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1. The Problem




Complexity of the power grid

= O(1075) transmission lines,
= 0(1074) generation nodes, and
= 0(1074) demand nodes.

= Distribution network:0(108)
components.

= Reliability: — combinations of
failures (2003 blackout)

" time scale ranges: 1e-6 in power
electronics to decades (1e 10s) in
transmission planning.
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Physical Constraints

State Equations
= ~0.1 second dynamics:
swing equations; DAEs.

= Steady-State: Power Flow

Equations, Nonlinear,
Quadratic (ACPF)

= Their Linear Approximation:

DC Power Flow.

= Sometimes, Power Flow
Only.

Mx = f(x,y,p)
0=g(x,y,p)

Decisions

Generation Levels
Generation Schedules
Asset Location

System states (angles,
inertia; for inverse
problems)




Decision Making Structure and Optimization Tasks

Transmission/Generation Expansion: ISO, Yearly, MILP | Planning

l

Unit Commitment: ISO, Daily, DC Flow, MILP

Day-Ahead Bidding: GENCOs/Utilities, Daily, LP/QP

Economic Dispatch: ISO, S Minutes, DC Flow, LP/QP Markets

Real-Time Bidding: GENCOs/Utilities, 5 Minutes, LP/QP

l

AC Power Flow: ISO, 1-2 Minutes, NLP

State Estimation: ISO, 1-2 Minutes, QP/NLP
Generation Control: GENCOs, Seconds, QP/NLP

Control

Voltage and Dynamic Stability: ISO, MilliSeconds, No Optimization
Energy Management: Utilities/Consumers, Seconds/Minutes, LP/QP/NLP
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Current Features and State of the Analysis

Problem: grid operates cheaply and safely, including following acts-
of-God

Same physical model, but historical separation between analyses.
Direct transcription is beyond any compute power in 2050.
Engineering judgment is used offline for reduction. Eg.

— Scenarios to be used in transmission expansion planning.

— Static constraints for post-contingencies states.

— Screening of the possible contingencies in security-constrained
problems.

Recourses are generally implemented with operator-in-the-loop.

While perhaps a bit dated, it served us well. US has one of the lowest
electricity prices and higher reliabilities.
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However, is it really a solved problem?

= The 2003 blackout affected 50 million people

— Task Force Report: “At the completion of this report, the
modeling .... was continuing..”

" The 2013 Superbowl! blackout (CNN)

— “Manufacturer blames Super Bowl| outage on incorrect
setting ”

— “System operators essentially put the relay's trip setting
too low,”

= The 2014 February Gas Shortage/Curtailment (Forbes) ... In
TEXAS (and California, Mass)

* The 2015 White House Blackout ... (CBSDC)

— “Explosion at Power Plant Responsible for D.C.
Area Outages “ -- grid operations should ensure that no
one event to an asset results in blackout . .
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Why do these things not happen more often?
Hierarchy of Reserves

Unit
Commitment
Replacement (H
Reserve ours) .
. Spinning and Replacement
(30-60 min) l non-spinning P
reserve reserve
Non-Spinnin i
Reserve Reservep(l30 Imlci;n) D|:/|s'patCh
Cost (Minutes) Failure occurs
Non-Spinning | |/ oo
Reserve (10 min) reserve
Automatic
Soinmi Generation 10 0 10 20 30 40 50
pinning ) Control Minutes
¥ Reserve (10 min) (Seconds)

* Margins and off-market actions probably cost Bs of Dollars
* And, the same reserve level may not hold for the NEW grid
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Getting out more of the power grid: converging
optimization and transient stability

" You say: “give me the best energy portfolio-"dispatch”-- but
make sure that | survive transient from any one contingency “.
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Changing nature of the power grid

Control Center
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= New usage drivers (PHEV, bidirectional, smart grid, smart buildings) are changing
completely the response of the system




Increased Exposure to Ambient Conditions

N /\\‘('”\\i’ [ N |
= Plans are for US to have E Vo P R o e
g |V I \ WY\ T ,mj’}/ _
20% renewable energy by : \/// AVIERN v/
2030. ww”ifmwﬁmw”wm”mymmmq
. | | |
* To operate the grid, we R S e A S
need 1-24 hour resource T T mem
forecasts. Wind Power and Deand

= Weather is chaotic, and
sparsely measured.

"= We need to represent its
effect probabilistically (at
least, if we aim for 1-2%
errors)

Wind Power Profiles
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Changing Demand Patterns

= Assuming 50 % solar
penetration.

= More dynamic content.

00000

00000

00000 TS h’ dir
= The error would have to

increase — needing larger
reserves.
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Change in demand (above)
Forecast Error (below)
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Maybe things will turn out all right anyways?
Doubtful -- Germany Energy Landscape

Annual Solar Photovoltaics Production in Selected
Countries, 1995-2008

FIGURE 2
INTERVENTIONS TO STABILIZE THE GRID IN GERMANY BY GRID OPERATOR TENNET, 2003-2012
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Increase Natural Gas Usage =» Very different issues

4y
Natural Gas Transmission Electricity Transmission HHHH ly"uv’

Wind Supply

Supply

* Gas Pipelines Provide Storage Capacity to Mitigate Fluctuations (Ramps & Capacity)
* But, Gas Travels at 30-50 mph (Storage Has to be Built up Well in Advance)

* Aggressive Gas Withdrawals Cascade Upstream the Pipeline (Compromises Stability)
* Shortages of Natural Gas for Power Plants Not Uncommon
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Complexity Drivers over next 15 years

" More pro-active consumer (“prosumer”)

= Significant increase of uncertainty in supply, demand, and
inertia due to renewables expansion and prosumers.

= |ncreased Reliance on Distributed Generation and Natural
Gas.

= Changes in Power Flow patterns

" |ncreased Dynamic Ranges, shorter analyses time scales and
real times.

= Rapidly Increasing Data Streams.
* New Devices. (PHEV, PMUs, HVDC, mass and local storage)

= Larger state spaces, smaller time scales, more physics, more
scenarios,

o MBSO -




Total US R&D Investment

Formerly Booz & Company

The Global Innovation 1000: Comparison of R&D Spending
by Regions and Industries

This graph allows you to compare R&D as a percentage of revenue (R&D "intensity") and total R&D spend by regions and industries as it changes from 2004-2011.
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2. Unusual/unexpected mathematics
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Classical OPF Problem

| ‘ ost
min Z I (PGk) = Z Cgkpék + c1. Pk + cor
kegG keg
subject to PE™ < P, < PEX Engineerinti
in
QEr < Qar < QX CO“Stral
(Vnun)‘ S Vd%c 4 ‘/qi: S (V;cmax)‘Z
max S
|Sim| < Spm Physica, l-aw
Per — Ppi, = dez GinVai — Vi) + Vi Z ixVai + G Vyi)

Qcr — Qpr = Var Z (—BiuVii — G Vi) + Vi Z (GirVai — Bir Vi)

i=1 i=1

Rectangular voltage coordinates: V; = Vy; + V




SDP Relaxations

Feasible Space for Five-Bus System

= SDP relaxations were shown to
be exact in many cases (Javaei
and Low)

12 .............. .......

10 o .......

= Higher order moment
relaxations of Laserre have

PGz(per unit)
(o]

been shown to significantly fill * IO . easive Space
. mm Semidefinite Relaxation
the gap (Molzahn, Lesieutre, 2088 ___p =177

Hiskens). % 2 4 6 8 10 12
P of (per unit)

= However, practical estimates of
the order of relaxations are Source: D. Molzahn (ANL)
lacking.

= We do not have sufficiently fast
SDP implementations.




Holomorphic Embedding Analytic Continuation for
global solution of power flow equations

Wikipedia (HELM)

= Embed the Quadratic Equations *
of AC.PF in a holomorphic V.Y Vi + Yish-% — _:‘
function. U;

= At s=0, trivial solution, at s=1 the
solution you want. Z Y&% + YSh‘/;'(S) .

= Approximate at s=0 efficiently ¥
with a series (polynomial, or RF
approx)

= Do analytic continuation.
= Patent-protected (one PES
meeting paper)

= 2012: (Battelle) “Battelle Acquires N
Equity Position in Gridquant”

Im(log(z))

A. Trias (GRIDQUANT)




Random Graphs (RG)

= Essential if aim towards expert free planning (10s yrs horizons)

= Current RG models do not reproduce power networks well

Western US 4941, 6594 0.0166 21.75

Random (of WECC) 4941, 6594 0.00049 10

Nordic 4789, 5571 0.0801 18.99

Random (of nordic) 4789, 5571 0.00054 8.7

Eastern inter 49597, 62985 0.071 35.8 96
Pref. attach (eastern) 49597, 62966 0.0006 7.2 18
Small world p=0.0882 (eastern) 49597, 62906 0.27 36.6 96

M Halappanavar, PNNL. (ASPL== average shortest path length)




Statistical Mechanics of Cascade Failures

Cascades are very rare and
very costly events.

2003 EIC outage: 50million
people w/o electricity.

We do not have enough
data for a data-driven
model.

There is a lot of work in
descriptive cascade models.

Is there a probabilistic, first-
principles cascade model?

Is there an energy function?

This would allow chemistry-
like statistical mechanics.

It would require good noise
models.

X=AV ®O(x)+{

Extension of Hamiltonian
dynamics.
A negative sdf, invertible,

Does not model controls.

Courtesy: Chris de Marco, Wisconsin
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Statistical Models of Sub-Second Noise

= Evidence of non-Gaussian, heavy-tailed, complex spectrum.
* Too Complex for AR models to cut it.

Histogram (pValue=0.00%)
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Summary: Unexpected/Unusual Mathematics

= SDP relaxation very promising.

= Analytic continuation is intriguing

" Good random graph models for grid are a challenge

= Hamiltonian-based cascade models

= Sub-second noise is more complex than one might think.
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3. Stochasticity/Probabilistic Modeling




Sources of Uncertainty

= Reformulations: there appears to be a big push for
probabilistic modeling and decision making in light of
increased renewable penetration.

= See the FERC Technical Conferences.

= However, such techniques do not appear to be used in a
major way operationally (at all? )
= Upfront cost increases, but so does reliability.
* To model:
— Weather
— Demand
— Sub-second noise.
— Fuel Cost
— Reliability




Stochastic unit commitment/economic dispatch w. wind

min COST——E(Z Y el el + j = Most data approaches lose
JEN et coherence after 2-3 hrs.

Ky seS

S put Y pi=D,,seS,keT

N N = Numerical weather

o wind . . .
Z;,stﬁ NE Py 2D +R.,s€S,keT prediction (NWP) expensive
JE€ JEN ying
ramping constr., min. up/down constr. = NWP was never meant to

simulate < 1 km resolution.

Thermal generator

/Wind farm

Wind Forecast — WRF(Weather Research and Forecasting) Model
— Real-time grid-nested 24h simulation
— 30 samples require 1h on 500 CPUs (Jazz@Argonne)
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Hybrid NWP/Data Models

=joint distribution of weather simulations (NWP) and observations

(Obs)

= wind speed prediction fusing NWP
and Data

classical approach

augmented approach

Yi0bs

(YObs) NN—<(MObs> (
Ynwp pNwp ) 7\ E b nwp

2Obs, NWP
Y INWP

)

Surface wind speed forecast
improvement [%] Jan 2012

Julie Bessac, Emil Constantinescu, and Mihai Anitescu;
Stochastic simulation of predictive space-time scenarios of
| wind speed using observations and physical models, 2015.
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Hybrid Photovoltaic-H2 System

PV-Generator

Solar
Radiation Load Demand
DC-Busbar
¢ DC/DC T
= / =
Power b\é‘ /Converters\ = l
Losses - .
Electrolyzer Fuel Cell Secondary
Power - e

Losses I \
H,
Buffer Power

L@_ H,—Storage Losses
O, or Air

Compressor

Storage

* Operating Costs Driven by Uncertain Radiation uieberg, 2004
* Performance Deteriorates by Multiple Power Losses
Problem: Operate to Minimize Operating Costs +
Maximize H, Production
Subject to: Energy Balances; State-of-Charge, Fuel Cell

Model:

and Electrolyzer Limits
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Hybrid Photovoltaic-H2 System

Load Satisfaction Deterministic (“Optimization on Mean”) vs. Stochastic

Deterministic Fails to Satisfy Load

O — : : : : :
a1l Stoonastie .
= 3 .
7 2- |
S 1 MM M J J t M
oL KA b Ll ALY
o 50 100 150 200 250 300 350

Time [Days]

Therefore, the alternative to stochastic programming can turn out infeasible !!

Handling Stochastic Effects Particularly Critical in Grid-Independent Systems

V. Zavala, M.A, T. Krause
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Gas Networks
Transport Equations for link / € £:= L, U L,

19, 1 0
ape L pgdie
ot Ag Pr ox Ad
1 0f, 0 8 ‘
1 9/ L 9P i £5 fel fel _ 0 Oumae) in ot oot
Ay Ot or  7w2D; py Ié—>O
ff’xzo — Zn fe‘xzo f£|w:L4
felpep, = 12" ey Ptleer,

pe’x:Le - 97“60(6)

pe|m:0 = Hsnd(ﬁ)a le L:p

pﬁ’x:() — esnd(ﬁ) + Aby, L € L, i
Conservation at node n € N/ out n
2 0
> St X s X ST ) =0
Lrec(f)=n i:sup(i)=n L:snd(£)=n j:dem(j)=n
d;

Compression Power for link / € L4
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Stochastic Versus Deterministic Gas Pipeline
Operations for Electricity

Nominal Demand High Demand Nominal Demand High Demand

18 . - - 18

18 . - - 18

16 i 16F
16 { 16}
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141 1 14r |

12r 12} |

10 108

6 . 6 6l 1 6l

0O 500 1000 1500 0O 500 1000 1500 0 500 1000 1500 0 500 1000 15

Length [km] |l onnth [kl

V. Zavala
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Converging Infrastructure leads
to increased weather sensitivity

* (Forbes article on Feb 2014) events.

= California’s electric grid operator asked
generators to reduce their gas usage.

" —|n Texas, which produces more natural
gas than any other state, the Electric

Reliability Council of Texas (ERCOT) called ,“

gas-scarcity state of emergency.

* —In New England the price of natural gas
to soar 20-fold to more than $100 per
thousand cubic feet. Coal, Jet Fuel, Oil
plants were emergently started.

= This may have been foreseeable with
probabilistic analysis tools.

MiCS -

L
]

U.S. Electrical Transmission Syiétem

h

50 -



Picture and Challenges for Stochastic Modeling

= Space-time, non-stationary, models of uncertainty.
= High quality PDFs of weather.
"= New physics: PDEs. DAEs.

* (addition cascades, sub-second noise)

* The benefits are increased reliability and more transparent
pricing, but not yet operationally widespread.

= Challenge: Elicit Risk Functionals out of Decision Makers.




4 Computing/Supercomputing




State of Computing

= Computing is central on all these analyses.

= Parallel computing is starting to make inroads, but the use of
supercomputing is rare.

* However, it is quite probable it will cost less than using
humans for scenario screening and be much more accurate.

= E.g N-1 scenario dispatch over an RTO area, with stochasticity
in demand and supply.

— 10000 x 100 scenarios x 10000 degrees of freedom.

" |tis certainly worth asking to what extent our approaches for
certain problems scale to that level.




Stochastic programming - computational patterns

2" stage computations

= Computational pattern

Optimization
15t stage computations

Optimization

Optimization

= Security-Constrained Problems.
= Two Stage Stochastic Programming
= Model Calibration.

Mihai Anitescu - Optimization under uncertainty
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Incomplete augmented factorization

= Revisiting sparse linear algebra for shared-memory, multi-core acceleration
T
Ki Bz' L11 0 U11 U12

= L,U,, = _BiTKi_lBi
B, 0 L21 Lzz 0 Uzz

1

= Halt the sparse factorization before factorizing the bottom-right block
= Sparsity of B;is naturally accounted for (symbolic factorization)
= Dense matrix block operations ensure best multi-threaded performance

= Difficulty: symmetric indefinite matrices - pivot perturbations needed to
maintain numerical stability

= Perturbation absorbed using preconditioned BiCGStab (all-at-once)
= 10x speed-up of the SC term computations

Test B'K;'B
Problem Solver Threads/MPI  Time (Sec.) C. Petra, O. Schenk, M. Lubin, K. Gaertner, “An
p— augmented incomplete factorization approach
vczd MAS7 ] >3600 for computing the Schur complement in
PARDISO-SC 1 308.193 . e, .
PARDISO-SC ) 157.63 stochastic optimization”, SIAM Sci. Comp., 2014
PARDISO-SC 4 81.11
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Full HPC evaluation of PIPS-IPM on power grid models

Relaxation of 24-hour unit commitment

4 billion decisions variables Solution time: < 40 mins
4.1 billion constraints

FLOPS peak performance 12%
(32,768 scenarios)

Parallel efficiency > 90%

PIPS-IPM Strong Scaling on XK7 "Titan"
(up to 16k MPI processes, 64k threads, k=1,024)

100

PIPS-IPM Strong Scaling on XC30 "Piz Daint"

(up to 8k MPI processes, 32k Threads, k=1,024)
100
10
10
= O
f :
1 1
zmm*s mm;\~\"“-._u92m*s 512 nodes 1024 nodes 2048 nodes
e TOtal e sparse e dense COMM. e MiSC e TOtal e sparse dense COMM. s MiSC
0.1 0.1
C. Petra, O. Schenk, M. Anitescu, “Real-time Stochastic Optimization of Complex Energy Systems on

High Performance Computers”, accepted to IEEE Computing in Science & Engineering (CiSE), 2014.
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Some Challenges

= The usual suspects: nonconvexity and integrality.

= Scenario Clustering. (Contingency x Load x Demand x
Weather)

= Convergence of Planning and Operations = Convergence of
optimization and Dynamics (including MINLP + Dynamics)

= Very Long Time Horizons in Planning.

= Very large scale nonlinear programming, -- using
decomposition.

= Rolling horizon: Warm/hot starting.




5. Decision-Oriented Algebraic Modeling
for Complex Systems
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State of Modeling in Optimization

= QOptimization shines in the simplicity and power of its
abstraction.

= Compare with partial differential equations.

= QOptimization is one of the few areas where algebraic
modeling is common (e.g AMPL, GAMS, PyOMO etc).

* On the other hand, for power grids we need to incorporate
new patterns fast, and support parallelism, dynamics, PDEs.

* We may also be a very small market for AML providers.

" For huge problems, the pricing model per core does not suit
us.




DIY Algebraic Modeling using Julia (Lubin et al)

m = Model (:Max)
= Julia: a high-level, high- CdefVar(m, 0 <= x[j=1:N] <= 1)

performance, open-source @setObjective(m, sum{profit[j] * x[j], j=1:N})
@addConstraint(m, sum{weight[j] * x[j], j = 1:N} <= C)

dynamic language for

technical Comput'lng Table: Linear-quadratic control benchmark results. N=M is the grid size. Total
- . time (in seconds) to process the model definition and produce the output file in
keeps product|V|ty of LP and MPS formats (as available).

dynamic languages without
giving up speed (2x of C/C+
+/Fortran)

JuMP/Julia  AMPL  Gurobi/C++  Pulp/PyPy  Pyomo
N LP MPS MPS LP  MPS LP  MPS LP

_ 250 05 09 08 12 11 83 72 133
= Macros instead of operator 500 20 36 3.0 45 44 276 244 534

1,000 92 155 116 176 17.3 1082 975 2147
poor performance).

= |deal for creating and = Allows for different levels of user

extending AMLs without expertise within same language.
giving up speed JuMP

) = We started using it last year, 3 of us
(Lubin et al.) spend > 50%, one 100%.
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Example DIY: Parallel SP extension StochJuMP

= Extension of Julia JuMP for stochastic LP/QP/MILP/
= Interfaced with PIPS, runs efficiently on “Blues” LCRC cluster (MPI)
= AMPL took 3 days to instantiate and 1 hour to run on BG.

25 1 m = StochasticModel(NS)
2
pd 1 3 #Stage 0
. 4 @defvar(m, @ <= Pgen_f[i=GENTHE] <= np_capThe[i])
20 ® 5 @defVar(m, @ <= PgenWin_f[i=GENWIN] <= np_capWin[i])
o ° & @defvar(m, -lineCutoff#*Pmax[i] <= P_f[i=LIN] <= lineCutoff*Pmax[i])
%) ° 7
.8 \./ & # (forward) power flow equations
8 15 9 @addConstraint(m, pfeq_f[j=BUS],
10 +sum{P_f[1], i=LIN; j==rec_bus[i]}
8 S——p—0 11 -sum{P_f[xg[ i =LIN; j==snd_bus[il]} -
S— +sum{Pgen_f[i], 1=GENTHE; j==bus_genThe[i]}
o 10 m Warm-up *sum(PgenWin_F[i], 1=GENNIN, j==555_genwin[i]}
& » Model -sum{1loads[i], i=LOAD; j==bus_load[i]} >= @)
- o CO m pa Ct second_stage m node begin
5 e Sca Ia ble bl = StochasticBlock(m)
*——— & —— # variables
@defvar(bl, @ <= Pgen[i=GENTHE] <= np_capThe[i])
0 ze @defvar(bl, @ <= PgenWin[i=GENWIN] <= windPower[node,i])
2 @defVar(bl, -lineCutoff#Pmax[i] <= P[i=LIN] <= lineCutoff#*Pmax[i])
4 8 16 32 64 128 256 512 10242048 22 @addConstraint(bl, rampUpDown[g=GENTHE],
N ber of scenarios 'jj # (spol) power f-lcoyw l;gaca?gl‘::[g] <= Pgen[g] - Pgen_f[g] <= @.1np_capThelg])
um 24
25 @addConstraint(bl, pfeq[j=BUS],
26 +sum{P[1]-P_f[i], i=LIN; j==rec_bus[i]}
27 -sum{P[i]-P_f[i], i=LIN; j==snd_bus[i]}
28 +sum{Pgen[i]-Pgen_f[i], i=GENTHE; j==bus_genThe[il}
r: L"“‘; :’f";““l‘ G‘““l"‘z);‘“" b9 cservarcor tEGsEu;lT{:Eg]eTine[)i]-PgenWin_f[i], i=GENWIN; j==bus_genWin[i]} >= @)
D2 K 30 efVar(bl, =
31 @addConstraint(bl, t_conl1[g=GENTHE],
8 3.694 1415 32 t[g] >= gen_cost_the[g]*Pgen_f[g] +
16 3334 1.169 33 1.2gen_cost_the[g]*(Pgen[g]-Pgen_f[gl))
32 2.541 0917 34 @addConstraint(bl, t_con2[g=GENTHE],
35 [g] >= gen_cost the[g]*Pgen flgl)
64 2.863 0.996 36 @defvar(bl, tw[GENWIN] >= @)
128 3.462 0.768 37 @addConstraint(bl, t_w_con1[g=GENWIN],
38 twlg] >= gen_cost_win[g]*PgenWin_f[g] +
256 2.620 0.723 39 1. den_cogt_win [gl* (ngnwiﬁ[g] -Pgenvgli n_f[gl))
512 2.871 0.689 40 @addConstraint(bl, t_w_con2[g=GENWIN],
1024 1.470 0384 » - - 41 twlg] >= gen_cost_win[g]*PgenWin_f[g])
. 42
2048 0500 43 @setObjective(bl, Min, sum{t[g], g=GENTHE} + sum{tw[g], g=GENWIN})
RATIO OF STOCHJUMP TIMINGS OVER SOLVE TIME o end
(x100).

J. Huchette, M. Lubin, C. Petra, Parallel algebraic modeling for stochastic optimization. SC’'14
Workshop for High Performance Technical Computing in Dynamic Languages.
. @S
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Some Challenges in Efficient Modeling

= |f we are to break the barriers between analyses, a good
algebraic modeling environment is necessary. Some
challenges:

= PDEs -- Natural Gas is Hyperbolic.
= Dynamical/differential algebraic systems.

= Determining well posedness of composite models (easier in
dynamics than in optimization — see SIMULINK or Modelica)

= Some abstraction of hierarchical modeling
— interconnect-distribution-building
— vyearly-daily-hourly-second




Summary

= We manage the grid very well today, but it is not a solved
problem.

* The US grid will change dramatically over the next 15 years.

= This will challenge our analytical abilities at multiple levels.
= Mathematical Foundations.

= Probabilistic Modeling

* New Algorithms

" Problem Representations
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Unsolved and unapproached math conceptual

challenges
= Global Optimization with = Spatio-temporal, nonstationary,
nonconvex constraints. data modeling.
= Equilibrium formulations = Rare event simulations
with integer variables = Stochastic numerical simulation
" Probability density for = Multistage stochastic
cascade events. programming
= Random graphs = Error models for engineered
= Multiscale Math for physical processes
Networks = Non-Gaussian noise
= Hybrid, multisource data
analysis.

o @S0




Appendix: links used (verified Nov 3, 2015)

Slide 7: Sources: = Slide 16:
http://washington.cbslocal.com/ http://www.strategyand.pwc.com/
2015/04/07/white-house-state- global/home/what-we-think/global-
department-lose-power-due-to- innovation-1000/rd-intensity-vs-
scattered-outages/ spend-2013-v2stage
http://www.cnn.com/2013/02/08/us/ = Slide 23

superdome-power-outage/ = http://www.forbes.com/sites/
https://emp.lbl.sov/publications/final- christopherhelman/2014/02/08/
report-august-14-2003-blackout-united- how-can-a-nation-awash-in-natural-
states-and-canada-causes-and- gas-have-shortages-and-what-to-do-
recommendation (sec 6, page 73) about-it/

Slide 13:

http://instituteforenergyresearch.org/
analysis/germanys-electricity-market-
balance-must-pay-flexible-back-power/

CMEcy




