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1. DVI MODELS, STATE OF RESEARCH



Nonsmooth contact dynamics—what is it?

= Differential problem with variational inequality constraints — DVI

Newton Equations

Non-Penetration Constraints
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= Truly, a Differential Problem with Equilibrium Constrali




Granular materials: abstraction: DVI

= Differential variational inequalities Mixture of differential equations and
variational inequalities.
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= Target Methodology (only hope for stability): time-stepping schemes.
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Smoothing/regularization/DEM

(
Recall, DVI (for C=R+) u>0L F(t,x(t)u(t)) =0

= Smoothing =————

= Followed by forward Euler™"> _ o non o).
Easy to implement!! o =A +hf(t AU )’

= Compare with the complexity X =x"+ hf(t”“,x"“,u"+1 );
of time-stepping=————————p

= Which is faster? w20 LF ()" ) 20



Simulating the PBR nuclear reactor

Generation IV nuclear reactor with continuously
moving fuel.

Previous attempts: DEM methods on
supercomputers at Sandia Labs regularization)
40 seconds of simulation for 440,000 pebbles
needs 1 week on 64 processors dedicated
cluster (Rycroft et al.)
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model a frictionless wall, p,,=0.0. For the current simula-
tions we set ktz%k,1 and choose k,=2x10° gm/d. While
this is significantly less than would be realistic for graphite
pebbles, where we expect k,>10 gm/d, such a spring
constant would be prohibitively computationally expensive,
as the time step scales as &<k, for collisions to be mod-
eled effectively. Previous simulations have shown that
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Simulations with DEM. Bazant et al. (MIT and Sandia laboratories).



Simulating the PBR nuclear reactor

= 160’ 000 Uranium-Graphite
spheres, 600" 000 contacts
on average

= Two millions of primal
variables, six millions of dual
variables

= 1 CPU day on a single
processor...

= \We estimate 3CPU days,
compare with 150 CPU days
for DEM !l




An iterative method

= Convexification opens the path to high performance computing.

= How to efficiently solve the Cone Complementarity Problem for large-scale
systems?

(Nye+7r)e =X 1 ~e€eX

= Qur method: use a fixed-point iteration (Gauss-Seidel-Jacobi)
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2. Plasticity Models



Need for plasticity models

= Thisis a very important effect in materials.

= |tis also true for granular materials where it is about phenomena of cohesion,
friction, compliance and plasticization.

= Think of the effect of water bridges and cohesion in powders such as appear in
medication.



Type of plasticity models in 1D.

= Plasticity elicits a different constitutive law compared to rigid contact
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= Force-displacement relationship at a contact a) Rigid b) Compliant c) Nonlinear d)
cohesion e) Cohesion + Compliance f) Cohesion + Compliance + plastic



The yield surface.

= Standard rigid contact 1-a can be turned to cohesive one by the transformation:

7,20 =7, €ld, o]|=Y

= |n addition, rule in 1-d satisfies (at contact):
Ayn < _NT (yn)
" Inthiscontext Y is called the yield surface.

= The displacement is normal at the Yield surface, such constitutive rules are called
associative.



Example: Friction and Cohesion in 3D by playing
around with Yield surfaces

= Shift the Coulomb cone downward and make it an associative yield surface.




Modeling plasticity

= The yield surface give by Coulomb needs to be modified as no infinite reaction is
now allowed (crushing)




The model

Separate elastic and plastic displacement:
T <, i
Y =Y TYp

The elastic part of the force allows to compute the force at the contact if the
plastic part of the displacement is known.

,A — —Kz( '—)’3.0)

Except, of course, the plastic part is NOT known. But now we use the associated
plasticity hypothesis to constrain the plastic displacement evolution with a
variational inequality.

. - - A
) U . A )
Yp€ —N3u(Vy) 4 €T
Mathematically, it is the same idea with normal velocity at the contact; EXCEPT

that the containing set is no longer a cone, proper (it can be a shifted cone, or just
some convex set. So we can time-step and close it.



Time-stepping
=  After some notation

¥ = DIV 4+ (2K T - 2 (v - i) € —Nn(h)

After this is solved, all we have to do is to solve the plasticity displacement

yp 'l =yp +hyp

Use the velocity update

v =yl MUY D DY+ kM (g, v )

1€G 4

Replace in the plasticity velocity equation; to obtain the variational inequality

yp = De" MDeni ' + D™ (Vi + hM~(q, v, 1)) — Eers —c € —Nr(Fe)

. T = T
= Qver the cartesian product of cones: z‘eéA



Damping and VI

We can similarly accommodate damping
Ta=-K(y —yp) —R (' - ¥p)
Vp € ~Nzu(T4) : A4€T
And obtain the VI N7é+1 +re _NT('YS) : ,Yé-l-l cT

M N = [DeTMDe — E]
r= D" (V' +hM f(q,v,t)) —c
and  E.=diag[E]; E =-(WK,+hR)<0
¢ = (K" + hR) ™" (3 + hR (' = 7))

Once we compute new contact impulse, we compute velocity, and update
position, and iterate.



How do we solve it:

= Thereis no need to change the PGS algorithm as the matrix N is still symmetric
positive definite.

= Only the projection over more complex sets needs to be implemented, but the
problem and the algorithm have the same abstraction; that is.

=  We are expending the proof to the general case of convex sets, we do not expect
problems.



Numerical Experiments

= Compaction and shear test of a granular media.

= Advanced cases of earth-moving machines (bulldozzers, vehicles) need such things
to understand soil reaction.

= Configuration: soil sample putin 0.1m x 0.1 mx0.2 m,

= Top partis pulled by a “drawer” after a mass is dropped on top; shear force is
measured and compared with experiment.




Results.

= Configuration: Getting parameters is hard; Normal and tangentia compliances are
0:910e-7 m/N and damping coefficient is = 0.1. Sphere distribution.

Number | Density | Diameter | Friction
90 1700 kg/m3 | 0.020 m 0.5
630 1700 kg/m?* | 0.010 m 0.5

= Evolution of the shear force and vertical force. These will be measured from
experiments. Note spike in forces — including shear! When load is dropped
(probably some lock-in before it relaxes and pushes on the drawe)
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The advantage of a simulator is that we can have a
deeper understanding of the forces.

= Evolution of the contact network. Note the “rolling” behavior.

= (Calibration and experiments are in progress.




Nonassociative plasticity

= However, not all plasticity is associative.
= How do we do things in the nonassociative case?
= Extension

v €T, Nye+r € —H_INT("}’g),

= His positive definite and symmetric, but N is only symmetric.
= Do we have existence?



Existence for non-associative plasticity

= Consider the eigendecompositionof H  H =Q"' DQ

= We then have that the nonassociative plasticity problem is equivalent to: the
following problem over a rotated cone:

ne € QY, D (Nﬂg +?) = —NQT(ng).

Definition 2. We say that a matriz T' € R™" has the Ry property with
respect to the cone K if and only if

ve K, Tue K, _mnax ui(Tu); <0=>u=0

Proposition 1. Assume N is symmetric positive semidefinite. Then,

(i) The matriz DN has the P, property.

(ii) If the matriz N satisfies Y Nv > 0 for every 0 #£~ € Y, then DN has
the Ry property with respect to the cone QY.



Existence result

We use results from Kong, Tuncel and Xiu to obtain:

Theorem 1. Assume that the CCP problem (43) has a problem with sym-

metric semidefinite N and does not result in nontrivial internal forces, that
18,

yeET,Ny=0=~v=0.

Then the skewed complementarity problem modeling non-associative plastic
flow (52) has a nonempty and bounded solution set.

In addition, we can solve the problem by continuation:

DNn+7(1—a)+aro+aVigy(n) =0
= P _0guarantees the path exists; R_0 that it accumulates to a solution.
What to do about stationary iterations: unclear



To do

= Lots and lots of things.

= Extend the nonassociative plasticity to general compact convex sets

= Extend projected iteration to the general convex sets and nonassociative plasticity
= Simulations for cohesion and plasticity.

= Do physical experiments to compare; choose the right parameters.



