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1. Time-Stepping Schemes and Their
Relaxation



Nonsmooth contact dynamics—what is it?

= Differential problem with variational inequality constraints — DVI

Newton Equations

Non-Penetration Constraints
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= Truly, a Differential Problem with Equilibrium Constrali




Time stepping scheme -- original

= A measure differential inclusion solution can be obtained by time-stepping

(Stewart, 1998, Anitescu 2006)
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Pause: Constraint Stabilization

= Compared to original scheme
vq)(q(l))TfU(lJrl) S0 —s (I)(j)(q(l)) L ,},hlvq)(q(l))T,v(lJrl) > ().
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= Allows fixed time steps for plastic collisions.

= How do we know it is achieved? Infeasibility is one order better than accuracy
(0(h”2))



Time Stepping -- Convex Relaxation

= A modification (relaxation, to get convex QP with conic constraints):
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[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ]



What is physical meaning of the relaxation?

Origin

Behavior

Comparison between methods
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Further insight.

" The key is the combination between relaxation and
constraint stabilization.
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1 ' ' t t
0 =~ Z(D(]) (q(l) ) _Iu(J)\/(DLi, v)z 4 (Dé v)z

= So the solution is the same as the original scheme for a
slightly perturbed gap function.....




2. Cone complementarity time stepping



Cone complementarity

= Aiming at a more compact formulation:
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Cone complementarity

= Also define:
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Iterative methods for Cone Complementarity

Problems

= The resulting cone complementarity problem

(Nve +1)€ =_°

= QOur method: use a fixed-point iteration
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The projection operator is easy and separable

= For each frictional contact constraint:

Iy = {Iy, ()7, Thr,  (v4)

mFor each bilateral constraint, simply do nothing.

="The complete operator:
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Finding other Interesting Behaviors by Modeling the
Force Constraint Set

= For computational reasons, we like the relaxation: it leads to solving convex
optimization at each step.

= |t seems to be easy to solve any time | can have a force constraint set that | can
project easily onto. This implicitly (by duality) constrains the motion.

= Note that the set needs not be convex or even a cone.
= Are there other force/impulse constraint sets which model interesting behavior?

= Sothisisa “I have a hammer, where’ s the nail approach” : are there other cones
that | may want to model that can lead to behaviors | would like to include?

= Of course there are several behaviors for which there are good guesses or even
physics to this end.



3. Plasticity Models



Type of plasticity models in 1D.

= Plasticity elicits a different constitutive law compared to rigid contact
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= Force-displacement relationship at a contact a) Rigid b) Compliant c) Nonlinear d)
cohesion e) Cohesion + Compliance f) Cohesion + Compliance + plastic



The yield surface.

= Standard rigid contact 1-a can be turned to cohesive one by the transformation:

7,20 =7, €ld, o]|=Y

= |n addition, rule in 1-d satisfies (at contact):
Ayn < _NT (yn)
" Inthiscontext Y is called the yield surface.

= The displacement is normal at the Yield surface, such constitutive rules are called
associative.



Example: Friction and Cohesion in 3D by playing
around with Yield surfaces

= Shift the Coulomb cone downward and make it an associative yield surface.




Modeling plasticity

= The yield surface give by Coulomb needs to be modified as no infinite reaction is
now allowed (crushing)




The model

Separate elastic and plastic displacement:
T <, i
Y =Y TYp

The elastic part of the force allows to compute the force at the contact if the
plastic part of the displacement is known.
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Except, of course, the plastic part is NOT known. But now we use the associated
plasticity hypothesis to constrain the plastic displacement evolution with a
variational inequality.
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Mathematically, it is the same idea with normal velocity at the contact; EXCEPT

that the containing set is no longer a cone, proper (it can be a shifted cone, or just
some convex set. So we can time-step and close it.



Time-stepping
=  After some notation
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After this is solved, all we have to do is to solve the plasticity displacement
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Use the velocity update
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Replace in the plasticity velocity equation; to obtain the variational inequality
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Damping and VI

We can similarly accommodate damping
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Once we compute new contact impulse, we compute velocity, and update
position, and iterate.



How do we solve it:

= |tis the same scheme as before, just the projection on the new set needs to be
computed and implemented.



Numerical Experiments

= Compaction and shear test of a granular media.

= Advanced cases of earth-moving machines (bulldozzers, vehicles) need such things
to understand soil reaction.

= Configuration: soil sample putin 0.1m x 0.1 mx0.2 m,

= Top partis pulled by a “drawer” after a mass is dropped on top; shear force is
measured and compared with experiment.




Results.

= Configuration: Getting parameters is hard; Normal and tangentia compliances are
0:910e-7 m/N and damping coefficient is = 0.1. Sphere distribution.

Number | Density | Diameter | Friction
90 1700 kg/m3 | 0.020 m 0.5
630 1700 kg/m?* | 0.010 m 0.5

= Evolution of the shear force and vertical force. These will be measured from
experiments. Note spike in forces — including shear! When load is dropped
(probably some lock-in before it relaxes and pushes on the drawe)
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4. Rolling Friction Models



Components of the rolling friction

The contact plane has a normal vector and consists of two tangential vectors

n.,u.,v.

Force between bodies at contact, has a normal component and a tangential
component

A
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Torque between bodies at contact, has a normal componlent and a tangential
component.

Mi,N =11, Mi,T =7, W +t7T, W,

Dual motion quantities: tangential velocity, normal rotation and tangential

rotation:
Vi,T wi,N’ wi,T



Model: rolling, spinning, sliding

Sliding friction, friction coefficient  H;
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Restating the model to expose the maximum
dissipation principle

= This exposes the conic constraints:
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Time-stepping with convex relaxation.

" The reaction cone:

2= {7 ER | oy > V2 + 792, P > VT2 + T2, 0" > |T”|}

= Define total cone (inclusive of bilateral constraints) and its polar:
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= Using the virtually identical sequence of time stepping, notations and relaxation
we obtain the cone complementarity problem.
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Validation: linear guideway with recirculating balls

We get close matching to analytical result (we allow a bit of compliance to resolve

indeterminacy).
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Rolling Friction Effects on Granular Materials

= Converyor belt scenario: Question can we reproduce rolling friction effects over
the repose angle of piles (observed)?

= Yes, for same sliding friction the results are different.




Angle of repose v

Angle of repose.

= Dependence on rolling friction coefficient — confirms trends in other experiments.
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Conclusions

= Relaxation we use to obtain tractable subproblems.

= This allows a flexible modeling of contact behavior by changing the constraint set
for the forces/impulses.

= We presented extensions of (DVI) time-stepping schemes to rolling contact and
elasto-plastic contact .

= These include convex relaxation and algorithmic considerations.
= The method is implemented in ChronoEngine.



