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Motivation: Management of Energy Systems under Ambient
Conditions Uncertainty



Motivation 1. Complexity of energy systems
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= |ncreased Complexity:

= Financial constraint scales approach physical constraints scales
= Loads can become “active” with more complicated dynamical behavior.
= Shorter time responses from smart meters, gas plants (which are faster).



Motivation 2. Uncertainty effects of energy systems



Ambient Condition Effects in Energy gystems

- Operation of 90% of Energy Systems is Affected by Ambient Conditions
- Power Grid Management: Predict Demands (pouglas, et.al. 1999)
- Power Plants: Production Levels (General Electric)
- Petrochemical: Heating and Cooling Utilities (ExxonMobil)
- Buildings: Heating and Cooling Needs (Braun, et.al. 2004)

- (Focus) Next Generation Energy Systems assume a major renewable energy penetration: Wind +
Solar + Fossil (Beyer, et.al. 1999)

- But increased reliance on renewables must account for their variability ...




Variability/Uncertainty in Ambient Conditions

Weather Conditions (Temperature, Wind Speed, Humidity ...) have high variability/uncertainty
- Complex Physico-Chemical Phenomena, Spatio-Temporal Interactions

- Inherently Periodic (Day-Night, Seasonal)
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Motivation 3. Nonlinear Model Predictive Control for
representing system complexity and uncertainty.
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NLMPC Receding Horizon Optimization

Benefits: Accommodate Forecasts, Constraint Handling, Financial Objectives, Complex Models

Dteterministic NLMPC
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CHALLENGES

= Do | have to solve a nonlinear program at each step ... that sounds expensive.

= Benefits of considering uncertainty in energy systems
— Use photovoltaic, building systems, energy dispatch problems as test cases.
— Does forecast matter?
— Does stochasticity matter?
= How do we solve the resulting stochastic programming problems?
— ... Since they have a large physical layer.
— How do | obtain scalable algorithms for solving them
=  Sampling from the distribution of the ambient conditions.

— How do | create and manipulate this large uncertainty space?
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OUTLINE

O 1: Sequential Quadratic Programming for NLMPC
O 2: Benefits of Considering Uncertainty Information and Long Forecast Horizons.
O 3: Scalable Stochastic Programming for NLMPC

O 4: Sampling from Spatio-Temporal Uncertainty
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1. SEQUENTIAL QP FOR NLMPC



An abstract view of the issues

Rolling horizon optimal control: F(w,t)=0=w=w(f) the optimal control/state manifold.
*  We already wrote the optimality conditions to get it here
* F can be an operator that includes differential equations for dynamics, which can be discretized
somehow.
* w includes state variables, control variables and Lagrange multipliers
The variable w cannot be computed instantly, so we must allow it a time At -,
*  The problem becomes Fow("),tY=0; Fw(E"™),r*"H)=0; "' =t"+Ar
Better, but we cannot guarantee that we find a solution in Ar even now. What if we solve the
subproblem inexactly, e.g only its linearization or an inexact linearization?

FW )+ V FW 1YW —w"+V Fw* t)At +r* = 0;

Could it work? Yes, if we can track the manifold (stability):

[w* —we*) < 0((At)”)




Nonlinear Programming

O How do we prove this? We have to deal with inequality constraints, so not so easy.
O So, write the optimality conditions at time t for NLMPC

Vaef(z,t) + Vee(z,t) N —v 0

| c(z,t) = 0 _—=<l
. N
min f(z,?) Active-Set SQP 2 = 0/Vie AN
s.t. c(z,t) =0 (4) | /
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Vaef(x,t) + Vee(z,t)N—v = 0

c(z,t) = Q
+ \\‘

X -V =lpe
oo’

O But still very difficult to work with with inexact linearizations ...
L An alternative, convenient framework for the case of inequality constraints: generalized
equations (Robinson).

fo(x,t) + ch(x,t)T A

F(x,t)= ( t)
clx,

, —FneN,,. .. (x)



\
Generalized Equations

Generalized Equations (GE) Robinson, 1977, 1980

—F(w,t) € Ny (w) €<— Normal Cone Operator (compare with NLE)

First-Order KKT Conditions of ,Bg'vr[} flw,t), W ={w]|w >0}

—Vuf(w*, )T (w* —w) >0, Vw e W

Canonical Linearized Generalized Equation (LGE)

§ € F(wjy, to) + VwF(wi, to)(w —wj) + Ny (w)  w(8) = ¢~ [5] < solution Operator

Definition (Robinson, 1977): LGE is Strongly Regularat ~ w, 3 Ly > 0s.t. |lw () — w}f‘OH < L¢||5||
Theorem: 1/)_1is Lipschitzian if:

Mll M12 M13 R M M 1. M1, Non-SinguIar
M = VyF(wi,to) = | Mz Maz Moz | M= [ Vi ] .
2. Mz — M21 M1 Mijs Positive Definite

_7 =

S Active  pegenerate Inactive



Generalized Equations

Context of NLP  MiD f(z,t), s.t. c(z,t) =0

Solution of Perturbed LGE w; = [Z; A\t}ound wftko KKT Conditions of Perturbed QP

min Vi f(z; LtV Az + 5827V L(w], to) Az

0 € F(’wiko, tXV:I‘} VwF(w;O, to)(w — w;tko) + Ny (w) es.t. c(x} "_t_\)—|— ch(:c;fo, to) Az =0

o%

Az > —xz‘o
Canonical Form

§ € F(wyy, to) + VwF (wiy, to)(w — wi)) + Ny (w)  With 6 = F(wi,to) — F(wi,t)

From Lipschitz Continuity and Mean Value Theorem

lwi — @el| < Lyllr(wi,t) — 4|
< Lyl (F(wiy, to) + Fu(wy, to) (wi — wiy) — F(wf, ) — (F(wfy,to) — F(wy, 1)) |
< Lyl Fuw(wiy, to) (wi — wiy) — F(wg,t) + F(wi,, )|
< LAt?
Optimal Solution ’w;gk ------------- 03 wt st‘gurio"
r(wg, )

- Strong Regularity Requires SSOC and LICQ

- NLP Error is Bounded by LGE Perturbation

- One QP solution from exact manifold is second-order
accurat

Linearization Point



Generalized Equations

But | am never EXACTLY on the manifold: Stability of uncentered NLP Error

wtk—l—l - wtk+2 w2<
zTth (~./7 e
wtk,_|_1 w Time-Dependent QP
wfk tg+2 min Vaof (@, tey1) T Az + 2827V 00 £(i1,, 1) Az
s.t. c(Zyy,, tg41) + Vac(y, t)TAz=0
Az > —Ty,

Theorem

- A1: LGE is Strongly Regular at w;&kk

- A2: Wi Exists in Neighborhoodand 36, > 0 s.t. ||wy, — wy, || < Ly |lr (@1, tr) | < Lydr

For sufficiently small At, I can track the manifold stably, solving 1 QP per step

||1I)tk — w:‘;” < L¢5T — ||U_th;_|_1 H < L?,b(sr

*
W14

Stability Holds Even if QP Solved to O(A¢?)Accuracy .. Can use iterative methods.



Summarz NLMPC GE

*  We can maintain stability of NLMPC with inequality constraint while solving only one
quadratic program (with linear constraints) per step.
* This work extends work by Ohtsuka (for equality constraints) and Diehl et al. (which

provided no proof).
* The key analytical development: generalized equations (Robinson).

*  We can solve this QP inaccurately (incompletely) as long as we do it within O(At2) e.g.

by using an augmented Lagrangian. Very suitable for real-time (no matrices are stored, and
constant progress is made). Ideal for building systems.

* Reference: Zavala and Anitescu, SIAM Journal of Control 2011.

* However, in this work we will solve it at high accuracy at the moment, we aim for much
larger systems.



2. Benefits of considering uncertainty in energy systems
Q: What is the benefit of long forecast horizons?

Q: What is benefit of uncertainty



2.1. Benefits/Formulation



Managament under uncertainty paradigm: stochastic

programming.

subj. to. ono

Alw)x,+ Bwx = b(w)

= bo

%20, x(w)=0

[ 4(0) =(4(0). B(0).h(0).0(0).c())

continuous discrete
i
Sampling >§1,<§2,...,§S
.| Inference |¥samples |
Analysis

Mihai Anitescu -- Stochastic Programming

Two-stage stochastic programming with recourse (“here-and-now”)

j\{oin{fo(xo)+ E[]\{m f(x,a))}}

Sample average approximation (SAA)

. 1$
Min  f(9+= fi(x)
X0 > X1 X9 500 Xg S P
subj. to. ono = bo
Ax,+ Bx = b,
x,20, x 20, k=1,..S
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2.2. Benefits/Photovoltaics



Hybrid Photovoltaic-Hz System

PV-Generator

Solar
Radiation Load Demand
DC-Busbar
' pcibc
— / —
Power &——V\= ~ Converters = .
Losses 1
Electrolyzer Fuel Cell Secondary
Power € Battery
Losses I
H,
Buffer Storage
Power &
L@_ H,-Storage Losses
Compressor O, or Air

* Operating Costs Driven by Uncertain Radiation uieberg, 2004
* Performance Deteriorates by Multiple Power Losses




Hybrid Photovoltaic-H gystem

—

Effect of Forecast on Economics z, Anitescu, Krause 2009
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min tf—|—N
u(t) /te e(z(8),y(#), u(t), x(t))dt  \inimize Operating Costs + Maximize H, Production

dz
o
” (z(t),y (), u(t), x(¥)) Energy Balances
0 = g(=(),y(®),u(®), x(t))
0 > h(z(),y(t),u(t), x(t)) State-of-Charge, Fuel Cell and Electrolyzer Limits
z2(0) = =y

* Forecast Horizon of One Year - Highest Achievable Profit

* Receding-Horizon with 1hr, 1 Day, ...,14 Days Forecast - 8,700 Problems in Each

Scenario



Hybrid Photovoltaic-HZ System
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Hybrid Photovoltaic-H gystem

Profiles of Fuel Cell Power
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N
Hybrid Photovoltaic-Hz System

Load Satisfaction Deterministic (“Optimization on Mean”) vs. Stochastic

Deterministic Fails to Satisfy Load
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Therefore, the alternative to stochastic programming can turn out infeasible !!

Handling Stochastic Effects Particularly Critical in Grid-Independent Systems




2.3 Benefits/Buildings



Thermal Management of Builalng Systems

Minimize Annual Heating and Cooling Costs

min té—{—N
u(t) [N CDee(t) + Cr(Oren(D) dt
Y4
CI'% = (1) — (1) = S- o - (T7(r) — Ty (7,0))
oTw 02Ty,
or B 883;’12‘
o/ (T(1) ~Tw(r,0)) = -k-—55  Energy Balances
" _ .aTW
o (Tw (7, L) —Ta(r)) = -k oz (1)
T;(0) = Tf

Tw(0,z) = Tiy(z)
NLP with 100,000 Constraints & 20,000 Degrees of Freedom

LEVER)
Time-Varying Electricity Prices = Peak & Off-Peak
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Thermal Management of Building Systems

Effect of Forecast on Energy Costs
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Exploit Comfort Zone and Weather Info to Heat/Cool when Cheaper Braun, 1990



Thermal Management of Building Systems

Performance Optimizer using WRF and GP Model Forecasts
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2.4. Benefits/Regional Energy Systems



Electricitx SYSTEM in ﬂ:e Ug

ISO

mﬂ’
am-l@- =

Power Levels

Clearing Prlces, Unit
Commltment

Dynamic & Uncertain Forcing Factors -Weather- Drive Markets

Volatility Due to Market Friction: (Generation Ramping, Congestion)



Stochastic Unit Commitment with Wind Power (SAA)
min COST:LZ{E Zc§k+c’;k+c‘j.kj

s s€S\ jeN keT

Z Pgit Z p;’:" =D,,seS,keT

jE N jE Nwind

Z Pyt 2 p;ﬁ”d 2D, +R,,se€ S,keT
jGN jENwind

ramping constr., min. up/down constr.

=  Wind Forecast — WRF(Weather Research and Forecasting) Model
— Real-time grid-nested 24h simulation

— 30 samples require 1h on 500 CPUs (Jazz@Argonne) 43} )
S
2 = = T T 1 " A A 1
42 i AOARN i
i - 2 i pT® & xAAiA/AZ?"/
#1 —— 41t ha & ° a4l
< 40 8 i Y e i
3 2 40l i ” 45
2 # E i 2 ® :
EESEN S ? E
o \ 1 A A i
30’ . T 38t N LI I T O -
2 M N
120 —110 _ —100 -9 —80 S Ty
-92 -91 -90 -89 -88 -87
° Longitude W ° Longitude W
Mihai Anitescu -- Stochastic Programming Zavala & al 2010.
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Wind power forecast and stochastic programming

= Unit commitment & energy dispatch with uncertain wind
power generation for the State of lllinois, assuming 20% wind NA\N\N\/—

power penetration, using the same windfarm sites as the on¢  wind :
existing today. power

=Full integration with 10 thermal units to meet demands.
Consider dynamics of start-up, shutdown, set-point changes

= The solution is only 1% more expensive then the one with
exact information. Solution on average infeasible at 10%.

1200

—
o
o
o

800
600

Total Power [MW]

400
200

0

Time [hr]

Mihai Anitescu -- Stochastic Programming
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WRF scalability on Jazz

(C)

) _ —— Scalability on Jazz

= Two-level parallelization scheme — very - e- Linear Scalability
o . 1 member

scalable: (A) realizations are independent, 2

10+
(B) each is parallelized, and (C) explicit 24 hours

. \ ) | CPU | Wallclock

; 35 7 ) . H"Tﬁ:;l; [mm] \\
2 ; 1 157 N

25 120 110 100 90 80 - 8 95 °
.,Lonqimd;w/\/ 16 65 32p/member
32 15
' 10° 10’ 10°
/ / CPUs

v

= 24 hours [simulation time] -> one hour [real
(A) time] on Jazz with 30 members; [2 km];
(almost) linear scalability with area (C)

Grid Size = ¢/ lllinois [2km]: 500 processors
US:| #1-32km?® | 130 x 60
42 _6km? | 126 x 121 = [ ] US [2 km]: ~50,000 processors
inois: | #3 - 2km? | 202 x 232

= [ ] US[1 km]: ~400,000 processors

Mathematics and Computer Science

37
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3. How do we solve the resulting stochastic programming
problems —( by interior point with special linear algebra)



Linear Algebra of Primal-Dual Interior-Point Methods

Convex quadratic problem IPM Linear System
1
Min —XTQX‘I‘CTX Q+A AT X
: 4 =rhs
subj. to. Ax=0>b A 0 y
x20
Multi-stage SP — & _
Hy B 0 0
Two-stage SP B 0 4 0
7] T
nested arrow-shaped linear system Hay B, 0 0
' i B 0 4, 0
(via a permutation) :
Hs Bg 0
BS 0 AS 0
0 4 0 4 0 A5 Ho 4
O 0 0 0 ..0 0 4 O

Mihai Anitescu -- Stochastic Programming
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The Direct Schur Complement Method (DSC)

= Uses the arrow shape of H

Hl GlT_ Ll
H, G,
H; Gy
_Gl GZ GS HO _ _Llo

= Solving Hz=r

LDL =H, L,=GL'D", i=1,...8S,

1 11l

S
C=H,-Y GH'G/, [L DI
i=1

C c C

w=L"r, i=1...S,

) 1 1

S
w, = L;l jro — ZLl.Owl. J
i=l1

Dl
LZ DZ
L D
LZO LSO Lc L
Implicit factorization
ey
::> = Dl._lwl., i=0,..,5

Back substitution

Mihai Anitescu -- Stochastic Programming

Diagonal solve

%0 =L;1vé
= L;T (Vi ~ z‘TOZO )9
i=1,...85.

Forward substitution

40



High performance computing with DSC

Gondzio (OOPS) 6-stages 1 billion variables

Zavala et.al., 2007 (in IPOPT)
Our experiments (PIPS) — strong scaling is investigated

S0r

45

Mihai Anitescu -- Stochastic Programming

= Building energy system
* Almost linear scaling

- L ]
~
e
7
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-
Ve
e
~
e
e
~
~
~
e
A
v
e
R s
~
-
-
e
Ve
( —_—— .
p ~ . Linear scaling
Direct Schur
- 1 1 1
10 20 a5 50

CPUs

on Fusion @ Argonne

Unit commitment
* Relaxation solved
* Largest instance

[
N
X

Latitude N

90 -89 -88 -87
° Longitude W

92 -o1

e 28.9 millions variables
* 1000 cores
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Scalability of DSC

...but not always the case, since first

Unit commitment _
stage calculations can keep everyone

76.7% efficiency ... blocked

15 -
— — - Linear scaling y, /

—+—DSC Y,

12.5

of.5r
=3
e
B
o
w0
5 L
3r N A ,
— — — Linear scaling 2 9 10 15 20 30
1.5} —e—DSC # Koras
1 1 1 1 1 J
80120240 400 600 1,000 Large number of 1st stage
# Cores ) o
variables: 38.6% efficiency
on Fusion @ Argonne
42
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BOTTLENECK SOLUTION 1: STOCHASTIC PRECONDITIONER

Mihai Anitescu -- Stochastic Programming
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Preconditioned Schur Complement (PSC)

LDL =H, L,= GL'D, i=l,...N,

i L,D,L, =M
C=H,-Y GH;'G’
i=1

(separate process)

::> zZ; = L;T (Vi _LiTOZO)

2, = Keylov(C, M. 7o)

Mihai Anitescu -- Stochastic Programming



The Stochastic Preconditioner

= The exact structure of Cis S
S
A
_( i
0 +li AT (B 0B’ )IA A7
C: 0 S = i 1] i i 0 .
i Ay 0

= |ID subset of nscenarios: K ={k,k,,....k }
= The stochastic preconditioner (Petra & Anitescu, 2010)
~ 1IN0y ~-1.7Y
S =0, +;2[Aki (Bki O, B! ) 4, |
i=1

= For Cuse the constraint preconditioner (Keller et. al., 2000)

S, A
4, 0

M =

Mihai Anitescu -- Stochastic Programming



Quality of the Stochastic Preconditioner
U ~-1 .\ -~ 1 N
S, =0, +;§4[AkT (Bki Qk,. BkT) Aki:| Ss =0, +§;[A1~T (Bin- Bz'T) Az':|

“Exponentially” better preconditioning (Petra & Anitescu 2010)
2

Pr(| A(S;'S;)~1]> ) < 2p° exp[_ | ]

2p°L" || S ||
Proof: Hoeffding inequality (p is dim on S; L is a bound on data)

max

Assumptions on the problem’s random data

1. Boundedness

not restrictive (=> L)
2. Uniform full rank of A(®) and B(®)

Mihai Anitescu -- Stochastic Programming
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Quality of the Constraint Preconditioner

s 4 s 4
4, 0 4, 0
L
P r

= M 'C has an eigenvalue 1 with order of multiplicity 27

= The rest of the eigenvalues satisfy

0<A

min

(S'S)SAUMC)<A_ (S'S,).

max

= Proof: based on Bergamaschi et. al., 2004.

Mihai Anitescu -- Stochastic Programming
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The Krylov Methods Used for Cz =T,

Ss Ay || % Ty
A, 0 || Y r

BiCGStab using constraint preconditioner M

= Preconditioned Projected CG (PPCG) (Gould et. al., 2001)
— Preconditioned projection onto the KerAO.

P=27,(21S,2,) ZI

— Does not compute the basis ZO for KerAO. Instead,

S T
g = Pr iscomputed from | ” 4|8 _|7 .
4, 0 ||u 0

— vy = (A A A4, (1 — Sy, )

Mihai Anitescu -- Stochastic Programming
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Performance of the preconditioner

= Eigenvalues clustering & Krylov iterations

3

10 — - - — 100
#* O PCG
' % BiCGStab %
2 80 !
10 § #
] %]
1 5 *o
§ ] g 60 O
1
g w0y ;2 %
5 > 5
S 40t
i 2 @
0 * @
10 | # » [,
10 1 1 L 1 6o a0 60 6 o & o W AP AP Y R 1
3 15 25 35 3 10 15 20 25 30 35
IPM iteration IPM iteration

= Affected by the well-known ill-conditioning of IPMs.

Mihai Anitescu -- Stochastic Programming
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The “Ugly” Unit Commitment Problem; PSC gets further

= DSC on P processes vs PSC on P+1 process
Optimal use of PSC — linear scaling

10

2.5+

—&— DSC
—6— PSC

— — — Linear scaling

10

15 20
# Cores

Mihai Anitescu -- Stochastic Programming

30

120 scenarios - # cores

used for
preconditioner

Conclusion: PSC hides
the latency well, but it
eventually hits a
memory wall as well.

Factorization of tIXe preconditioner can not be hidden anymore; we need to accelerate
it as well; cannot solve larger problems where improvement would likely be larger

50
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SOLUTION 2: PARALELLIZATION OF STAGE 1 LINEAR
ALGEBRA

Mihai Anitescu -- Stochastic Programming
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Parallelizing the 15t stage linear algebra

We distribute the 15t stage Schur complement system.

O 4| =
0
= y 0 ) Q dense symm. pos. def., Ao sparse full rank.
0

= Cistreated as dense.

C

= Alternative to PSC for problems with large number of 1%t stage variables.

= Removes the memory bottleneck of PSC and DSC.

= We investigated Scalapack, Elemental (successor of PLAPACK)
— None have a solver for symmetric indefinite matrices (Bunch-Kaufman);
— LU or Cholesky only.
— So we had to think of modifying either.
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Cholesky-based LDLAT -like factorization

= Can be viewed as an “implicit” normal equations approach.
= In-place implementation inside Elemental: no extra memory needed.

= |dea: modify the Cholesky factorization, by changing the sign after processing p
columns.

= |t is much easier to do in Elemental, since this distributes elements, not blocks.
= Twice as fast as LU

= Works for more general saddle-point linear systems, i.e., pos. semi-def. (2,2) block.
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Distributing the 15t stage Schur complement matrix

All processors contribute to all of the elements of the (1,1) dense block
. o~ 1 & ~_1 ~1
Q:QO+EZ[A} (50.'5") Al}
i=1
= Alarge amount of inter-process communication occurs.
= Possibly more costly than the factorization itself.

= Solution: use buffer to reduce the number of messages when doing a
Reduce_scatter.

LD approach also reduces the communication by half — only need to send lower
triangle.
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54



A Parallel Interior-Point Solver for Stochastic Programming
(PIPS)

Convex QP SAA SP problems

Input: users specify the scenario tree

Object-oriented design based on OOQP

Linear algebra: tree vectors, tree matrices, tree linear systems

Scenario based parallelism
— tree nodes (scenarios) are distributed across processors
— inter-process communication based on MPI
— dynamic load balancing

Mehrotra predictor-corrector IPM
We investigated scaling up to 130K processors.

Mihai Anitescu -- Stochastic Programming
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Large-scale performance

= Comparison of Scalapack (LU), Elemental(LU), and LDL' (1024 cores)

Units  Ist Stage Size Factor (Sec.) Reduce (Sec.)
(O+A) LU(S) LU(E) LDLT LU LDLT
300 23436+1224 16.59 20.04 6.71 54.32 26.35
640 49956+2584 60.67 83.24 36.77 256.95 128.59
1000  78030+4024 173.67 263.53 90.82 565.36 248.22/—

189 million variables

SAA problem:

= Strong scaling
= 90.1% from 64 to 1024 cores;
= 75.4% from 64 to 2048 cores.
=  >4,000 scenarios.

Mihai Anitescu -- Stochastic Programming
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Argonne Leadership Computing Facility (ALCF) — BG/P system

Leap to Petascale Workshop BG/P Surveyor System
- 13.6 TF/s 1 rack BG/P

1024 compute nodes
(4096 CPUs)

BG/P Intrepid System
557.1 TF/s 40 rack BG/P
40960 compute nodes
(163840 CPUs)




Results on BG/P

=  Now include transmission.

43—
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Using BG/L for energy dispatch

= |sitreally worth using a supercomputer for this task?
= Let’s look at the most pressing item of Supercomputing usage: power.

=  BG/P needs about 20MW of power.

= The Midwest US has 140GW of power installed, and the peak demands runs up to
110GW.

=  We will never reduce power consumption, but we will make it more reliable, and
cheaper. (we estimate 1-5%)

= This is worth on the order of 100-500MW, far above what BG/P costs in power
consumption.
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4. Sampling from the distribution of ambient conditions
(“uncertainty quantification” of ambient conditions).



Uncertainty representation in weather:

= The gold standard in weather forecast: Hidden Markov Model

= Assume a time-discretized process with imperfect initial state and forcing
information and noisy measurements.

The dynamic model is depicted as for k=0, ---, K

X = M(x{Lq) + Wy, (1)
Z% = H(xI") + V4, (2)
where
Wi = N(xi, Q)
and
Vi = N(0,R;).
We want find D(x§", ---, x/7)’s mean and variance.

= M: physical model, a multi-variable, multi-dimensional, time-dependent partial
differential equation (state size for 1 time step: 10r4—10/12)
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Uncertainty in dynamical systems: 2. the posterior.

= Under the typical 4D Var assumptions (normality of noise and input) we can
write down the posterior ...

- exp ( o %f(Xin,ZObs)) |

P :Ifijl.wifl e zobs zobs zobs,”' 2,obs — C1.Cw
(T, Tp 1, | 1 2 k) k“k P(zobS)
k
b in — ~ in — in ~ ~ in
fX™,Z277) = Z(wz T — Y(ti—1, T; 1))TQz' 1(33z Z; —Y(ti-1,2;"1))
i=0
+Z 29— (™ (1, @) TR (20 — hy(§ (1, 2™)

=  Avery difficult distribution to sample from.
= Solution: first, find the best estimate of the state.

= Then, approximate the prior covariance by an ergodic/Gaussian Process
method.
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Do | really need to do it by myself?

=  NWS gives excellent estimates for
large scale patterns, but:

= NWS gives me too coarse of a
resolution forecast for energy apps. |
need resolution because wind has
enormous variability

4 [\ 30% Wind

\/ \ |20% Wind

Power [MW]

[\ 10% Wind

= NOAA/NCEP gives me an even coarser
resolution for uncertainty forecast o
(200km). ,‘
= Data at heights relevant for wind 0 20 20 B 0 0 120

applications (100m) is most often not Time [nr]
reported (emphasis on surface).
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Idea : best estimate + covariance estimation + ensembles

Reconciliation N(Xﬁa HE) Forecast

A |

x(t)

X0
(

to—N

Current Time

*Use some form of an ergodic hypothesis. Take dij c RIVx(2x30days)

?

60.60 61.60 o o en.eo

€g-€1 | €1€1 | | €n-€q €+ €k
E: ¥ J ) |€z||€k’

60'677, el.en .« s e 6??,'67’1/

*Our uncertainty model for multi-period forecasting:
*lMean: Best Estimate using a variational methods.
*Covariance: Fixed correlations at current moment, variance adjusted from physical
data and best estimates update size.
*Sampling: Take samples, propagate through the model = empirical ensemble



Short-term wind speed prediction using numerical
weather prediction models

= Designed an UQ framework to generate forecasts with confidence intervals
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Long-term predictions: wind speed

= Wind 2009: at 80m above ground
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Conclusions

NLMPC can model complex energy systems. Physical layer, financial and
economic effects, commodity markets.

We proved that sequential quadratic programming is a good solution for
NLMPC; relaxations can be used for real-time applications.

We have demonstrated that forecast and stochastic programming matters for
energy applications; the costs do not increase by much but we are always

feasible — so benefit of considering uncertainty is in the reliability.

We presented several techniques for scalable stochastic quadratic program
used in NLMPC. We investigated — successfully — scaling to 130K processors for
problems with 3B variables.
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Future work

= Better uncertainty models for weather forecast (how do we eliminate the nagging
alpha parameter and have a more solidly founded uncertainty approach).

= QOther linearization approaches for NLMPC with even cheaper subproblems.

= Do the conclusions hold when | have to add more details in the simulation (e.g
transmission lines, model the airflow in the building, etc ...)

= New math / stat for stochastic programming
— Asynchronous optimization
— SAA error estimate

= New scalable methods for a more efficient software
— Better interconnect between (iterative) linear algebra and sampling
e importance-based preconditioning
e multigrid decomposition

— Target: emerging exa architectures
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