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1. Motivation: Management of Energy Systems under Ambient
Conditions Uncertainty
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N
Ambient Condition Effects in Energy Systems

Operation of Energy Systems is Strongly Affected by
Ambient Conditions

- Power Grid Management: Predict Spatio-Temporal
Demands (Douglas, et.al. 1999)

- Power Plants: Generation levels affected by air humidity
and temperature (General Electric)

- Petrochemical: Heating and Cooling Utilities (ExxonMobil) E‘-’=~ ‘
- Buildings: Heating and Cooling Needs (Braun, et.al. 2004)

- (Focus) Next Generation Energy Systems assume a

major renewable energy penetration: Wind + Solar + Fossil
(Beyer, et.al. 1999)

- Increased reliance on renewables must
account for variability of ambient conditions,
which cannot be done deterministically ...

Power [MW]

- We must optimize operational and planning
decisions accounting for the uncertainty in
ambient conditions (and others, e.g. demand)

- Optimization Under Uncertainty. o w w Tig‘gm” B W
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Other Optimization under Uncertainty Apps

Increased Requirement for Uncertainty Quantification is Likely to Require Increased
Emphasis on Optimization under Uncertainty.

Possible Examples:

Optimal Nuclear Core Reloading (since fuel is reused in nuclear reactors).
Materials-by-Design accounting for model uncertainty.

Environmental Remediation — Nuclear Legacy Site Cleanup.

Whole Device Modeling for Fusion Applications

Infrastructure planning (electricity, gas, water, communication, transportation)
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A leading paradigm for optimization under uncertainty
paradigm: stochastic programming.

. [ Second-stage random data &(w) }

Two-stage stochastic programming with recourse (“here-and-now”)
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Stochastic programming — a non-trivial parallel paradigm

suitable for next-generation supercomputers
2"d stage computations

= Computational pattern Optimization
15t stage computations I ;

Optimization

Deterministic model

Optimization

L]

= Extra, in-node parallelization can be obtained for both 1%t and 29 stage.

= Algorithmic developments are needed to ensure efficient communication, fault
resilience and good load balancing.

= Same pattern for statistical model CALIBRATION.
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2. Impact: Stochastic Unit Commitment — Management of
Energy Systems




Stochastic Predictive Control
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Stochastic Unit Commitment with Wind Power (SAA)

. u i ? Minimize Cost
min  COST = ¢ et et Thermal Units Schedule
S ;[]GZN’;— 5 k Jjk Jk)
2 Pt Z pit=D,seS,keT Satisfy Demand
jeN JEN ind ‘ =
S put Y plr>D +R.,seSkeT Have a Reserve
jeN JeEN vina
ramping constr., min. up/down constr. Dispatch through network

=  Wind Forecast — WRF(Weather Research and Forecasting) Model
— Real-time grid-nested 24h simulation

— 30 samples require 1h on 500 CPUs (Jazz@Argonne) o )
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Wind power forecast and stochastic programming

= Unit commitment & energy dispatch with uncertain wind
power generation for the State of lllinois, assuming 20% wind
power penetration, using the same windfarm sites as the onr
existing today.

wind
power

=Full integration with 10 thermal units to meet demands.
Consider dynamics of start-up, shutdown, set-point changes

= The solution is only 1% more expensive then the one with
exact information. Solution on average infeasible at 10%.
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Some Considerations in Using Supercomputing for Power
Grid

= |s it really worth using a supercomputer for this task? (We need the answer every
1hr with 24 hour time horizons. )

= Let’s look at the most pressing item of Supercomputing usage: power.

— BG/P (and exascale) needs <~ 20MW of power.

— The Midwest US has 140GW of power installed, and the peak demands runs up to
110GW.

— We will never reduce power consumption, but we will make it more reliable, less
dependent on fossil, and cheaper by better managing the peak
= |f we accept this will lead to 10% more renewable penetration (our SUC study),
then this is worth on the order of 10-15GW, far above what BG/P costs in power
consumption.

= |n addition operational constraints makes supercomputing (if uncertainty needed
to account for) necessary and not just useful or convenient.

= But, even if approximations will work, this tool will be helpful as the “gold
standard” for validating other algorithms to be deployed on defined
computational resources.
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3. Low-Hanging Fruit Scalable Software: PIPS (Parallel Interior
Point Stochastic Programming) — Petra, Lubin, Anitescu
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PIPS — Our Scalable Stochastic Programming Solver Using
Direct Schur Complement Method

The arrow shape of H
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Implicit factorization, C is dense, H’s are sparse.

-1 .
v=D"w,i=0,..,8

Diagonal solve
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PIPS — Parallel solver for stochastic optimization

Interior-point method implementation (Mehrotra’s algorithm)

Scenario-based decomposition of the linear algebra.

PIPS reuses OOQP (Object-oriented quadratic programming solver) class hierarchy.
New parallel linear algebra layer for block-angular IPM linear systems.

Hybrid MPI+SMP parallelization

First-stage Schur complement: dense linear algebra.
— Distributed factorization and backsolves (by using Elemental) if needed.
— Shared-memory parallelization(SMP) is obtained via Elemental.

— Distributed assembling of the SC matrix is done by a streamlined Reduced_scatter that is also
in-node SMP-accelerated.

Second-stage linear systems are sparse.
— Supports various sparse solvers: MA57 (HSL UK), WSMP(IBM).
— SMP is obtained with WSMP

Mihai Anitescu - Optimization under uncertainty
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PIPS Solver Capabilities
=  Hybrid MPI/SMP running on Blue Gene/P

— Successfully (though incompletely due to allocation limit) run on up to 32,768 nodes (96% strong
scaling) for lllinois problem with grid constraints. 3B variables, maybe largest ever solved?

= Handles up to 100,000 first-stage variables. Previous results dealt with O(20-50).

" Close to real-time solutions (24 hr horizon in 1 hr wallclock)
— Further development needed, since users aim for
e More uncertainty, more detail (x 10)
e Faster Dynamics = Shorter Decision Window (x 10)
e Longer Horizons (California == 72 hours) (x 3)

Mihai Anitescu - Optimization under uncertainty
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Components of Execution Time and Strong Scaling

1400 — Strong Scaling
12007 B Backsolve ~ .
_ 1000+ @ Factor SC | . 7 |-~ Linear
S 800 O Distrib. SC| = —o— PIPS
4C_é qg) =4 7
5 600- E - o
= 400 E /
Qo —
(})) 200 A %‘ % ] o
10 — 3
5 1 )
0~ = 7 | | |
4k 8k 16k 32k 4k 8k 16k 32k
BG /P Nodes BG/P Nodes

= 32K nodes=130K cores (80% BG/P)
= “Backsolve” phase embarrassingly parallel, but not Schur Complement (SC)
= Communication for “Distrib. SC” not yet a bottleneck, but we will get there.
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4. The harder problems need some mathematics

“ Mihai Anitescu - Optimization under uncertainty
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4.1 Q1: How do | deal with the impending first-stage
bottleneck?

Mihai Anitescu - Optimization under uncertainty
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The Stochastic Preconditioner

The limiting factor in the scalability of Schur method is the expensive solve with dense
Schur complement matrix

1 1

C= Q0+— Y|4 (BQ BT) 4
N i=1

— A computational bottleneck: workers sit idle waiting for the master to factorize C.

Remedy — the preconditioned Schur complement (PSC)
— 1. factorize incomplete matrix P in the same time C is computed.
— 2. use the factorization of P to solve with C very fast.

In linear algebra terms
— Pis apreconditioner for C. Our choice of P is

S, =0+ Z[AT(B QkBT) 4, }

where IC = {k,, k,,.. k _}is an 1D subset of n scenarios.
— Krylov iteratives soIves (PCG or BiCGStab) replaces the direct solves

Mihai Anitescu - Optimization under uncertainty
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Preconditioned Schur Complement (PSC)

Pis

a C built from a

subset of scenarios

LDL =H, L,= GL'D, i=l,...N,

1 1

C=H,-Y GH;'G’
i=1

LD, =P

(separate process)

¥

/

2, = Krylov(C.P.r0) |
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Quality of the Stochastic Preconditioner

= “Exponentially” better preconditioning (Petra & Anitescu 2010)

2
ne
Pr(| A(S;'S,)—1]|=€) < 2p" exp| —
! 2L || Sy e
Optimal use of PSC — linear scaling
= Atypical scaling behavior of our :

approach. Better scaling than the
direct Schur complement method

7.5¢
(DSC) is exhibited by PSC.
=  DSC uses p processes, PSC uses p+1. ?}5-
257 — — — Linear scaling
—_&— DSC
-—— PSC
! 10 15 20 30

# Cores
Factorization of the preXonditioner can not be

hidden anymore by the computation of C. 21
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Performance of the preconditioner

= Eigenvalues clustering & Krylov iterations

3

10 — . - — 100
* O PCG
] N _ "
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2 > 8
S 40
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20 o &
: a®
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IPM iteration IPM iteration

= Affected by the well-known ill-conditioning of IPMs.

S, =S, and S, =E[ S(w) ], where

S(w)=(Q, + D, )+ [AT(co) (B(co) (O(@)+ D(@))' B" () ) A(co)}
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4.2 Q2: How do | use very expensive samples?

“ Mihai Anitescu - Optimization under uncertainty
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Bootstrap for stochastic optimization of energy systems

Sampling the uncertainty present in complex energy systems may be a
computationally intensive task

— Example: weather forecasting

— May need 400K CPUs for 30 samples at the resolution we need.

Obtaining uncertainty estimates (confidence intervals) on the optimal value is
important in policy-making process.

Only a small number of samples(scenarios) can be afforded. Therefore an
operational constraint makes me start to care about the low-sample size regime
and its asymptotics.

But how good is the current state of the theory in that regime?

Mihai Anitescu - Optimization under uncertainty
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Theory situation for Stochastic Programming

Most estimates for SAA are based on results of the following type:
N° {HTH} 25 N(,1)
o

= This allows, in principle, for the convergence of the confidence intervals to be
arbitrarily slow.

= Current state of the area is built around application of the Delta Theorem , which
provides the results of the type:
Xy (@) X(0)=0,(N") & P(N*

Xy (@)- X(®)]) >0

=  But this is not sufficient for similar results for the confidence intervals !!!

-1, 0<w< P(lim N*| X, (@) — X(0)|=0)=1
Xw)=w, X,(w)= log(N'+1) = o 1
o 1 P(X,(0)<0)— P(X(0)<0)= >N~
log(N_l_l)ga)gl_ (Xy(@)<0)— P(X(w)<0) ogV 1 D

= [ntuition: Convergence in probability tells me how well | behave on a “good” set
increasing to probability 1, but tells me nothing about the bad set.

Mihai Anitescu - Optimization under uncertainty
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Large Deviation + Bootstrap

= Bootstrap is a resampling method that builds high-order confidence estimates.

= The idea of bootstrapping is to squeeze out information from a small number of
samples by resampling (with replacement).

= But it applies only to finite-dimensional functions of means, and the optimal value
of stochastic optimization is not one (due to nonlinearity).

= |dea: Use large deviations, to produce exponentially convergent probability sets
POIN"(@—-0)I>¢)= ﬁ(e)Nfz(e) exp(—f5(e)N°)

= Here, é depends on the expected value of the objective function and its higher
derivatives at the solution of the SAA approximation problem. We can thus use
bootstrap theory to produce confidence intervals for @ and exponential
convergence ensures order stays the same as for bootstrap !!

Mihai Anitescu - Optimization under uncertainty
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The estimator

= We proposed a corrected statistic, computable at the SAA approximation
-1

_1[ EVL(XN’)‘N) ]T EVZL(XN,/IN) J(XN)T ( EVL(XN,;LN) )

CD:E[f(xN)] 5 0 76 0 .

= Listhe Lagrangian of the problem and J is the Jacobian of the constraints.
= x" is the solution of the SAA problem obtained from a sample of size N.

= Bootstrapping is performed based on a second sample of size M, and it works due
to the fact that it is now applied at a set point x”' so finite dimensional results do

apply.

Mihai Anitescu - Optimization under uncertainty
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Accuracy of the estimator’s confidence levels

We proved that bootstrap confidence intervals bqkild using ® are close to second
order correct for the true optimal value 0= f(x ) :

POeJ))=a+O(N"""),a>0.

We observed the predicted or better correctness in the numerical simulations

-2r BCa coverage error for the 5% percentile
= 4 _M Correctness order 0.32 ¢ @
[<and RAMEERTY W o cooeen fit
P o """"" o ~ -9
2 e, o O SAA
[ o . 2SR o . .
o trey, e it
- Correctness order 0.82 tre 0 ,,,,,,,,,
-8 Il 1 1 Il 1 1 Il 1 ° J
1 1.5 2 2.5 3 Iog(N)3‘5 4 4.5 5 5.5
5r BCa coverage error for the 95% percentile
o @
Correctness order 1.14 | ,,,, ., fit
,,,,,,,,,,,,,,, 3 e O SAA
............. s e fit
Correctnessorder2.11 Q" 0
_10 1 1 1 1 1 1 L 1

1 1.5 2 2.5 3Iog(N)3'5 4 4.5 5 5.5

bootstrapping @ outperforms classical normal approximation method.

We now have analytical techniques for asymptotics of confidence intervals in SP!

Mihai Anitescu - Optimization under uncertainty
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4.3 Q3: How do | interact with computationally intensive
software-based models for stochastic optimization?

Mihai Anitescu - Optimization under uncertainty
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Our answer: Output learning with derivative
information

Setup: outputs (100) << uncertain parameters (1075-1076)<< physical state space
size (1019-10712).
Outputs, e.g.

e Coolant fuel temperature.

e Peak fuel temperature

Output (parameters)=? — it is a machine learning problem.

The main observation: gradients of an output can be computed in 5*the effort
(sometimes FAR less) for the output by adjoints, but provide NP times more
information !!!

This is radically different compared to machine learning from non-computing
experiment data.

Hypothesis: Using the derivative information, we can reduce the number of
samples needed to compute the entire mapping.

Hybrid sampling-sensitivity approach.
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Polynomial Regression with Derivatives, PRD

w(4) ) K 3(4)
. . d¥Y d¥ a3
B PRD procedure, regression equations: A) LA N
¥ (A)  dY(A) ds(4,)
da, da, do,
_ , : : : : ¥ ¥
B Note: the only interaction with the computationally expensive My avn s

model is on the right side! da, da,, da,
Y. (A,) Y,(4,) K X = 3(A,)

d¥,(A,)  d¥,(A) d3(A,)

: L : da, da, da,

B We count on AD research to provide the adjoint information. M M
¥.(4,) WY,4,) K 3(A,,)

M M
d¥,(A,) d¥,(A,) d3(A,,)

B Extra information from derivatives results in far fewer samples dor, do, do,
being needed to approximate system response!

1.00E+002

B Raises a lot of new important mathematical questions that have
not been studied (see Hickernell Poster)

B How do I choose the basis?
B How do | choose the sampling points?

1.00E+000

RMS Error of Approximation

B What error model do | use?

1.00E-001
) 50 100 150 200 250 300 350

Number of Observations



Some Results:

B [ntuition: “good” basis should be orthogonal with respect to inner product that contains gradient
information.

I¥;(4) 9¥,(4)
o

l

[RICE ACIED VS
Q i

(A)dA=8,,

B [ntuition: Gaussian processes provide a good error model for regression (8 samples in 12
dimensions!!)

B For more results, see Hickernell poster.
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5. Secondary Impacts

“ Mihai Anitescu - Optimization under uncertainty
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\ |
New Platform: Optimization under Uncertainty for Next-

Generation Building Systems

Deployment of Proactive Systems at Argonne National Laboratory
- Integrates New Sensors, Statistical Models, and Real-Time Optimization
- Tests in Commercial-Sized Building : ~ 500 Occupants, ~100,000 sq. ft.
- Energy Savings of Up to 30% in HVAC Energy Demand

- Key: Anticipation Using Occupancy & Weather Information

- Key: Adaptive Comfort and Equipment Conditions (Set-Points)

- Key: Maximize Ambient Air Intake to Condition Building ‘

-Key: Provide algorithms for limited computational resources W\ "
“in thermostat”

Predicted Energy Savings at Argonne’s Building

Stochastic Real-Time Optimization for Building Systems 40
Minimize operation cost 350
Subject to: Comfort and Hardware Constraints.

Uncertainty: occupancy, ambient conditions, state

<« Occupied Period —

Jm‘“

300

250

200

Current
Power

Power (kW)

*Data Analysis and Storage
(~1,000 Sensors per Building at High-Frequencies)
Statistical and Gray-Box Modeling

(Minimize Technology Cost, Uncertainty Estimates) 50

*Resiliency Requirements
(Sustain Frequent Sensor and Equipment Faults)

150

100

i Optimized
! Power

0

5:00AM 7:30AM 10:00AM 12:30PM 3:00PM 5:30PM  8:00PM 10:30PM
Time

SRTO-Latest Deployment (APS Building, August 23 2011)
Mihai Anitescu - Optimization under uncertainty 15% Energy Savings (N lMWh) in First Day
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"
Hybrid Photovoltaic-H, System

PV—-Generator

Solar A\ A\ A~

Radiation Load Demand
DC-Busbar
p i Z pDcibc - T
Powerb = /COnverters\ \%‘ l
Losses - -
Electrolyzer Fuel Cell Secondary
Power < Battery

Storage

Losses I \
H,
Buffer Power

L@_ H,—Storage Losses
O, or Air

Compressor

* Operating Costs Driven by Uncertain Radiation uieberg, 2004
* Performance Deteriorates by Multiple Power Losses

Problem: Operate to Minimize Operating Costs +
Maximize H, Production

Model: - _
Subject to: Energy Balances; State-of-Charge, Fuel Cell

and Electrolyzer Limits

Mihai Anitescu - OptimiZation under uncertainty
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"
Hybrid Photovoltaic-H, System

Load Satisfaction Deterministic (“Optimization on Mean”) vs. Stochastic

Deterministic Fails to Satisfy Load

b | ) ) ) ) )
— Deterministic

4 || ---- Stochastic -
_ 3] :
&
w2
o
O 1L,

19 50 100 150 500 550 300 350

Time [Days]

Therefore, the alternative to stochastic programming can turn out infeasible !!

Handling Stochastic Effects Particularly Critical in Grid-Independent Systems

Mihai Anitescu - Optimization under uncertainty
36



Conclusions

* Optimization under Uncertainty is a paradigm that is required by a broad array of
applications.

* |ts computational pattern is nontrivial, yet, very promising on new and probable
architectures.

* We developed a scalable solver, PIPS, that scales strongly to up to 80% of BG/P for
the power grid problems that require it.

* We resolved some of the probable bottlenecks by mathematical analysis, such as
the impending loss of scalability due to the size of the master problems; and the
slow convergence of the aposteriori error estimation in stochastic programming.

* Impact both highest end computing e.g. exascale and ubiguitous computing, e.g.
your thermostat.

Mihai Anitescu - Optimization under uncertainty
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Future: How to deal with O(1000) larger problem (and
new architectures?)

= Need modeling language for demonstrating the potential of stochastic
programming for parallel computing on actual applications.

= More Asynchronous Algorithms (stochastic preconditioner a first step)
= Understand inference better for stochastic programming given the limitations of

— Functional Convergence?
— Resampling for infinite dimensional settings?

= Extend approach to multistage stochastic programming?

= How to deal with integers for very large scale? Hybridize Simplex-Interior Point at
exascale?

Mihai Anitescu - Optimization under uncertainty
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WRF scalability on Jazz

—— Scalability on Jazz

. (C)
= Two-level parallelization scheme — very - e- Linear Scalability
o . 1 member
scalable: (A) realizations are independent, 2

10+
(B) each is parallelized, and (C) explicit 24 hours

CPU | Wallclock

= . \= [min] .
N , i 157

8 95 °
/ 16 65 32p/member |
] 32 15
10’ 0 10”
/\/\/\ CPUS
(o
o >
- A = 24 hours [simulation time] -> one hour [real
(A) time] on Jazz with 30 members; [2 km];
(almost) linear scalability with area (C)
Grid , Size = ¢ lllinois [2km]: 500 processors
US: | #1 - 32km 130 x 60
42 _6km? | 126 x 121 = [ ] US [2 km]: ~50,000 processors
llinois: | #3 - 2km* | 202 x 232

= [ ] US[1 km]: ~400,000 processors
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NLMPC Receding Horizon Optimization

Benefits: Accommodate Forecasts, Constraint Handling, Financial Objectives, Complex Models

. Dteterministic NLMPC
w® [ e, 5@, w0, B

dz
dt
0
0

2(0)

f(2(2), y(2), uw(®), E[x(1)])
g(z(2), y(8),u(t), E[x()])
h(z(2),y(1), u(t), E[x(¥)])

Ly

vl

<2

Complexity (Solution Time)
1,000 - 10,000 Differential-Algebraic Eqns
100-1000 Scenarios

First entry of control law implemented =
recede horizon =» restart
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x(7)
A /’,E[x(t)]
”,’_\\\ ”’//
>
ty ty+ T
Stochastic NLMPC
. e+ N
min B | [ e(a(0),u(0), u@), x(®)dt
u(t) x(t)e [Vtr -
e (EORTORTORO)
0 = gz(t),y(®),u®),x@®) [7Xx(t) € R
0 > h(z(t),y(t),u(t), x(t))
2(0) = xy -
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N
Hybrid Photovoltaic-H, System
Effect of Forecast on Economics z, anitescu, krause 2009

4 I I I I I I I
Chicago, IL 2004 |
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rue Future Radiation

min

Loy N
u(t) /tz v(2(1),y(2), u(®), x(¥))dt  Minimize Operating Costs + Maximize H, Production

dz

5 = [GE®, ¥, u®),x(®) Energy Balances

0 = g(z(t),y(®),u(t), x(¥))

0 > h(z(®),y(t),u(t),x(?)) State-of-Charge, Fuel Cell and Electrolyzer Limits
z2(0) = =y

* Forecast Horizon of One Year - Highest Achievable Profit

* Receding-Horizon with 1hr, 1 Day, ...,14 Days Forecast - 8,700 Problems in Each

Scenario
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Math Summary

= To deal with the impending bottleneck of the master problem we developed a

stochastic preconditioner + Krylov instead of the direct solve. Proved exponential
convergence to optimal preconditioning.

= To deal with the very expensive weather samples in aposteriori inference we

removed the impreciseness of current technology in confidence intervals by using
a resampling approach.

. P(@e))=P__ +O(N"),a>0.

Mihai Anitescu - Optimization under uncertainty
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Parallelizing the 15t stage linear algebra

We distribute the 15t stage Schur complement system.

O 4| =
0
= y 0 ) Q dense symm. pos. def., Ao sparse full rank.
0

= Cistreated as dense.

C

= Alternative to PSC for problems with large number of 1%t stage variables.

= Removes the memory bottleneck of PSC and DSC.

= We investigated Scalapack, Elemental (successor of PLAPACK)
— None have a solver for symmetric indefinite matrices (Bunch-Kaufman);
— LU or Cholesky only.
— So we had to think of modifying either.

Mihai Anitescu - Optimization under uncertainty
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Cholesky-based LDLAT -like factorization

Can be viewed as an “implicit” normal equations approach.

= In-place implementation inside Elemental: no extra memory needed.

= |dea: modify the Cholesky factorization, by changing the sign after processing p
columns.

= |t is much easier to do in Elemental, since this distributes elements, not blocks.

= Twice as fast as LU

= Works for more general saddle-point linear systemes, i.e., pos. semi-def. (2,2) block.

Mihai Anitescu - Optimization under uncertainty
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Bootstrap for stochastic optimization of energy systems

= Sampling the uncertainty present in complex energy systems may be a
computationally intensive task
— Example: weather forecasting
— May need 400K CPUs for 30 samples at the resolution we need.

= Only a small number of samples(scenarios) can be afforded.

= Obtaining uncertainty estimates on the optimal value is important in policy-making
process

= (Classical statistical inference (e.g, building a 95% confidence interval J)
—1/2
— is only first order correct: P(@e J)=095+0(N : )

— is unreliable for a small number of scenarios.

Mihai Anitescu - Optimization under uncertainty
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N |
Ambient Condition Effects in Energy Systems

- Operation of 90% of Energy Systems is Affected /i
by Ambient Conditions e

- Power Grid Management: Predict Demands (Douglas,
et.al. 1999)

- Power Plants: Production Levels (General Electric)

- Petrochemical: Heating and Cooling Utilities
(ExxonMobil)

- Buildings: Heating and Cooling Needs (Braun, et.al.
2004)

- (Focus) Next Generation Energy Systems assume a
major renewable energy penetration: Wind + Solar +
Fossil (Beyer, et.al. 1999)

- Butincreased reliance on renewables must
account for variability of ambient conditions, T
which cannot be done deterministically ... ' W e

~/ 4 [\{ 30% Wind

~
\ | 20% Wind

Power [MW]

/ ‘\
10% Wind

- We must optimize operational and planning
decisions accounting for the uncertainty in
ambient conditions (and other, e.g. load) —

0 20 40 60 80 100 120
Time [hr]

- Optimization Under Uncertainty.
Mihai Anitescu - Optimization under uncertainty Wlnd Power PrOﬁIeS

; 47



Other Optimization under Uncertainty Apps

Increased Requirement for Uncertainty Quantification is Likely to Require Increased
Emphasis on Optimization under Uncertainty.

Possible Examples:

Optimal Nuclear Core Reloading (since fuel is reused in nuclear reactors).
Materials-by-Design accounting for model uncertainty.
Environmental Remediation — Nuclear Legacy Site Cleanup.

Whole Device Modeling for Fusion Applications

Mihai Anitescu - Optimization under uncertainty
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Stochastic NLMPC

Stochastic u* (1) .
. 1 Set-Points
“ V% Low-Level

Dynamic
System Model

— x (1)
Measurements
Forecast &  X(n,V(n  [forecast
) 7€ [tr tp + T o
Uncertainty Weather
Model
Two-stage Stoch Prog SEochastic NLMPC
Min{ fy(5,)+ B| Min f(x,a))}} in B [ L cp(z(t),y(t),u(t),x(t))dt]
xO X u X —
_ d
b, to. go(’fo) = 4 ] d—j = f(2(t),y(t),u(t), x(t))
g (x,r) = 4 i=12..9 0 = g(=(1),y(®),u®),x(®) [
>0 >0 0 > h(z(t),y(t),u(t),x(t))
0— 7 a2 z(0) = xy ~
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