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Abstract—Power-hungry Graphics processing unit (GPU) ac-
celerators are ubiquitous in high performance computing data
centers today. GPU virtualization frameworks introduce new
opportunities for effective management of GPU resources by
decoupling them from application execution. However, power
management of GPU-enabled server clusters faces significant
challenges. The underlying system infrastructure shows complex
power consumption characteristics depending on the placement
of GPU workloads across various compute nodes, power-phases
and cabinets in a datacenter. GPU resources need to be scheduled
dynamically in the face of time-varying resource demand and
peak power constraints. We propose and develop a power-aware
virtual OpenCL (pVOCL) framework that controls the peak
power consumption and improves the energy efficiency of the
underlying server system through dynamic consolidation and
power-phase topology aware placement of GPU workloads. Ex-
perimental results show that pVOCL achieves significant energy
savings compared to existing power management techniques for
GPU-enabled server clusters, while incurring negligible impact
on performance. It drives the system towards energy-efficient
configurations by taking an optimal sequence of adaptation
actions in a virtualized GPU environment and meanwhile keeps
the power consumption below the peak power budget.

I. INTRODUCTION

Graphics processing units (GPUs) are ubiquitous accelera-
tors in high performance computing data centers today [1], [6],
[17], [19], [20], mainly due to their excellent performance-to-
power ratio and the availability of general-purpose program-
ming models, such as CUDA and OpenCL. While GPUs can
deliver much higher performance than CPUs, it comes at the
cost of significantly higher power consumption. The thermal
design power (TDP) of a high-end GPU, e.g 512-core NVIDIA
Fermi, is as large as 295 watts(W), while a high-end quad-
core x86-64 CPU has a TDP of 125 watts. Hence, the usage
of power-hungry GPUs in the already power-consuming high
performance computing systems must be carefully evaluated
with respect to the impacts on overall system power efficiency.

Traditionally, GPU-accelerated application executions are
tightly coupled to the physical GPU hardware, requiring
each computational node to be equipped with one or more
local GPUs. Recent efforts on GPU virtualization such as
VOCL [21] and rCUDA [2] expose physical GPUs as de-
coupled virtual resources. Virtualization enables better man-

agement of GPU resources for improved resource utiliza-
tion and fault tolerance. However, the potential use of GPU
virtualization for power management in GPU-enabled server
clusters is not well-explored. In this paper, we investigate and
enable dynamic scheduling of GPU resources for online power
management in virtualized GPU environments.

There are significant challenges in achieving online power
management of GPU-enabled server clusters in a data center
environment. Today, most data center cabinets are equipped
with 3-Phase Cabinet Power Distribution Units (CDUs) to
cater for increased power demands, greater equipment densi-
ties and cost reduction initiatives. However, as an artifact, the
underlying system infrastructure shows complex power con-
sumption characteristics depending on the placement of GPU
workloads across various compute nodes, power-phases and
cabinets. In addition, the power drawn across the three phases
in the same cabinet needs to be balanced for better power
efficiency and equipment reliability. This is demonstrated by
our motivational case study using NVIDIA Tesla GPU-enabled
server clusters and Switched CW-24VD/VY 3-Phase CDU.
Furthermore, power delivery and cooling limitations in data
centers impose peak power constraints at various levels. For
instance, server racks are typically provisioned for 60 Amps
of current. This could become a bottleneck for high density
configurations, specially when power-hungry GPUs are used.

In this paper, we present a power-aware virtual OpenCL
(pVOCL) framework that controls the peak power consump-
tion and improves the energy efficiency of GPU-enabled
server clusters. It automates power management in data center
cabinets by performing dynamic consolidation and power-
phase topology aware placement of GPU workloads. For GPU
virtualization and virtual GPU migration capability, it utilizes
the VOCL framework. However, our power-aware dynamic
placement and migration approach is applicable to other GPU
virtualization frameworks as well.

We study the effects of load imbalance across various
power-phase circuits of a CDU on the power-efficiency of a
GPU-enabled server cluster. We develop an automated power
manager that utilizes power-phase topology awareness and dy-
namically drives the cluster towards more power-efficient con-



figurations. The pVOCL runtime system periodically checks
the configuration of server clusters in the face of dynamically
varying GPU resource demands. Then, it performs an optimal
sequence of adaptation actions that will drive the system to-
wards the most power-efficient configuration, without violating
the given power budget. The adaptations involve changing the
power states of compute nodes and performing live migration
virtual GPUs. We evaluate the efficacy of the pVOCL power
manager framework by measuring the power and energy usage
of various application kernel benchmarks under the influence
of pVOCL, in comparison with the power-phase unaware static
power management solution.

The rest of the paper is organized as follows: Section II
presents an overview of the VOCL framework. A motivational
case study is discussed in section III. The pVOCL framework
and its design is described in details in section IV. We evaluate
the pVOCL framework in section V. The related work is
discussed in section VI. Section VII concludes our paper.

II. OVERVIEW OF VOCL FRAMEWORK

VOCL [21] is based on the OpenCL programming model
and uses Message Passing Interface (MPI) for data com-
munication across different computing nodes when remote
GPUs are used. VOCL exposes the same API as the OpenCL
programming model. Figure 1 shows VOCL components.

@ process Application
— MPI program
OpenCL AP \

?@ pr@

OpenCL API OpenCL API¢

Native OpenCL ] Native OpenCL
library || _.... VOCL library library
L4 - - } Li
o] [ ]

Remote computing
node1

Fig. 1: The Virtual OpenCL (VOCL) framework.
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The VOCL library is located on the local node. It is
responsible for forwarding the OpenCL function calls to the
corresponding GPUs and returning the GPU outputs to the
application. It calls the native OpenCL functions to perform
GPU computation on local GPUs. For using a remote GPU, it
wraps up the inputs of the OpenCL function and sends them
to the remote computing node using MPI communication.

The VOCL proxy is located on the remote node. It is a
service provider for applications to use GPUs in the node. It
receives MPI connection requests from the VOCL libraries and
establishes communication channels with them. It is responsi-
ble for decoding the messages received from VOCL libraries,
calling the native OpenCL functions to perform computation
and sending back the function output to the VOCL libraries.

VOCL also supports live task migration across different
computing nodes. Such migration is achieved by changing
the mapping relationship between virtual GPUs (or VGPU)
in the VOCL library and the VOCL proxy. Specifically, a
VGPU represents the resources used by an application on
each physical GPU. It includes the OpenCL resources such
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Fig. 2: Impact of phase imbalance on power efficiency. Efficiency is
measured relative to the perfectly loaded configuration.

as the context, device memory, and kernels. VGPUs exist
in both the VOCL library and the VOCL proxy, which are
referred to as VOCL VGPU and OpenCL GPU, respectively.
The VOCL framework has a one-to-one mapping between the
VOCL VGPU and the OpenCL VGPU.

III. MOTIVATIONAL CASE STUDY

The most common power generation and distribution system
in use today is the balanced, three-phase system. This system
is comprised of three equal-amplitude, sinusoidal voltages, that
are offset from one another by 120° phase. As a consequence
of this configuration, the instantaneous voltage across the
phases sums to zero, which translates into mechanical balance
and greater efficiency for rotating power generation machinery.

A critical factor in the efficiency of the three-phase system
is the balance of the load across phases. An imbalance in
current across phases results in lost power through neutral line
current. We measure the efficiency with respect to three-phase
load configuration in Figure 2, using the experimental platform
described in Section V. We compare the power consumption
of several node configurations with a configuration where
the load is balanced equally across all three phases. Six
compute nodes are used and we measure the power consumed
over several permutations of these nodes with respect to
power phase. The phase imbalance of a three-phase system is
expressed as a percentage value, often defined as the maximum
deviation from the average of the three-phase voltages or
currents, divided by the average of the three-phase voltages
or currents. We use the power consumption measurement to
quantify the phase imbalance in place of voltage or current.

Given the impact of balancing the workload across phases,
we explore two possible configurations for a job executing
on our cluster system, shown in Figure 3. In the original
configuration, two compute nodes (i.e., Proxies 2 and 3) both
have two physical GPUs, but only one is currently mapped
to a virtual GPU. We consolidate these two virtual GPUs to
a single node, leaving one node idle and allowing it to be
powered down to save power. In Figure 3(a), one way of GPU
consolidation results in an unbalanced configuration with a
phase imbalance of 4. In Figure 3(b), another way of GPU
consolidation results in a balanced configuration with a phase
imbalance of 0.

Figure 4 shows the total energy and peak power con-
sumption for the original configuration and each configuration
after consolidation. This data was measured using power
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Fig. 5: Power usage for various node configurations using two GPUs.

monitoring equipment on our experimental cluster. We observe
that consolidation yields a significant improvement in total
energy, as well as a corresponding reduction in the peak power
consumption. In addition, the balanced configuration achieves
higher efficiency, with a 7.6% reduction in energy and 5.5%
reduction in the peak power.

Figure 5 demonstrates the impact of GPU workload place-
ment on the power consumption. Assuming a resource demand
for two GPUs, the power consumption varies significantly
depending on how the GPU workloads are distributed across
compute nodes and CDU power phases.

IV. THE POWER-AWARE VOCL (PVOCL) FRAMEWORK

Figure 6 presents an architectural overview of the manage-
ment components used in our power-aware VOCL framework.
It consists of a power model, a topology monitor, a power
optimizer, and a migration manager. The power model captures
the power consumption trends for various configurations of
VOCL proxy nodes in datacenter cabinets. The topology
monitor periodically collects the information regarding the
configuration, conf(k), at the current control interval k. The

nf (k+1)
Power Migration \‘\[f(ip
Optimizer Manager \L/\’Bg.,a
S oy VOCL Proxy
¢ ~~ Lo, -~
0y, r@ er o Vorr nodes
b e
Topolo, pU
‘ Power Model po’osy [
Monitor |
Node-phase mapping
VOCL Power Manager

Fig. 6: The Power-aware VOCL (pVOCL) framework.
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power optimizer determines the optimal configuration that
minimizes the total power consumption of the system while
considering the overheads involved in the adaptation from the
current configuration to the new configuration. The migration
manager performs node reconfiguration of VOCL proxy nodes
and live migration of existing VGPUs. Together these compo-
nents form a control loop that dynamically reconfigures the
mapping of existing VGPUs to VOCL proxy nodes and the
placement of VOCL proxy nodes in the data center cabinets
in order to minimize the power consumption.

A. Power Modeling

1) Power-Phase Awareness: In order to make the most
power-efficient GPU consolidation and node placement deci-
sion, a model is needed that captures the impact of various
node configurations on the overall power consumption. A
node configuration encapsulates the mapping of VGPUs to
VOCL proxy nodes and the placement of nodes at various
power-phases of datacenter cabinets. For this purpose, we
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Fig. 9: Total execution time for each kernel over a range of input sizes with and without migration.

conducted an extensive power profiling of various possible
node configurations in our testbed of GPU enabled server
clusters described in Section V.

First, we measured the total power consumption by turning
on idle nodes at various power phases of the two cabinets as
shown in Figure 7. The notations nq11n12n13 and ni1ni2n13-
Nn91MogNeg represent node configurations in one cabinet and
two cabinets respectively. n;; denotes the number of nodes
turned on in the 4;, cabinet and the j;;, power-phase. The
power consumption increases as more nodes are turned on,
as expected. For a given number of nodes, we observe a
significant variation in the power consumption for different
node placements. A node configuration that is more balanced
in terms of the number of nodes turned on at each power-phase
is more power-efficient than other configurations.

Next, we examined whether the power consumption trend
can be generalized to active nodes that execute GPU work-
loads. We analyzed the power profiles of four application ker-
nel benchmarks: (matrix-multiplication (MM), n-body (NB),
matrix-transpose (MT), and Smith-Waterman (SWAT). The
first two kernels are compute-intensive; the other two require
more data movement between host memory and device mem-
ory. In this experiment, each node configuration used two
GPUs in total. As indicated in Figures 8(a) and 8(b), all
four application kernels show similar variations in the power
consumption and energy usage for different node configura-
tions. Figure 8(c) shows that the application performance is
independent of the node configuration.

We note that a generalized model that captures the power
consumption trends for various node configurations provides

sufficient information to find the most power-efficient GPU
consolidation and node placement. The power minimization
problem does not need actual power numbers corresponding to
various application kernels. Hence, we design pVOCL to use
a simple lookup table-based power model. The lookup table
is generated based on the power usage data for various node
configurations as provided by the datacenter administrator.

2) Analysis of Reconfiguration Overhead: A node recon-
figuration of a virtualized GPU environment involves three
types of actions. They are to turn on a new compute node,
migrate existing VGPUs across different nodes and to turn
off a compute node. The time required by a newly powered
on compute node to be ready for computation may take a
few seconds to a few minutes depending on the computing
platform. However, it does not impact the application perfor-
mance in our pVOCL framework. It is due to the fact that
the GPU workloads continue to execute in the existing nodes
at the time of node reconfiguration. The workloads are only
migrated when the new compute nodes become available.

We analyze the performance overhead caused by VGPU
migration. In Figure 9 shows the total execution time for
various application kernel benchmarks with no migration and
when a single migration is performed. We observe that,
overall, as the problem size increases, the relative performance
overhead due to migration decreases. It is due to the fact that
the execution time increases faster than the migration overhead
with regard to the problem size. In addition, the migration
overhead is a few hundred milliseconds for compute-intensive
kernels and up to a few seconds for memory-intensive kernels.
We conclude that the performance degradation caused by
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Fig. 10: The topology monitor.

migration can be negligible for programs running a reasonably
long time (e.g., a few tens of seconds). Furthermore, note that
we use Ethernet connected compute nodes in our experiments.
The use of high speed InfiniBand can further reduce the
migration overhead drastically.

B. pVOCL Components Design

GPU-enabled server clusters in a data center face dynam-
ically varying GPU resource demands from multiple users.
As a result, the number of GPUs used in various nodes
changes over time. Furthermore, the mapping of nodes to
different power phases in a cabinet may also change as new
nodes are installed or old nodes are removed for system
upgrade and maintenance. The topology monitor periodically
communicates with the CDUs and the VOCL proxy nodes to
collect the information about the current node configuration.
Note that the VOCL proxy does not distinguish between the
communication messages from the topology monitor and an
application host. It merely receives the MPI messages and
replies back after performing certain actions according to the
information provided in the MPI message tag. In this paper,
we implemented the interfaces necessary in the VOCL proxy
module to enable topology monitoring.

1) Topology Monitor: As Figure 10 shows, the topology
monitor performs the following operations.

1) Utilize the remote monitoring capability provided by the
CDUs to get the number of nodes that are turned on at
various power phases of the data center cabinets. The
communication is performed by using a telnet interface
to each CDU.

2) Call the MPI_Comm_connect() function to establish
communication channel with each VOCL proxy node.
The information regarding existing VOCL proxy nodes
are stored and updated locally by the topology monitor.

3) Send control messages to the VOCL proxy nodes to
request for all the GPU device information, including
the number of available GPUs and the device Ids. For
this purpose, it calls the MPI_Isend() function with the
MPI message tag GET_PROXY_INFO.

4) Call MPI_Irecv() to receive GPU device information
from the VOCL proxy nodes.

5) Call MPI_Isend() with the MPI message tag
MAP_INFO to request the information about various
VGPU to physical GPU mappings. Note that a physical
GPU that is not mapped to any VGPU indicates that it
is not used by any application. We assume that at most
one VGPU is mapped to a physical GPU.

6) Call MPI_Irecv() to receive VGPU mapping informa-
tion from the VOCL proxy nodes.

2) Power Optimizer: GPU consolidation and placement in

a virtualized GPU environment may involve a sequence of
adaptation steps that include turning on new compute nodes,
migrating VGPUs and turning off compute nodes across dif-
ferent power-phases of data center cabinets. A direct transition
between two node configurations may not be possible due to
potential power budget violations. We formulate dynamic GPU
consolidation and placement as the following optimization
problems.

Optimization 1:

Minimize p(cy,) (1)

Subject to Constraints:

for all c;e [e1,ca, ..y Cp] 2)
plei) <P 3
g(ci) = g(co) 4)

Here, p(c;) is the total power consumption of all the nodes
used in configuration c¢;. ci,...,c,—1 are the intermediate
configurations generated by applying GPU consolidation and
node placement actions, starting from the initial configuration
co- Let g(c¢;) denote the total number of GPUs used for the
configuration c¢;. The objective Eq. (1) is to find a set of
target node configuration, ¢, that minimizes the total power
consumption while satisfying some constraints. Eq. (2) and
Eq. (3) state that the power consumption due to an intermediate
configuration must not violate the given power budget P.
Eq. (4) states that each intermediate configuration must satisfy
the current GPU resource demand, g(co).

Optimization 2:

Minimize Z d(a;) %)
a;eA,

Subject to Constraints:

for all c;e [c1,ca, ...y Cp] (6)
p(ci) < P (7
g(ci) = g(co) ()

Let A, = agp,ay,...,a,—1 be the sequence of adaptation
actions required to transform the node configuration from cg to
¢n- Let d(a;) denote the length of each adaptation action. The
objective Eq. (5) is to find the optimal sequence of adaptation
actions that minimizes the time required to reach one of the
target configurations. We represent the optimization problem
as a single source shortest path problem of graph theory.
Here, each node configuration is a vertex in the graph and the
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TABLE I: The workload mix.

Node 1 Kernel Input Size | Kernel instances
Node 1 GPU 1 N-body 15360 20
Node 1 GPU 2 | Matrix Multiplication 4kx4k 60
Node 2 GPU 1 Matrix Transpose 3kx3k 20
Node 2 GPU 2 | Matrix Multiplication 3kx3k 60
Node 3 GPU 1 N-body 23040 20
Node 3 GPU 2 Matrix Transpose 4kx4k 60

adaptation actions become the edges between various vertices.
The edges are weighted by the adaptation delay, d(a;). pVOCL
power optimizer applies the Dijkstra’s algorithm to solve the
optimization problem.

3) Migration Manager: Figure 11 shows that based on the
optimal configuration suggested by the power optimizer, the
migration manager performs node reconfiguration as follows.

1) Check whether the target configuration requires turning
on new nodes.

2) Turn on the required number of nodes at various power-
phases of the datacenter cabinets according to the target
configuration. Telnet interfaces to various CDUs are
used to perform this operation.

3) Based on the VGPU mapping information of the exist-
ing configuration and that of the target configuration,
identify the VGPUs that need to be migrated from one
proxy node to another.

4) Call the MPI_Comm_connect() function to establish
communication channel with each source proxy node.

5) Call MPIl_Isend() with the MPI message tag
MAP_MIGRATION along with the required information
to trigger VGPU migration from the source proxy nodes
to the destination proxy nodes.

6) Turn off the nodes that do not have any VGPU map-
ping in the target configuration. Telnet interfaces to the
corresponding CDUs are used for this purpose.

V. EVALUATION

We evaluate the pVOCL framework in a testbed of GPU-
enabled server cluster. Each computing node is equipped with
Dual Intel Xeon Quad Core CPUs, 16 GB of memory, and
two NVIDIA Tesla C1060 GPUs. They are installed with the
Ubuntu Linux operating system and the CUDA 4.2 toolkit.

The servers residing on data center cabinets are powered by
the switched CW-24VD/VY 3-Phase CDU (Cabinet Power
Distribution Unit). The CDUs provide power distribution and
remote power monitoring capability. We use the MPICH2 MPI
implementation for the compute nodes, which are connected
with Ethernet.

A. Impact of GPU Consolidation

We now demonstrate the impact of GPU consolidation
performed by pVOCL on the power consumption, energy
usage and application performance. In this experiment, we use
three GPU-enabled compute nodes located in the same power-
phase circuit of a CDU. Power consumption is measured at
time intervals of one second, in the particular power-phase
circuit only. Table I shows the initial placement of a workload
mix using application kernel benchmarks with various input
sizes. Figure 12(a) shows the time-varying overall demand for
GPU resources as various application kernels finish execution.

We compare the instantaneous power consumption of the
system under the influence of three power management tech-
niques. First, the hardware technique (h/w-pm) refers to the
in-built idle power management of GPU hardware that causes
GPUs to save power when they are idle. Second, the hard-
ware/software static power management (h/w-s/w static-pm)
is a combination of h/w-pm and a software based technique
that turns off a compute node when all its GPU resources are
idle. Finally, pVOCL essentially combines GPU consolidation
with the first two techniques. In this experiment, pVOCL
is configured to find optimal configurations within the same
power-phase circuit since we are measuring the impact of GPU
consolidation alone without power-phase awareness.

As shown in Figure 12(b), pVOCL reduces the power con-
sumption more significantly than the other two techniques. It
is due to the fact that pVOCL drives the system towards more
power-efficient configurations by pro-actively consolidating
GPUs into fewer compute nodes and turning off the unused
nodes at time 63 sec and 137 sec. On the other hand, the h/w-
s/w static-pm technique waits until time 137 sec to turn off
node 2 when all of its GPUs become idle. Then, it turns off
node 1 at time 213 sec. The relatively high power consumption
in case of h/w-pm technique is due to the fact that the compute
nodes are never turned off.

Figure 12(c) shows that the application performance under
the influence of pVOCL is similar to that of the other two
techniques. It is due to the fact that pVOCL is able to con-
solidate GPUs by performing VGPU migration with negligible
performance overhead. We measure the overall energy usage of
the system under the influence of the three power management
techniques. pVOCL improves the energy efficiency by 43%
compared to the h/w-pm technique and by 18% compared to
the h/w-s/w static-pm technique.

Next, we study the impact of workload mix variations
on the energy efficiency of the three power management
techniques as shown in Figures 13 and 14. We measure the
total energy usage of the system for a fixed period of time
using eight variations of the workload mix shown in Table I.
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In each variation, we change the number of kernel instances in
such a way that the average program execution time remains
unchanged while the standard deviation varies. In case of h/w-
s/w static-pm technique, a higher deviation of the program
execution time results in longer waiting times to turn off a node
until all of its GPUs become idle. Hence, the total energy usage
increases with increase in the deviation of execution time. For
the h/w-pm technique, the energy usage remains unchanged
since the average program execution time is the same for all
workload variations. Similarly, the energy usage for pVOCL is
largely unaffected by the increase in the deviation of execution
time for the workload mixes used in this experiment. As
shown in Figure 14, the improvement in energy efficiency by
pVOCL reaches up to 29% compared to the h/w-s/w static-pm
technique due to variations in the workload mix.

B. Power-Phase Topology Aware GPU Consolidation and
Placement

We evaluate the effectiveness of pVOCL’s power-phase
topology aware GPU consolidation and placement. We use

three compute nodes in each power-phase circuit of the 3-
phase CDU. Since each compute node has two GPUs, there
are six GPUs in each power-phase. As a case study, we execute
N-body kernel benchmarks with input sizes of 15360, 23040,
30720, 38400, 46080, and 53760 bodies respectively on the
six GPUs. The number of kernel instances being executed
are 20, 40 and 80 respectively on the GPUs residing in
the three power-phase circuits. Figure 15(a) shows the time-
varying demand for GPU resources in the three power-phases
as various application kernels finish execution. We measure
the power consumption of the entire CDU at time intervals of
one second. The peak power budget of the CDU is set to be
4800 Watts in this experiment.

Figures 15(b) and 15(c) compare the dynamic distribution of
GPU workloads across the three power-phases due to pVOCL’s
power-phase topology aware consolidation and a consolidation
approach without power-phase awareness. Figures 16(b) and
16(c) show the number of compute nodes that are powered
on change accordingly. In case of power-phase aware con-
solidation, the number of busy GPUs and the powered-on
compute nodes are more evenly distributed across the three
power-phases. As a result, as shown in Figure 16(a), it is able
to maintain a much lower power-phase imbalance in the face
of time-varying GPU resource demand. Note that there is a
gradual increase in power-phase imbalance in both cases of
consolidation. It is due to the fact that there are a lower number
of GPU workloads available to balance the power-phases as
the benchmark applications finish their execution.

Figure 17 shows the impact of power-phase awareness on
the instantaneous power consumption of the system. Overall,
there is an improvement of 14% in energy efficiency due to the
power-phase aware GPU consolidation that drives the system
towards more power-efficient configurations with negligible
performance overheads. We observed similar results with
various other application benchmarks, which are omitted here
due to space constraints.

C. Peak Power Management and Energy Efficiency

We evaluate pVOCL’s ability to manage the peak power
consumption while improving the energy efficiency of GPU-
enabled server clusters. In this experiment, we start with three
compute nodes in one of the power-phase circuits in the
3-phase CDU. We execute 100 instances of N-body kernel
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benchmarks with input sizes of 15360, 23040, 30720, 38400,
46080, and 53760 bodies respectively on the available GPUs.

Figures 18(a), (b) and (c) compare the instantaneous power
consumption of the entire CDU under the influence of
pVOCL’s GPU consolidation and placement actions, when
different power budgets are imposed. In each case, pVOCL
is able to keep the peak power consumption below the given
power budget. However, the decrease in power consumption
due to pVOCL occurs much earlier when the power budget
is higher. It is due to the fact that pVOCL performs different
adaptation actions under different power constraints as shown
in Figures 19 and 20. A higher power budget provides more
node reconfiguration options. Hence, pVOCL is able to find the
best sequence of adaptation actions to reach a power-efficient
configuration under the given power constraint.

Figure 19(a) shows that pVOCL initially turns on two
compute nodes in power-phase 2 and one compute node in

power-phase 1 without violating the power budget of 2600
Watts. This explains the initial increase in power consumption
shown in Figure 18(a). On the other hand, When the power
budget is 2300 Watts, it can turn on only one compute node
in power-phase 2 initially as shown in Figure 18(b). When the
power budget is only 2000 Watts, it is not able to turn on any
new compute node until one of the GPUs become idle around
time 134 seconds. As a result, a higher power budget allows
pVOCL to distribute the GPU workloads across different
power-phases and reach more power-efficient configurations
much earlier compared to the cases when the power budget is
low. This is illustrated in Figures 20(a), (b) and (c).

Figures 21(a), (b) and (c) show the performance overhead
caused by pVOCL’s adaptation actions under various power
constraints. We measure the total execution time of each ap-
plication under the influence of pVOCL and compare it with its
default execution time. Note that the applications may undergo
different number of migrations or may not be migrated at all
due to various GPU consolidation actions taken by pVOCL.
This explains the variations in the performance overhead for
different applications and power constraints. Furthermore, the
performance overhead also depends on the input size of each
application. We observe a negligible performance overhead of
less than 0.15% in all three cases. It is due to the fact that the
amount of time required to migrate VGPUs among various
compute nodes is quite small compared to the computational
cost. Furthermore, turning on new compute nodes does not
impact application performance since the applications continue
to execute in the existing compute nodes until the new nodes
become available for migration.

Finally, we compare the energy efficiency of pVOCL with
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the h/w-pm and h/w-s/w static-pm techniques. As shown
in Figure 22, the improvement in energy efficiency due to
pVOCL increases with increasing power budgets.

VI. RELATED WORK

In general, GPUs deliver more performance-to-power ratio
than traditional processors. GPUs are also significantly more
power-hungry. Thus, analyzing and reducing the power con-
sumption in GPU computing has become a top research topic

in recent years [10], [11].

Sheaffer et al. [18] proposed a GPU simulator, Qsilver, to
model GPU power consumption. However, this simulator is
primarily limited to GPU architectures, particularly at ISA and
micro-architectural definition design stages. Like the work of
Ma et al., this framework is focused on improving power con-
sumption of GPUs at the hardware level, which is orthogonal
to our work to save energy via task migration.

Li et al. [15] developed a runtime framework to dynamically
consolidate instances from different workloads from multiple
user processes into a single GPU workload. To be able to
consistently achieve better energy efficiency, they propose a
GPU performance and power models to make predictions
for potential workload consolidation alternatives and identify
useful consolidations. Their work achieves energy efficiency
via predictions beforehand. Once an instance is assigned on a
GPU, it will be executed to completion regardless of whether
there is system state change. In contrast, pVOCL dynamically
adjusts the task across different GPUs via live task migration
and reflect real-time state of the system.

There are significant research efforts focused on power,
energy and thermal management in enterprise data centers [3]-
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[5], [71-19], [12]-[14], [16]. However, existing techniques are
not easily applicable to GPU-accelerated high performance
computing systems. GPU virtualization itself is an emerging
field of research [2], [21]. In this paper, we explore and enable
the use of GPU virtualization for improving energy efficiency
and managing the peak power of GPU-enabled server clusters.

VII. CONCLUSION

The challenge of power management in virtulized GPU
environments mainly lie in the dynamic scheduling of power-
hungry GPU resources in the face of complex power consump-
tion characteristics of the underlying system infrastructure
and the ever-changing GPU resource demand from multiple
users. pVOCL supports dynamic placement and consolidation
of GPU workloads in a power aware manner. It controls the
peak power consumption and improves the energy efficiency
of the underlying server system by migration of existing vir-
tual GPUs and power-phase-aware placement of GPU-enabled
server nodes in datacenter cabinets. It drives the system
towards energy-efficient configuration by taking an optimal
sequence of adaptation actions. We have implemented pVOCL
in a cluster of GPU-enabled server nodes using four applica-
tion kernels. Experimental results demonstrate that pVOCL
achieves significant savings in energy consumption through
dynamic consolidation of GPU workloads. It drives the system
toward optimal energy-efficient configurations because of its
awareness of the power characteristics of the widely used
three-phase power supply in data center cabinets. Furthermore,
it optimizes the power consumption while considering the
transient costs incurred by various adaptations.

Acknowledgement

This research was supported in part by U.S. DOE grant DE-
AC02-06CH11357, NSF CAREER Award CNS-0844983 and
research grant CNS-1217979.

REFERENCES

[1] M. Anderson, D. Sheffield, and K. Keutzer. A Predictive Model for
Solving Small Linear Algebra Problems in GPU Registers. In Proc. of
IEEE Int’l Parallel and Distributed Processing (IPDPS), 2012.

[2] J. Duato, A.J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Orti. rCUDA:
Reducing the Number of GPU-Based Accelerators in High Performance
Clusters. In Proc. of Int’l Conference on High Performance Computing
and Simulation (HPCS), pages 224-231, June 2010.

[3] X. Fu, X. Wang, and C. Lefurgy. How much power oversubscript is
safe and allowed in data centers? In Proc. IEEE Int’l Conference on
Autonomic computing (ICAC), 2011.

[4] Y. Fu, C. Lu, and H. Wang. Robust control-theoretic thermal balancing
for server clusters. In Proc. of IEEE Int’l Parallel and Distributed
Processing Symposium (IPDPS), 2010.

[5] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power
allocation in server farms. In Proc. ACM SIGMETRICS, 2009.

[6] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron. Energy-efficient mechanisms for manag-
ing thread context in throughput processors. In Proc. Int’l Symposium
on Computer Architecture (ISCA), 2011.

[7]1 1. Goiri, K. Le, M. Haque, R. Beauchea, T. Nguyen, J. Guitart,
J. Torres, and R. Bianchini. GreenSlot: Scheduling energy consumption
in green datacenters. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2011.

[8] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Bal-
dini. Statistical profiling-based techniques for effective power provision-
ing in data centers. In Proc. the EuroSys Conference, 2009.

[9] Y. Guo and X. Zhou. Coordinated vm resizing and server tun-

ing: Throughput, power efficiency and scalability. In Proc. IEEE

Int’ISymposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS), pages 289-297, 2012.

S. Hong and H. Kim. An Integrated GPU Power and Performance

Model. In Proc. of Internation Symposium of Computer Architecture

(ISCA), June 2010.

S. Huang, S. Xiao, and W. Feng. On the Energy Efficiency of Graphics

Processing Units for Scientific Computing. In Proc. IEEE Workshop on

High-Performance, Power-Aware Computing, May 2009.

P. Lama and X. Zhou. PERFUME: Power and performance guarantee

with fuzzy mimo control in virtualized servers. In Proc. IEEE Int’]

Workshop on Quality of Service (IWQoS), pages 1-9, 2011.

P. Lama and X. Zhou. NINEPIN: Non-invasive and energy efficient

performance isolation in virtualized servers. In Proc. IEEE/IFIP Int’]

Conference on Dependable Systems and Networks (DSN), 2012.

C. Li, R. Zhou, and T. Li. Enabling distributed generation powered sus-

tainable high-performance data center. In Proc. IEEE Int’l Symposium

on High-Performance Computer Architecture (HPCA), 2013.

D. Li, S. Byna, and S. Chakradhar. Energy-Aware Workload Consoli-

dation on GPU. In Proc. of the Int’l Conference on Parallel Processing

Workshops, 2011.

H. Lim, A. Kansal, and J. Liu. Power budgeting for virtualized data

centers. In Proc. USENIX Annual Technical Conference, 2011.

V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar. Supporting gpu

sharing in cloud environments with a transparent runtime consolidation

framework. In Proc. of the Int’l Symposium on High Performance

Distributed Computing (HPDC), 2011.

J. W. Sheaffer, D. Luebke, and K. Skadron. A Flexible Simulation

Framework for Graphics Architectures. In Proc. of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware, 2004.

H. Shojania and B. Li. Cache miss analysis for gpu programs based on

stack distance profile. In Proc. IEEE Int’l Conference on Distributed

Computing Systems (ICDCS), 2009.

T. Tang, X. Yang, and Y. Lin. Cache miss analysis for gpu programs

based on stack distance profile. In Proc. IEEE Int’l Conference on

Distributed Computing Systems (ICDCS), 2011.

S. Xiao, P. Balaji, Q. Zhu, R. Thakur, S. Coghlan, H. Lin, G. Wen,

J. Hong, and W. Feng. VOCL: An Optimized Environment for Trans-

parent Virtualization of Graphics Processing Units. In Proc. of the Ist

Innovative Parallel Computing (InPar), May 2012.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]



