Impact of Network Sharing in Multi-core Architectures

G. Narayanaswamy P. Balaji W. Feng
Dept. of Computer Science Mathematics and Computer Science Dept. of Computer Science
Virginia Tech Argonne National Laboratory Virginia Tech
cnganesh@cs.vt.edu balaji@mcs.anl.gov feng@cs.vt.edu
Abstract

_) _ multi-core environments, most implementations of MPI are op-
As commodity components continue to dominate the realm ofimized on such environments by using the network technology
high-end computing, two hardware trends have emerged as majg§y communicating between processes that reside on different
contributors—high-speed networking technologies and multi-core abhysical nodes, while using shared memory for communicat-
chitectures. Communication middleware such as the Message Paﬁ§g between processes on different cores within the same node.
ing Interface (MPI) uses the network technology for communicatingJSing shared memory within the node typically reduces the net-
between processes that reside on different physical nodes, while ygork overhead, resulting in higher performance. Based on such
ing shared memory for communicating between processes on diffeg design for MPI implementations, two conflicting possibili-
ent cores within the same node. Thus, two conflicting possibilitiegies zrise: (i) with the advent of multi-core architectures, the
arise: (i) with the advent of multi-core architectures, the number of,ymber of processes that reside on the same physical node and
processes that reside on the same physical node and hence sharenBfce share the same physical network can potentially increase
same physical network can potentially increase significantly, resumngignificantly resulting inncreasechetwork usage and (ii) given
in increasednetwork usage, and (i) given the increase in intra-nodghe increase in intra-node shared-memory communication for

shared-memory communication for processes residing on the sarPfocesses residing on the same node, network usage can poten-
node, the network usage can potentially decrease significantly. tially decreasssignificantly.

In this paper, we address these two conflicting possibilities and stquased on these two conflicting possibilities, it is not clear

the behavior of network usage in multi-core environments with saMyhether modern multi-core architectures add extra require-
ple scientific applications. Specifically, we analyze trends that resullhems on networks, thus requiring future HEC systems to scale
in increase or decrease of network usage, and we derive insights iqg(b network capacity further, or whether the increase in intra-

application performance based on these. We also study the sharingffqe shared memory communication compensates for the in-
different resources in the system in multi-core environments and ideRyaase in network sharing, thus not requiring any changes.
tify the contribution of the network in this mix. In addition, we study Thus, depending on the application communication pattern

different process allocation strategies and analyze their impact on suaip‘d the layout of processes across nodes, interesting questions
network sharing. about network sharing and scalability need to be studied.

1 Introduction In this paper, we address these two conflicting possibilities and
study the behavior of network usage in multi-core environ-
High-end computing (HEC) systems are increasingly beinghents with sample scientific applications within the NAS paral-
characterized by nodes built out of commodity componentse| benchmark suite. Specifically, we analyze trends that result
Two of the significant trends in the HEC domain have beefn increase or decrease of network usage and derive insights into
the dramatic improvements in networking technology (usingpplication performance based on these. We also study the shar-
high-speed network accelerators) and in processor technoloiy of different resources in the system in multi-core environ-
(with the advent of multi-core architectures). With respect tonents and identify the contribution of the network in this mix.
the networks, several technologies are available in the marketyrther, we study different process allocation strategies and an-
including 10-Gigabit Ethernet [5—7], Myrinet [10], and Infini- alyze their impact on such network sharing. Our experimental
Band (IB) [8]. With respect to multi-core processors, quad-corgesults demonstrate that for some applications multi-core archi-
processors from Intel and AMD are considered commodity totectures can significantly hamper performance because of the
day. Processors with higher number of cores (e.g., Intel Xscal@)creased network sharing, while for others the performance

and multithreading within each core (e.g., SUN Niagara) argan stay constant or even improve because of the better intra-
also becoming available. As these two trends emerge, it is bapde communication.

coming increasingly important to analyze their interaction. . . .
9 gy imp y The rest of the paper is organized as follows. Section 2 presents

Scientists typically use standard parallel programming modekyme background on multi-core architectures and Myrinet.
to develop their applications over HEC systems in a portablgection 3 explains some of the networking issues in multi-core
manner. The Message Passing Interface (MPI) isdthéacto architectures that are of interest to us. Our experimental evalu-

standard in such programming models and is used by a vast mgion is presented in section 4. In Section 5 we briefly discuss
jority of scientific applications. With the growing importance of re|ated work and conclude in section 6.

*This work was supported in part by the National Science Foundation Gral
#0702182, the Mathematical, Information, and Computational Sciences Divi BaCkg rou nd
sion subprogram of the Office of Advanced Scientific Computing Research, Of-
fice of Science, U.S. Department of Energy, under Contract and the Departmdft this section, we present an overview of multi-core architec-
of Computer Science at Virginia Tech. tures and the Myri-10G Myrinet network.

2.1 Overview of Multi-core Architectures programmable processor and DMA engines that eases the de-

.__..Sign and customization of software communication stacks. MX
For many years, hardware manufacturers have been replicati . ! .
yrinet Express) is a high-performance, low-level, message-

components on processors to create multiple pathways allow! ssing software interface tailored for Myrinet. The Myri-10G
more than one instruction to run concurrently with others. Duz

licate arithmetic and floating-point units, coprocessin unitsNICS’ switches, and associated software support both Ether-
b gp » COP 9 net (MXoE) and Myrinet (MXoM) protocols at the link level.

and multiple thread contexts on the same processing die e basic MX-10G communication primitives are non-blocking

examples of such replication. Multi-core processors are con- : . : .
P X P send and receive operations. Our network consists of the Myri-

sidered to be the next step in such hardware replication, Whei G NICs connected by a 24-port Mvrinet switch. The NICs
two or more (mostly) independent execution units are combineg?e connected to the h{)st viapa 133yMHz/64 bit.PCI—X bus

onto the same integrated circuit. They have a programmable LANai processor running at 300

Multi-core architectures are at a high level similar to multi-MHz with 2 MB on-board SRAM memory.

processor architectures. The operating system deals with mul-

tiple cores in the same way as multiple processors, by alloca8 Networking Issues in Multi-cores

ing one process to each core at a time. Arbitration of shared |) . .

resources between the cores happens completely in hardwdftthis section, we cover some of the challenges faced in multi-

with no intervention from the OS. However, multi-core pro-COre environments with respect to networking.

cessors also differ significantly from multi-processor system .

For example, in multi-core processors, both computation unifé'l Sharing of Network Resources

are integrated on the same die. Thus, communication betwe€&me of the important questions when designing high-end sys-

these computation units does not have to go outside the die at&ins based on commodity components is network scalability,

hence is independent of the die pin overhead. Further, architegpecifically, whether the network can cope up with the CPU in

tures such as the current Intel multi-cores, as shown in Figure tgrms of the network data being sent. An important advantage

provide a shared cache between the different cores on the sapfenulti-core architectures is the ability to multiplex network

die. This makes communication even simpler by eliminatinglata streams over a single network hardware medium, which

the need for complicated cache-coherency protocols. potentially helps in better use of network resources. Also, la-
tency between application processes can decrease as more and
more traffic goes over intra-node communication media instead
of over the network. This is good for commaodity applications
but may affect performance of scientific applications because
of sharing of network resources. Similarly, sharing of proces-
sor resources can be both beneficial and harmful. For example,
shared caches in multi-core architectures can reduce latencies
between processes to the scale of nanoseconds, but at the same
time introduce contention for those resources.

3.2 Process Allocation Schemes

In a multi-core cluster, the processes can be arranged among the
nodes in several ways. Applications typically have fixed com-
munication patterns, and allocation schemes provide us the flex-
ibility of modifying which processes get colocated on the same
However, multi-core processors also have the disadvantage @dde. Thus, depending on the allocation scheme, the amount
more shared resources as compared to multi-processor systegfsetwork sharing might increase or decrease. We look at two
That is, multi-core processors might require different cores osommon allocation schemes in this paper: cyclic and blocked
a processor die to block waiting for local shared resources tgllocation.
get freed when it is being used by a different core. Such cons clic allocation allocates each subsequent process cyclicall
tention is even higher when the ratio of the number of cores o y .) q P CY y
the system increases as compared to the other resources (eO the next node in the ring of nodes. For example, with a total
multi-core systems with multiple thread contexts). Further foP.916 processes and 8 nodes, process ranks 0 and 8 W.'” get as-
architectures such as AMD NUMA, each processlor ina m’ulti-s.Igned to node 0, ranks 1 and 9to node 1, and so on. This alloca-
processor system has access to its ’own memory, and hence ot'orr-] ensures good load balance among all nodes. In blocked al-
. . N cation, blocks of processes are assigned to each node in turn.
all memory bandwidth essentially doubles with the number o or example, with 16 processes, 8 nodes and a block size of 2
processors. For multi-core systems however, the overall mem- ' - '
X process ranks 0 and 1 get assigned to node 0, ranks 2 and 3 to
ory bandwidth does not change.

node 1, and so on.
2.2 Overview of Myrinet Network The process allocation scheme can play an important role in the

Myri-10G [10], the latest generation Myrinet developed byKind of communication performed by a process. For example,
Myricom, is a low-latency wormhole routing based high—speecfjor an application that does mostly neighbor communication in
interconnect and supporting data transfers at the rate of FpL-D chain of processes, blocked allocation will probably turn
Gbps. The Myrinet network interface card (NIC) has a userUt t© be better. The reason is that the neighbor processes that

Figure 1:Intel dual-core dual-processor system

Figure 2:Evaluation of network sharing: (a) 16X1 vs 8X2 co-processor and (b) 8X2 virtual processor vs 4X4

a process communicates with are more likely to be on the sande?2 Configurations Used in Experiments
node. The result can be significant reduction in network coms
munication, thereby potentially improving performance. With
more cores on a node, the situation doesn’t improve furthe
however, since there are only a constant number of neighborsc.

his section describes the configurations on which we ran our
xperiments. We use 16 processes for all the NPB benchmarks
ecause this covers the maximum number of benchmarks and
onfigurations for our setup. We note that 16 processes can
Ina 2-D grid of NV x N processes performing neighbor com-be run on different configurations on a multi-core architecture
munication with)M cores in a node, again blocked allocationwith four cores. Picking only those with constant number of
works better than cyclic allocation in localizing more neighborgrocesses on a node, we end up with three configurations:
whenN > M. When)M andN are equal, the same number of 4 16x1 _ 16 nodes, one process on one of the four cores
neighbors coexist with both cyclic and blocked allocation. The
same holds true for a 3-D grid of processes as well. Thus, for * 8X2 -8 nodes, 2 processes, on two of the four cores
neighbor communication, there are higher chances that more® 4X4 —4 nodes, 4 processes, one on each core

neighbors will co-exist with blocked allocation. We start by observing that between each of the three configura-

As another example, for an application which performs tree-likgfljnS t_here are mcreaseq Iev_els of network sharing. With 16X1’.
regular long distance communication, a cyclic allocation strat- ereisno networl_< sharing since each node runs OU'Y one appli-
egy might be a better choice, as it might localize many of thgation process. With SXZ’ however, two processes n each '."Ode
communicating processes within a node. For applications ruffSe the same network mterche card. Hence therg IS two times
ning on large clusters with hierarchical layers of switches, alloMmore network sharing than with the 16X1. case. With 4X4, fou'r
cation schemes that localize branches of trees within the Iowe?;'iocesses use the same NIC, thus making the network sharing
hierarchy might be more beneficial. our times greater than with the 16X1 case. In our experiments,

we ran the 4X4 configuration with cyclic allocation of processes

4 Performance Evaluation between nodes.
To consider the effects of processor sharing, we split the 8X2

In this section, we present our performance evaluation resul 0 two cases again. Our setup consists of a dual-core dual-

of the NAS Parallel berjchmark S“iFe- We follow two diffefe'f“ rocessor system and hence the two processes can be run in
evaluation methodologies. In Section 4.3, we analyze the im: . ;

oo wo different modes:
pact of network and processor sharing in the performance of o 8X2 CO-processor mode: two processes. each running on a
applications. In Section 4.4, we show results with different pro- differentp r0CesSor ' P ' 9
cess allocation schemes. We show results with class B of the i P
NAS benchmarks, but we note that we got similar results for ® 8X2 virtual processor mode: two processes, both run on

classes A and C. the same processor
] In the virtual processor mode, there is increased sharing of pro-
4.1 Experimental Setup cessor resources because both processes are run on the same

Each node in our 16-node cluster setup is a custom-built, dudpf0C€ssor.
processor, dual-core AMD Opteron 2.55 GHz system having .
GB of DDR2 667 MHz SDRAM. The four cores in each systemﬂ'3 Impact of Network Sharing
are organized as cores 0 and 1 on processor 0 and cores 2 and/@start by evaluating the impact of network sharing by running
on processor 1. Each core has a separate 1 MB L2 cache. Alie various NPB benchmarks over each of the three configu-
machines run Ubuntu Fiesty with kernel version 2.6.19 and ar@tions described above. Figure 2 shows the impact network
equipped with Myri-10G network interface cards connected to gesource sharing can have on the performance. As shown in
Myrinet switch. The MPI library used is MPICH2-MX v1.0.6. Figure 2(a), as we move from 16X1 to 8X2 co-processor mode,
All experiments were run at least three times with the processdie performance of all the benchmarks drops (as much as 27%
affinity of each process set to a fixed core to remove the impatar IS). The reason is the increased network sharing in the 8X2
of operating system scheduling anomalies. configuration, where two processes have to share the same net-
work device. Since only one process has been added to every

Figure 3:Network communication time: (a) 16X1 vs 8X2 co-processor and (b) 8X2 virtual processor vs 4X4

node, the chances that a process will communicate predonfienchmarks. The data-size analysis shows a similar trend as
nantly with the process colocated in its hode are slim. the network communication time and corroborates the perfor-

In Figure 2(b) on the other hand, the performance drop is sedfi2nce results we get. For dearth of space, we present those
mainly for CG, FT, and IS, while the other benchmarks perfornfesults in [11].

similarly or show improved performance (in the case of MG)To make our analysis of network sharing more comprehensive,

between the two configurations. Here we see mixed benefit ime also need to analyze the effect of processor sharing. To do
moving to 4X4 because more number of processes are collthis, we compare the performances of 8X2 co-processor and

cated in the same node. Thus, potentially, more shared memd¥2 virtual processor modes. For the co-processor mode, we

communication can happen reducing the possibility of networkun the processes in cores 0 and 2, while for the virtual proces-

sharing. sor mode we run the processes on cores 2 and 3.

To analyze the level of network sharing in the above results, wigure 4(a) shows the performance of co-processor and virtual
profile the network communication time in each of these conprocessor modes in the 8X2 configuration for all the bench-
figurations. Since we are using Myrinet's MX protocol, we pro-marks. We observe a substantial performance difference be-
file the time spent in thenxisend() andmxtest() calls. tween the two modes for all the benchmarks (up to 53% as in
This time represents the time spent by the network in sendinge case of SP). This shows that sharing of processor resources
the data out and thus is an indicator of the overhead of netan be very detrimental for the application.

work sharing. Figure 3 shows the normalized total time speRj, verify our results with processor sharing by using PAPI to

in mxisend() andmxtest() calls for the various config- .o nt\arious hardware performance counters. We first measure
urations. As seen in Figure 3(a), there is an increase in thga hmper of L2 cache misses. As shown in Figure 4(b), the
network communication time for all the benchmarks betwee,a| processor mode sees increased L2 cache misses ranging

16X1 and 8X2 co-processor mode. In other words, moving tg,m 5794 more misses in the case of FT up to 48% more in the
the 8X2 co-processor mode results in more time being spept o of MG.

for network communication because the network resources are i

being shared. Also, the amount of intra-node communicatio/e profile the benchmarks for two types of CPU stall cycles
remains comparatively low, so it is difficult to observe any sig2s Well: those stalling for any resource and those stalling for
nificant benefit from the reduced latency. Of 15 other possiblBlemory accesses. Here we show results only for the CG and
processes with which a process can communicate, On|y one I%P b.enChmarkS; the results for the other benchmarks are simi-
sults in intra-node communication. Thus, there is a 93% chand@l- Figure 5 shows the normalized number of CPU stall cycles
that a process will communicate over the network with anothep@iting for resource and memory for CG and SP benchmarks.
process. These results mimic the performance results where &lPm the graphs, we can see that the virtual processor mode

benchmarks observe a decrease in performance when movigs more resource stalls than does the co-processor mode. SP
to 8X2 co-processor mode. observes up to 73% more resource stalls cycles and 66% more

. L memory stalls, whereas in the case of CG, it is 14% and 17%,
In Figure 3(b), however, the network communication 'ncreaser%spectively.

only for the CG, FT, and IS benchmarks, while for all others

it drops. This again clearly mimics the performance results a§.4 ~ Analysis of Allocation Schemes
seen in Figure 2(b). In this case, moving from the 8X2 vir-

tual processor mode to 4X4 mode results in two processes gélill_ this section, we take a different approach for investigating

ting added to the same node. Thus there is increased capalfﬁf—tw‘_)rk sharing impacts, by performing a comparative study
using the cyclic and blocked allocation schemes with the

ity to perform intra-node communication. Compared to a 939 PB benchmarks. Wi h ; 64
chance of network communication with the 8X2 case, there i enchmarks. We run the experiments on Processes,

only 80% chance with the 4X4 case that a process will ComWith four processes on each of the 16 nodes. Figure 6(a) shows

municate over the network with another process. We anaWi@ﬁe performance of various NPB benchmarks with cyclic and

our results further by profiling the amount of data sent over thBlocked allocation on class B data sizes. The results show tk;at
network as compared to intra-node communication for all thd'e CG benchmark sees an improvement in performance (17%)

Figure 4:Analysis of processor sharing: (a) performance and (b) L2 cache misses

shows that any allocation scheme that localizes the groups of
four processes within a node will have good performance im-
provement. For example, if each of the group of four processes
are localized within a node, the only network communication is
between the boundary nodes. Thus any allocation scheme that
optimizes this strategy will get better performance. We see this
result with blocked allocation in the 16X4 case, which performs
better than the cyclic allocation (see Figure 6).

The FT benchmark performs an all-to-all exchange within sub-
communicators along the row and column in a processor grid.
Thus, having more cores in a node allows some processes in
either the row or the column subcommunicators to be local to
a node. But the communication as part of the other subcom-
municator still has to go through the network. Although some
amount of network communication is saved, there is still suf-
while for the other benchmarks, performance remains the sarfigient sharing of network resources. Similarly, choosing an
or drops. appropriate allocation sc;heme m|ghF help in localizing all the
nodes of a sub-communicator, but still there is enough network
To further understand the reasons behind the trends observegfic between the other subcommunicator to nullify this ad-

we profile the network communication time of the benchmarkgantage. In our results, we see a similar behavior, where the
similar to the profiling done in section 4.3. Figure 6(b) showsgyerformance drops for FT when moving from 16X1 to 4X4 be-
the normalized total communication time for each of the benchegyse of the increased sharing of the network but remains the
marks for cyclic and blocked cases. From the graph, we obserygme for the cyclic and blocked allocation strategies. The IS
that CG observes a substantial reduction in communication tinigsnchmark has a similar analysis as FT as it also does predom-
when running in blocked allocation mode. For all other benchinantly all-to-all exchanges. This analysis for FT and IS ties in
marks, there is an increase in network communication time. Wge|| with the network data size analysis results shown in [11].

note here that MG observes more than a six fold increase {esigning efficient network topologies for FT and IS can be a
communication time, which explains why the performance ognajlenging task given the all-to-all pattern.

MG drops heavily when using blocked allocation. The data siz
analysis shows that the amount of data communicated over t

Figure 5:CPU stall cycles

G has an interesting pattern wherein there is some clustered

network for CG halves when moving from cyclic to blocked al_communicati_on in groups of 4, but these clusters themselvgs
location, while MG sees a slight increase. This also verifies th@® 9rouped in clusters of 16. Each process communicates with

performance results that we observe. Refer to [11] for the daf0ther process which is at increasing distances of increasing
size analysis results powers of two from it. Thus, any process allocation strategy

that puts processes at distances of powers of two on the same
4.5 Application Processing Pattern Analysis node will be beneficial for the application. For example, when

Th . . | d licati f ¢ the number of nodes is a power of two, cyclic allocation will
e previous sections evaluated application performance frog); g ,cp, processes on the same node. This situation explains
the viewpoint of system and network characteristics. In thi

; .) . X . hy MG performs better with cyclic allocation than blocked
section, we tie in the analysis developed in previous sections Iyqcation with 64 processes and also why the 4X4 cyclic con-
the application communication patterns. figuration performs better than the 8X2 configuration.

The CG benchmark performs communication within groups OéT, LU, and SP follow complex communication patterns that

four processes with certain boundary nodes communicating bﬁfake analysis from the processing pattern difficult. Changes

tween the groups. As an example, Figure 7 shows the commyy . nfigurations or allocation schemes may not significantly
nication pattern of CG with 16 processes. This pattern clearly

Figure 6:Cyclic vs blocked: (a) performance and (b) network communication time

affect the amount of network sharing. For example, our resultsetwork sharing can have a significant impact on performance,
although sharing of processor resources has a much bigger im-
pact. With a good understanding of the application commu-
nication pattern, a different process allocation strategy could
potentially reduce the effects of network sharing. For future
work, the network sharing analysis studied in this paper can
be incorporated into MPI process managers (suchnpd,

in previous sections don’'t seem to follow any major trends.

In summary, we saw in Sec-
tion 4.3 that network sharing
does affect the performance of
applications, although the re-
sults might pale in compari-
son with the effects of pro-
cessor sharing. Nevertheless,
network sharing is an impor-
tant concern that has to be ad-
dressed. We also saw that us-
ing a different process alloca-
tion strategy has the potential

to reduce the effects of net- Figure 7:CG pattern

lamboot

etc) which can lay out processes more intelligently

across nodes.

References

(1]

(2]

work sharing. Furthermore, knowledge of the application pat-
tern can give better ideas for designing better run-time configu-

rations for applications.

5 Related Work

(3]

A lot of work has been proposed on optimizing application per- 4]
formance on multi-core architectures. In [3], Curtis-Maury et
al. look at OpenMP communication on multi-core processors.
Chai et al., in [2], look at the performance of applications based
on the amount of intra-CMP, inter-CMP and inter-node com-[5]
munication performed. We investigate the problem with a dif-
ferent approach by looking at the amount of sharing of network®!
resources. In [1], Alam et al. perform extensive characteri-
zation of various scientific workloads on the AMD multi-core (7]
processor. But their work looks only at a single multi-core node,
whereas we look at a cluster of nodes and at the impact of the

network as well.

Similarly, many articles and papers have investigated the com-

(8]
[0

munication patterns of various applications and benchmarks [4,
9,12, 13]. But none of these papers focus on multi-core archi-

tectures in their evaluation, which we address here.

6 Conclusions

With the advent of multi-core architectures, designers of highp2

[10]
[11]

end systems are faced with the challenge of ensuring that the in-

terconnection network scales well with more processing coreg.3]

We analyze this problem by studying the impact of network
sharing on multi-core architectures. Our results indicate that

S.R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter. Charac-
terization of scientific workloads on systems with multi-core processors.
In 1ISWG pages 225-236, 2006.

L. Chai, Q. Gao, and D. K. Panda. Understanding the impact of multi-core
architecture in cluster computing: A case study with intel dual-core sys-
tem. InCluster Computing and the Grid, 2007. CCGRID 2007. Seventh
|IEEE International Symposium ppages 471-478, 2007.

M. Curtis-Maury, X. Ding, C. D. Antonopoulos, and D. S. Nikolopou-
los. An evaluation of openmp on current and emerging multi-
threaded/multicore processors. FHirst International Workshop on
OpenMR Eugene, Oregon, June 2005.

R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural re-
quirements of parallel scientific applications with explicit communica-
tion. In 20th Annual International Symposium on Computer Architecture
pages 2-13, May 1993.

D. Dalessandro, P. Wyckoff, and G. Montry. Initial performance evalua-
tion of the neteffect 10 gigabit iwarp adapter.RAIT '06, 2006.

W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda. Performance
characterization of a 10-gigabit ethernet toel HREE Hotl, Palo Alto, CA,
2005.

W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cottrell, O. Martin, F. Coc-
cetti, C. Jin, D. Wei, and S. Low. Optimizing 10-gigabit ethernet for net-
works of workstations, clusters and grids: A case studys@103 2003.

InfiniBand Trade Association. http://www.infinibandta.org/.

J. Kim and D. J. Lilja. Characterization of communication patterns in
message-passing parallel scientific application progranSANPC '98:
Proceedings of the Second International Workshop on Network-Based
Parallel Computingpages 202-216, London, UK, 1998. Springer-Verlag.

Myricom. Myrinet home page. http://www.myri.com/.

G. Narayanaswamy, P. Balaji, and W. Feng. Impact of network sharing in
multicore architectures. Technical report, Computer Science department,
Virginia Tech, March 2008.

R. Riesen. Communication patterns. Workshop on Communication
Architecture for Clusters (CSC 20Q63hode Island, Greece, April 2006.

J. S. Vetter and F. Mueller. Communication characteristics of large-scale
scientific applications for contemporary cluster architectude$?arallel
Distrib. Comput, 63(9):853-865, 2003.

