
OSPRI: An Optimized One-Sided
Communication Runtime for
Leadership-Class Machines

Jeff Hammond

Argonne Leadership Computing Facility

11 October 2012

Jeff Hammond PGAS12

Overview

Motivating application: NWChem, which uses Global Arrays

Target Hardware: Blue Gene/P and Cray Gemini

Intellectual driver: seeking fixed-point in one-sided

Adapt for new applications (FMM) and new hardware (BG/Q)

OSPRI (One-Sided PRImitives) attempts to build on 20+ years of
community understanding of one-sided in SHMEM, ARMCI,
MPI-2, etc.

This talk is about implementation details and performance, not
API syntax and semantics.

Jeff Hammond PGAS12

PGAS in quantum chemistry

The key reason for the initial and sustained use of Global Arrays
(GA) by NWChem is programmer productivity, such as:

hides complexity of distributed data (lots of n-d arrays)

convenience math routines

simple dynamic load-balancing

solves local memory limitations w/o disk

ARMCI emerged later as the communication runtime component
within Global Arrays.

The NWChem project started before MPI was available.

Jeff Hammond PGAS12

Global Arrays behavior

GA Get arguments: handle, global indices, pointer to target buffer

1 translate global indices to rank plus local indices

2 issue remote GetS operations to each rank

3 data arrives at initiator from each target rank

4 local buffer assembled

Jeff Hammond PGAS12

Global Arrays components

GA

A
ddress

T
ransla tion

D
ata

M
ovem

ent

M
em
ory

A
llocati on

NWChemNWChem

Global Arrays

ARMCI

GA
interface

ARMCI
interface

MPI and parallel math libraries (e.g. ScaLAPACK) are largely
orthogonal. All math routines are collective.

Jeff Hammond PGAS12

Key ARMCI functionality

One-sided communication:

ARMCI Put, ARMCI Get, ARMCI Acc(umulate)

ARMCI PutS, ARMCI GetS, ARMCI AccS

Remote atomics:

ARMCI Rmw — scalar integer fetch-and-add and swap only

Synchronization:

ARMCI Fence (1-to-1), ARMCI AllFence (1-to-all)

Memory management:

ARMCI Malloc (collective), ARMCI Free,
ARMCI Malloc local, ARMCI Free local (registration)

Jeff Hammond PGAS12

Hardware Properties I

Leadership-class is a DOE term for “top 10”-type systems, which
tend to be tightly integrated and custom, not COTS.

10-100K nodes, 200K-2M cores and growing

stripped-down OS (e.g. Catamount, BG CNK)

processor-network balance

connectionless, reliable (at least at SW)

NIC close to chip, powerful DMA

Our goal is to use hardware as much as possible and to make
optimizations in software optional and tunable.

Jeff Hammond PGAS12

Hardware Properties II

Cray Gemini, Blue Gene/P, Blue Gene/Q and PERCS drove
thinking about OSPRI design.

network parallelism:
e.g. BG/P and BG/Q can hit all links at once, BG/Q
multi-context support.

dynamic routing:
e.g. PERCS and Gemini ordering is expensive

slow CPUs:
e.g. power-efficient BG cores are often the bottleneck

buffer registration:
e.g. trivial on BG/P, per-context on BG/Q,
expensive on Gemini (and IB. . .)

Jeff Hammond PGAS12

Cray Gemini Put Bandwidth

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 1 10 100 1000 10000 100000 1e+06

B
a
n
d
w

id
th

 (
M

B
/s

)

Bytes

Gemini Put Performance

ADAPTIVE
DETERMINISTIC

INORDER

Jeff Hammond PGAS12

Blue Gene/P details

There was no documentation on DCMF performance behavior so
we had to ask IBM and then measure (trust, but verify).

DCMF provides RDMA Put and Get as well AMs (Send)

memcpy slower than DMA for messages larger than L1

no performance from network parallelism (but channels work)

dynamic routing not beneficial (designed for all-to-all)

contention is a huge problem (not solvable in OSPRI)

interrupts are useful, but expensive (blow out L1)

Jeff Hammond PGAS12

Performance Results

Jeff Hammond PGAS12

Put latency I

 1

 2

 4

 8

 8 64 512 4096

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size (bytes)

Put Latency

DCMF-LocalCompletion
OSPRI-NoCHT-LocalCompletion
OSPRI-Atomics-LocalCompletion

OSPRI-CS-LocalCompletion

Jeff Hammond PGAS12

Put latency II

 1

 2

 4

 8

 16

 32

 64

 8 64 512 4096 32768

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size (bytes)

Put Latency

OSPRI-LocalCompletion
OSPRI-RemoteCompletion

ARMCI-LocalCompletion
ARMCI-RemoteCompletion

MPI2-RMA-Passive

Jeff Hammond PGAS12

Ordering semantics I

Standard data hazards (WAW, WAR, RAW) insufficient for
one-sided.

In general, we have both RDMA and non-RDMA
communication (e.g. DCMF Put v. Send).

For RDMA, packet fifo is the end, AM to CPU then memory.

Ordering packets is fine for RDMA in practice.

Same operation may use multiple protocols:
Eager v. Rendezvous or Direct v. Packed.

Local access is another “protocol” to handle (if used).

{Put,Get,Acc,Rmw}After{Put,Get,Acc,Rmw} data hazards with
one-sided (Also: {Contig,Strided}After{Contig,Strided}).

Jeff Hammond PGAS12

Ordering semantics II

We define the following:

Strict Ordering (ARMCI location consistency):
all blocking operations happen in-order.

Partial Ordering (what GA requires):
blocking operations of a given type happen in-order.

No Ordering: User has to manage all ordering with Fence.

The goal is to optimize all of these and then allow the user to ask
for what they need. OSPRI won’t penalize user more than
hardware requires if SO used.

User can’t experiment if they don’t have quality implementation of
multiple options in the same runtime (UPC strict v. relaxed good).

Jeff Hammond PGAS12

Ordering semantics III

Motivation from implementations:

SO requires AMFence or end-to-end completion of Acc on BG
and lock-test on Gemini (assuming LGCPU).

PO allows all-RDMA for Put and Get on BGP, BGQ and
Gemini.

Multi-protocol (Direct vs. Packed) is local check on BG
because we know about outstanding Puts.

Commutative-associative accumulate operations are not
difficult to handle in PO.

NO allows more network parallelism than PO.

If user disables progress in AMs, need all-RDMA implementation
anyways.

Jeff Hammond PGAS12

Effect of ordering semantics

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 8 64 512 4096 32768 262144

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size (bytes)

ARMCI-over-OSPRI Get Latency

Strict-Ordering (SO)
Partial-Ordering (PO)

Jeff Hammond PGAS12

GA Put/Get — 1D remote

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 8 64 512 4096 32768 262144

B
a
n
d
w

id
th

 (
M

B
/s

)

Dimension of 1D patch

1D Put/Get (remote)

GAGet-ARMCI
GAGet-OSPRI
GAPut-ARMCI
GAPut-OSPRI

1 LINK

Jeff Hammond PGAS12

GA Acc — 1D remote

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 8 64 512 4096 32768 262144

B
a
n
d
w

id
th

 (
M

B
/s

)

Dimension of 1D patch

1D Accumulate (remote)

GAAccumulate-ARMCI
GAAccumulate-OSPRI

1 LINK

Jeff Hammond PGAS12

Importance of packing

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 1 8 64 512

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size (bytes)

GetS Latency

ARMCI
OSPRI

(1024 chunks of message size)

Jeff Hammond PGAS12

GA Put/Get — 2D remote

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128 256 512

B
a
n
d
w

id
th

 (
M

B
/s

)

Dimension of 2D patch

2D Put/Get (remote)

GAGet-ARMCI
GAGet-OSPRI
GAPut-ARMCI
GAPut-OSPRI

1 LINK

Jeff Hammond PGAS12

GA Acc — 2D remote

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64 128 256 512

B
a
n
d
w

id
th

 (
M

B
/s

)

Dimension of 2D patch

2D Accumulate (remote)

GAAccumulate-ARMCI
GAAccumulate-OSPRI

1 LINK

Jeff Hammond PGAS12

Offloaded 2D Accumulate

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1 8 64 512

B
a
n
d
w

id
th

 (
M

B
/s

)

Dimension of 2D Matix

OSPRI Acc Bandwidth

OSPRI Acc-No Buffering
OSPRI Acc-Buffering

1 LINK

Jeff Hammond PGAS12

Other performance details

Rmw is identical to Acc. because we remote complete both
(Acc. flow-control problems on BGP); achieves the max of
what DCMF can do (no HW atomics on BG).

Replace O(N2) registration with Allgather (huge impact on
FMM code).

Fence and AllFence are cheap (RDMA flushes RDMA, AM
flushes both) and scalable (also fixed in ARMCI).

Optimize local access, which GA (esp. NWChem) uses
extensively, but not POSIX shared memory due to DMA
performance and consistency issues (how to lock a node?).

Jeff Hammond PGAS12

ScaFaCoS Application Performance

ScaFaCoS is an N-body solver that uses the Fast Multipole
Method.

Implemented from the beginning using one-sided, first with
ARMCI and now with OSPRI-lite.

Ivo targeting trillions of particles on Blue Gene/P, wants all
the cores and all the memory.

Reduced set of calls - Malloc+Free, Put+Fence, Notify+Wait
(or Acc+spin) - so we disable remote agency.

ARMCI on BG/P stopped scaling/working at 1024 nodes
(same for NWChem).

Jeff Hammond PGAS12

ScaFaCoS Scaling

128 256 512 1024 2048 4096 8192 16384 32768

Number of Cores

10

100

600

W
a

llt
im

e
 [

s
]

Ideal Scaling

Unsorted Data
Presorted Data

Jeff Hammond PGAS12

ScaFaCoS Application Performance

Trillion-particle FMM performance on Jugene with OSPRI.

Time (s)
Partition Particles Unsorted Presorted

32768x1 1030607060301 3285 2203
73728x4 2010394559061 2288 530
73728x4 3011561968121 3812 715

Billion-particle FMM performance on Hopper with OSPRI.

Time (s)
Partition Particles ARMCI-MPI OSPRI-DMAPP

168x24 1073741824 22.57 8.32

All other Hopper runs failed in NIC. . .

Jeff Hammond PGAS12

Comparison of one-sided runtimes

Feature Progress Accum. NonBlock. NonContig. Atomics

OSPRI Yes Yes Yes Yes Yes
ARMCI Yes Yes Maybe Yes Yes
MPI-3 Maybe Yes Yes Yes Yes

SHMEM Yes No Yes Partial Yes
MPI-2 Maybe Yes Yes & No Yes No

GASNet No No Yes No No

Obviously, GASNet can do anything with active-messages, but
these need polling for progress, which is totally reasonable for a

compilation target.

The arguments for OSPRI over ARMCI or MPI-3 are primarily
performance and programmability, not features.

Jeff Hammond PGAS12

Where is this going?

OSPRI for BG/P is not going to be used except by ScaFaCoS. . .

Rewrite from the ground up, missing some optimizations, and
release for PAMI and DMAPP by the end of the year (?).

Reference implementation using MPI-RMA (MPI-2 then
MPI-3) in 2013, possibly POSIX shm (for SGI?).

Implement OpenSHMEM and GA-lite (basic features) on top
of OSPRI in 2013.

Infiniband work only if funded to do so.

Less interested in NWChem; more interested in new
applications (and PGAS languages).

I implemented every feature Ivo requested because I wanted a user
other than myself. I will be very happy to work with interested
parties on features and/or other ports.

Jeff Hammond PGAS12

Acknowledgments

Co-authors: Jim Dinan, Pavan Balaji, Ivo Kabadshow (FMM), Sreeram
Potluri (wrote most of the code) and Vinod Tipparaju.

Michael Blocksome, Brian Smith and
Sameer Kumar, for explaining DCMF.

George Almasi for discussions of APGAS.

Howard Pritchard, for explaining DMAPP.

Sriram Krishnamoorthy, for explaining
ARMCI.

The Argonne Leadership Computing Facility gave me the freedom to

work on this project.

Jeff Hammond PGAS12

