a model that barely fits the available hardware, may exceed the available
computational power.

We can rely only on techniques that admit a very small number of model runs.

We must do better than brute-force sampling, since statistics of quantities of interest (such as
qguantiles) are unlikely to converge in small number of model runs.

We study the ability of Gradient Enhanced Universal Kriging Model to provide accurate
uncertainty quantification based out of very few samples.

We rely on :

Capability of the model to also output derivative information
Expectation that the response is smooth on the scale of interest.
Gaussian Processes to quantify propagation uncertainty.



Problem Statement




Setup

B Given a “big code” computational model with
F(T,R)=0 J=JT)
R(T,00)=R,(T)-(1+AR(T ,t))

B Where:

W Statevariables: T =(7,.T,,....T,)
Input Parameters R =(R},R,,...,Ry)
Uncertainties AR =(AR,,AR,,...,ARy)
Uncertainty Parameters: o = (¢, Q5,...,0,,)

Output Functional of Interest: S3()=J(T())
Solving Code o —=>T(a)— J(T(at)) where F(T(o),R(T(cx)))=0

B Problem: given a probabilistic distribution for O determine a statistic of interest for J(T(OC))

N N
B Typical answer: brute-force sampling: produce, for a large N, {Otl- }izl ~0= {S(Oli )},_1 ~ S(OC)
and compute the intended statistic. u

M [tis folly here, for “big code”: the time to compute S(OC) is large.
B We must do better use of the information.



Modeling Uncertainty Propagation

= |dea: use the few samples to model the system response.

= Ansatz: system response is “smooth” so maybe | can get by with a limited number
of samples.

= But since | do uncertainty quantification, | must model the error | am making.

=  Possible approaches:
—  Use sensitivity approach ~ 3(a) ~ 3(at, )+ V,3(t, ) — 0ty ) + ...
With adjoints, O(1) “big code” runs, but large bias, and error hard to model.

— Use L2 regression S(a) - Z a Y, (a) . Robust and least subject to curse of
dimensionality, but introduce? bias whose error model is hard to gauge.

~ UseKriging. 3(ct)~GP(0,k(cr,t';0)); f”s(oc)~GP(O,k(oc,oc‘;6’))\{3(06,-)}],v _The

bias goes to 0 under some conditions, but it is an interpolation, so subject to COD.

= But... whatif we use all 3? Gradient-enhanced universal Kriging (GEUK).

Hopefully, small exposure to COD (as regression), small/reducible bias as Kriging
efficient use of information (as sensitivity).



Preview of the method

(A) First-order gradient information on the model

PLUS

(B) Polynomial mean function

PLUS

(C) Uncertainty Propagation Model using Gaussian Processes, Kriging

Gradient-Enhanced Universal (non-constant mean function) Kriging, GEUK



Gaussian Processes approach, technical details:

B We assume that the response of the system can be represented as a Gaussian process with explicit mean
function and specified covariance function governed by a set of parameters (hyperparameters):

3(x)=N(R(x)a,K(x,x;0))
B Covariance matrix with derivative information is given by a block form:
cov[J,J] cov[J,VJ]
cov[VJ,J] cov[VJ,VJ]
B Regression parameters are computed as a = (‘PTK_I‘P)‘PTK_IY

or a=@ETK'H) -H'K™ Y, with HZ(‘P) Y:(‘]]

K=COV[Y,Y]:(

V¥ vJ

B The mean and variance of the model are now predicted as

ulJ]=Cov(Y,.Y.)) W)K'Y+R(x)a

+ ROETKH) R(x)T

var[J]=cov(S,S)— (COV(YI-,:, Y:,j) W) K. (COV(};'I;a Y,])]

B We now need to assume a functional form of the covariance function. Many options are available.
According to Kriging approach, covariance is a function of distance between two points.

B For example: squared exponential form: ¢_g ¥
cov(Si,S_l.;G):exp —( ig ’}

iy

-



How to compute the covariance of the derivative
information

= First, the covariance function must support differentiable realizations. We will
consider here only stationary covariance functions.

k(x,x)Y=k(x—x")
= The covariance function (of a stationary process) must be differentiable at 0 twice
as many times as the realizations.

= E.g: The process is twice differentiable everywhere =2 the covariance function
must be four times differentiable at 0.

= For first-order derivative:

’ 2
cov(y,y')zk(x,x') cov[ﬂ,y’]=ik(x,x') COV( 9y 9 j— J k(x,x".

ox, ox, ox, ox; ) ox,ox
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Gaussian Processes approach, technical details:

B With the functional form of covariance specified, the hyperparameters 0 are determined by maximizing
the marginal likelihood function for the data. The logarithm of the likelihood is given by:

| 1

log(p(J|S;6) = —EYTK_1Y+EYTK_IH(HTK_lH)_lHTKY—%log\K\ —%log(Zn')

B The optimization is carried out using standard tools (L-BFGS + active set algorithm).

B Computationally expensive parts of GP process: inverse of the covariance matrix, optimization problem,
and very high resolution sampling. No part of the GP process scales at high resolution in current
implementations, due to reliance on explicit, dense Cholesky.

B Both can be accelerated in future work:

B Cholesky of covariance matrix, matrix- calculation of Q*0.5*N(0,l) (Chen, Anitescu, Saad, to appear
in SISC) — not really attacked before.

B Better optimization solver?

B Butin current setup, expensive part is still sampling the code.



How do | choose the polynomials that represent the
mean function?

= The basis spanning the mean function space has to have a reasonably small set of
elements.

= Functional form: R(x)a= Zak‘/’k(x)

k=1,K
= Here, {l//k(X)}szl is a set of independent polynomials.

= How do | choose it? Oleg will tell you more about it.
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How do | choose the covariance function?

¢ Squared Exponential:
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= Covariance functions must be “positive definite”.

= The square exponential is one of the most used in machine learning, but also
assumes the underlying process is very smooth, which may make the error
estimate completely unreliable.

= The Matern function is one of the most robust, for the derivative-free case and
it has controllable smoothness.
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How do | choose the covariance function Il.

¢ Cubic Spline 1:

115|255 ® 130 Bl for 0< B < 0.2
ki(ws =) = 1125 (1 - | 252 )3 for 0.2 < | 255 < 1
0 for %o;tm’ 2l
¢ Cubic Spline 2:
16|25 g mo " Forlis o] <05
ki(z — 27) = 2(1— B )3 for 0.5 < | %72 | < 1
0 for 9%9;@% =1

All the previous kernel functions result in DENSE matrices which may be a problem
if I need to sample at many points.

Cubic spline functions are examples of compact Kernels, with sparse covariance

matrices that can be more easy to manipulate (e.g Cholesky, which is needed in max
likelihood and sampling, may be doable)..
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Uncertainty quantification, subject models

B Model I. Matlab prototype code: a steady-state 3-dimensional
finite-volume model of the reactor core, taking into account heat
transport and neutronic diffusion. Parameters with uncertainty are
the material properties: heat conductivity, specific coolant heat,
heat transfer coefficient, and neutronic parameters: fission,
scattering, and absorbtion-removal cross-sections. Chemical

non-homogenuity between fuel pins can be taken into account.
Available experimental data is parameterized by 12-66 quantifiers.

STEAM GENERATOR

B Model ll. MATWS, a functional subset of an industrial complexity
code SAS4A/SASSYS-1: point kinetics module with a representation

of heat removal system. >10,000 lines of Fortran 77, sparsely e

ZI2
documented. \ 4

| STRUCTURE
MATWS was used, in combination with a simulation tool Goldsim, N

UPPER UIS-CP
to model nuclear reactor accident scenarios. The typical analysis -
task is to find out if the uncertainty resulting from the error in N 2,
estimation of neutronic reactivity feedback coefficients is sufficiently "~ z,
i

small for confidence in safe reactor temperatures. The uncertainty is L o roor  Nier eLenom J

described by 4-10 parameters.
o



Our working hypotheses re GEUK

H1: GEUK results in less error compared with SL_2S regression (GP with iid noise).

=  H2: GEUK results in less error compared with universal Kriging without derivative
information. Idea: one gradient evaluation brings d/5 more information.

= H3: GEUK results in less error for the same number of sample values when
compared with ordinary Kriging.

= H4. GEUK approximates well the statistics of output, and its predicted covariance

is a good or conservative estimate of the error}.

= H5. Covariance matters. It will affect the predictions and usability of the model.
Idea: it is best to assume as little differentiability as one can get by with,
particularly in the dense limit of samples.
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H1: Kriging versus Regression

Table 3.9: MATWS — cubic spline 2 — comparison of error for Kriging and regression models

Sample Points | Kriging RMS | Regression RMS | Kriging Max | Regression Max Table 3.3: MATLAB — square exponential — Comparison of error for Kriging and regression models
4 (p=2) 3.6433 15.2304 13.7491 56.6632 Data Set | Kriging RMS | Regression RMS | Kriging Max | Regression Max
. 1 0.11554 047118 0.70207 2.194
6 (p=2) 0.5260 3.2833 2.2040 14.0380 5 0.58351 076058 95731 P
8 (p=3,trunc) 0.1841 0.5695 1.1980 3.1272 3 077163 1.1982 39902 48668
16 0.0766 0.427 0.747 2.404 4 0.77163 1.289 3.2204 5.0067
24 0.0887 0.405 0.910 1.877
32 0.0995 0.309 1.118 1.959
40 0.0517 0.295 0.437 2.112
50 0.0508 0.251 0.386 1.476
100 0.0337 0.181 0.0998 1.068
25 T T T T T T T T T 25 T T
—=— Regression Error (sorted) —=— Regression Error (sorted)

—* - Kriging Error —* - Kriging Error

~* " Error Bound (99% CI) ~* Error Bound (99% CI)

Error
Error

59t e et

£

radradras

i e

Gmperie
-

o L A T = =

900 1000

Sample Index Sample Index

Go to "View | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

o 16



\ |
H2: Effect of gradient information

MATLAB MATWS
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\ |
H3: Using a mean function versus ordinary kriging

1.00E+002
1.00E+001 -

o

=

<

E

>

o

o

o

= 1.00E+000 - P=0
u—

o o
S - pP=1
= - pP=2
L

)

=

o

1.00E 001
1.00E-002 ~ T T T T d T
o 10 20 30 40 50 GO 70

Number of Observations

Go to "View | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"
18

v



H4: Kriging gives me the a good approximation of
the error

Table 3.5: MATLAB - square exponential — statistics for Kriging prediction Table 3.7: MATLAB - comparison of data distribution between covariance functions

Data Set | £10 | £20 | +30 Covariance Function | £lo | +20 | £30
1 0.690 | 0.882 | 0.950 Cubic Spline 1 0.290 | 0.592 | 0.758

9 0.378 | 0.568 | 0.668 Cubic Spline 2 0.776 | 0.878 | 0.930

3 0.362 | 0.626 | 0.720 Squared Exponential | 0.690 | 0.882 | 0.95

4 0.362 | 0.626 | 0.720 Matern-3/2 0.676 | 0.874 | 0.932
Matern-5/2 0.704 | 0.884 | 0.928

Table 3.16: MATWS — Matem-?)/ 2 — 7 scores for Kriging Prediction Table 3.12: MATWS — cubic spline 2 — statistics for kriging prediction

Data Set KS metric :|:10'* :tQO'* i30* Data Set Flo o0 130
1(p=2) | 0.5580 | 0.0030 | 0.0090 | 0.0150 1(p=2) | 0.847 | 0.077 | 0.099
6 (p=2) | 0.2782 | 0.2510 | 0.4780 | 0.6030 6 (p=2) | 0.513 | 0.964 | 1.000
8 0.1557 | 0.4640 | 0.7070 | 0.8130 8<P=§étmnc) 8233 3323 }888
16 0.0645 | 0.6150 | 0.8810 | 0.9510 o1 0533 | 0857 | 0971
924 0.0297 | 0.6890 | 0.9450 | 0.9840 29 0.595 | 0817 | 0.049
32 0.0770 | 0.8200 | 0.9690 | 0.9840 40 0.475 | 0.800 | 0.937
40 0.0269 | 0.7150 | 0.9590 | 0.9900 50 0.366 | 0.685 | 0.870
50 0.0601 | 0.7890 | 0.9870 | 1.0000 100 0.221 | 0.424 | 0.600
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H5: The choice of covariance function matters

Table 3.10: MATWS — comparison of covariance functions for 8 pt GEUK model

Covariance Function | RMS Error | Max Error
Cubic Spline 1 0.2083 1.3567
Cubic Spline 2 0.1841 1.1980
Squared Exponential 0.1245 1.0125
Table 3.8: MATLAB — square exponential — statistics for Kriging prediction using decc Matern-B/ 2 0.1704 1.0645
Covariance Function | KS Metric | +10* +20* +30* Matern‘5/ 2 0.1530 1.0566
Cubic Spline 1 0.2939 0.3080 | 0.4520 | 0.5960
Cubic Spline 2 0.2766 0.2820 | 0.3800 | 0.6540
Squared Exponential 0.1412 0.4880 | 0.7220 | 0.8380
xatem'w g 3;3;; 8';1388 8'6838 3'8:1)’28 Table 3.11: MATWS — comparison of covariance functions for 50 pt GEUK model
atern-5/ - - ST 7 Covariance Function | RMS Error | Max Error
Cubic Spline 1 0.0567 0.3963
Cubic Spline 2 0.0528 0.4551
Squared Exponential 0.1487 2.0268
Matern-3/2 0.0398 0.2552
Matern-5/2 0.0749 0.7991

As in the derivative-free case, Matern 3/2 seems a good choice
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Quantile Estimation

= This is a critical statistic in nuclear engineering.
= Particularly, the 95% statistics with 95 % confidence.

= “Conservative Estimate” using the Uniform distribution and properties of order
statistics and uniform distributions quantiles.
Table 4.1: MATLAB — cubic spline 2 — quantile calculation for MATLAB data

Sample Points | Regression Order | Kriging Estimate | Regression Estimate | Training Estimate
4 2 2446.6 2447.2 2323.8
6 2 2448.2 2447.5 2335.2
8 3 2449.1 2448 .4 2360.4

Actual Value = 2456.0

Table 4.2: MATWS — cubic spline 2 — quantile calculation for MATWS data

Sample Points | Kriging Estimate | Regression Estimate | Training Estimate
4 (p=2) 865.73 864.78 863.55
6 (p=2) 865.86 871.15 863.55
8 866.08 866.60 863.46
16 865.89 866.51 865.45
24 865.83 866.49 865.56
32 865.87 866.32 865.76
40 865.82 866.37 865.86
50 865.83 866.42 865.86

Actual Value = 866.16
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Estimating Quantiles Using Asymptotic tests

Table 4.5: Quantile — Matern-3/2 — Example results for Kriging quantile estimate with confidence interval

DATA Training Points | Confidence(1-«) | Lower Bound | Upper Bound | Median
MATWS 8 0.95 866.17 866.45 866.28
MATWS 8 0.99 866.17 866.45 866.28
MATWS 50 0.95 866.07 866.17 866.12
MATLAB 8 0.95 2454.3 2455.6 2445.0
MATLAB 8 0.99 2454.2 2.455.8 2455.0

MATWS: 8 samples and 50 samples
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Conclusions

= Gradient-enhanced universal kriging brings combines the best advantages in
sensitivity, regression, and Gaussian processes.

= |t can provide good statistics for nuclear engineering codes with 6-8 samples for
the limited examples we tried.

=  More accurate that regression, more efficient than kriging.

= Future:
— Larger number of parameters
— How to create the basis function for regression
— Approximated the gradients of very large scale codes. ]
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