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Abstract—The increasing number of memory technologies
offering different features such as optimized access patterns
or capacity/speed ratios lead us to advocate for future HPC
compute nodes equipped with heterogeneous memory subsystems.
The aim is to alleviate further the ever-increasing gap between
computation and memory access speeds, by taking advantage of
the benefits these memory technologies provide. Compute nodes
equipped with memory technologies such as scratchpad memory,
on-chip 3D-stacked memory, or NVRAM-based memory are
already a reality. Careful use of the different memory subsystems
is mandatory in order to exploit the potential of such super-
computers. While most multiple-memory models concentrate on
extending the depth of the memory hierarchy by incorporating
more levels of hardware-managed memories, we advocate for
compute nodes equipped with heterogeneous software-managed
memory subsystems. Although the exact approach to efficiently
exploit them is still uncertain, a software ecosystem clearly is
required in order to assist in an efficient data distribution. We
address this problem at the memory object granularity. In this
paper we use an object-differentiated profiling tool we have
developed on top of the Valgrind instrumentation framework,
in order to assess the most suitable memory subsystem for
the different memory objects of two miniapplications from the
Mantevo codesign project. Our results considering two different
memory configurations as use cases reveal the potential benefits of
carefully placing the different memory objects of an application
among the different memory subsystems.

I. INTRODUCTION

Computers have been incorporating deep memory hierar-
chies to alleviate the ever-increasing gap between computing
and memory access performance. So far, this strategy has
translated into different levels of cache, which are handled
automatically by hardware heuristics taking advantage of space
and time locality. The requirement for more and faster memory
from high-performance computing (HPC) consumers, along
with advances in memory technology, is leading to the in-
corporation of on-chip 3D-stacked memory [1], which will
bring relatively large amounts of memory inside the processor
die. This trend, if successful, is likely to end up generalizing
heterogeneous memory systems, bringing more memory sub-
systems to compute nodes featuring different characteristics,
such as size, performance, energy consumption, resilience, or
specialized memory for different access patterns. Examples are
scratchpad memory featuring cachelike speeds but small sizes;
vector-specialized memory, such as GDDR; low-power mem-
ory, bringing an increased energy/speed ratio; ECC-enabled
memory, offering fault tolerance with some speed and size
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Fig. 1. Simplified view of a heterogeneous memory node sample.

(a) Hierarchical memory view. (b) Explicitly managed memory.

Fig. 2. Hierarchical memory view versus explicitly managed memories.

overhead; and NVRAM, featuring large memory spaces at
reduced speeds and energy consumption. A theoretical ex-
ample of such a system, equipped with a large variety of
memory subsystems, is depicted in Figure 1. Although because
of technical and practical constraints we do not necessarily
foresee such largely equipped systems, we clearly advocate for
systems equipped with several types of memory depending on
the cluster computing requirements.

In order to efficiently exploit such heterogeneity in memory
subsystems, these must be brought in as first-class citizens
rather than being disposed in a traditional hierarchical view
(see sample cases in Figure 2). Otherwise, it will not be
possible to exploit the largely different features of the memory
subsystems by efficiently distributing the applications’ data
among them to optimize memory access latencies.

Decisions about how to distribute an application’s data
among these memory subsystems and what method to leverage
are still unclear. The operating system in these upcoming
computers could use a heuristic-based model, on-the-fly anal-
ysis (possibly hardware-assisted), historic data, or user hints



Fig. 3. Abstraction of the proposed compiling flow. Rectangular objects
represent software agents, whereas elliptic objects represent the input/output
of these agents. The different stages are numbered.

to decide what data to place in each memory subsystem. A
good understanding of the way that data are accessed will
allow one to avoid relying on heuristics, hence attaining an
optimal exploitation of the available memory resources. So
far, however, no suitable tools exist to assist with this decision.
An ecosystem aware of explicitly addressable multiple mem-
ory subsystems offering different features such as profilers,
libraries, and runtime systems will be required in order to
make the different memory subsystems first-class citizens, thus
enabling an efficient exploitation of the benefits these provide.

Current profiling solutions, such as Callgrind [2],
Gprof [3], perf [4], and OProfile [5], are code oriented: they
focus on those parts of the code featuring the highest levels
of a given metric (often execution time, cache misses, or
CPU stalled cycles). Although these help developers identify
bottlenecks in their software and help maximize the exploita-
tion of the underlying hardware, they do not provide data-
oriented profiling information. In this paper we use emulator-
based data-oriented profiling to analyze actual program execu-
tions in an emulated system featuring a conventional memory
architecture equipped with a DRAM-based main memory
subsystem only. This setup permits us to associate the occurred
(simulated) cache misses with the different memory objects
of the executed application. We use this data to estimate the
CPU stall cycles incurred by the different memory objects, in
order to decide their optimal placement at object granularity
in a proposed heterogeneous memory system. The profiling
information obtained from our tool may be used in two ways:

1) It can be used by programmers to provide hints
to compilers or runtime systems regarding memory
object distribution or to explicitly select the loca-
tion of the different memory objects. This approach
requires either a programming model enabled for
heterogeneous memory or explicit management from
the programmer.

2) The profiling data can be fed back to a second
compiling stage, where the compiler automatically
distributes the memory objects accordingly, in what
can be considered a feedback-directed optimization
technique [6]. This approach requires a compiler
toolchain capable of explicitly managing data allo-
cation and movement among heterogeneous memory
subsystems. This proposal, depicted in Figure 3, is in-
dependent of the programming model/language used,
thus addressing one of the main concerns regarding
heterogeneous memory management in HPC.

Note that although the profiling-based approach assumes

that all the considered space in the different memory sub-
systems is available for the application, this reflects real-case
scenarios in most HPC environments where dedicated nodes
are leveraged in order to avoid competition for computational
resources, and hence the amount of memory available for user-
space applications is known beforehand.

To accomplish our goal, we have developed a profiling tool
based on the generic Valgrind instrumentation framework [7]
capable of differentiating the cache misses per memory ob-
ject [8], plus an algorithm to optimally distribute the different
objects among the proposed memory subsystems based on the
0/1 knapsack problem [9]. We use this tool to analyze a pair of
miniapplications on two proposed heterogeneous memory con-
figurations. Our experiments reveal the usability and potential
benefits of employing our methodology to efficiently leverage
heterogeneous memory systems. The main contributions of this
paper are as follows:

1) We propose a profiling-based method to determine the
optimal distribution of application data on heteroge-
neous memory systems at memory object granularity.

2) We provide experimentation results based on miniap-
plications for a pair of realistic heterogeneous mem-
ory configuration proposals.

3) We demonstrate the feasibility of using our method-
ology to assess the optimal distribution of application
data at object granularity on heterogeneous memory
systems.

To the best of our knowledge, this is the first work dis-
cussing a method based on data-oriented profiling to assess the
optimal distribution of memory objects across multiple mem-
ory subsystems in heterogeneous-memory compute nodes. We
also consider this to be the first work applying data distribution
among different heterogeneous memory subsystems to code
representatives of widely used HPC applications. Although
multiple open questions remain, such as the best programming
model to adopt or the tradeoff between the potentially high
performance of profiling-based memory placement and the
convenience of operating system placement based on heuris-
tics, this paper constitutes one of the first steps toward making
the heterogeneous memory system as we foresee it a reality.

The rest of this paper is structured as follows. Section II
provides background information about the different memory
technologies covered in this paper. Section III describes the
methodology we propose to address the optimal distribution of
application data on heterogeneous memory systems at object-
level granularity. Section IV introduces our modeled systems
and the test case applications we use. Section V presents our
experimental results. Section VI reviews previous related work.
Section VII provides concluding remarks and suggestions for
future work.

II. BACKGROUND

In this section we review the different memory technologies
that we consider for our target system proposals, namely cache,
scratchpad, 3D-stacked, conventional DRAM, and NVRAM.

A. Cache

Usually arranged in multiple levels of increasing size and
latency, CPU cache memories are small hardware-managed,



low-latency memories sitting close to the processors. These
are employed automatically by the hardware to keep track of
the most recently used data in order to have it quickly available
if requested again by the CPU.

Usually, CPU stall cycles caused by accesses to cache
memories are nonexistent for first-level caches (L1), are around
10 CPU cycles on accesses to the second level of cache (L2),
and keep increasing with the distance to the processor [10].
Since our cache simulator can simulate only two levels of
cache, we consider a relatively high number of CPU stall
cycles of 20 for second-level cache hits, in order to compensate
for the absence of a commonly employed third cache level. On
the other hand, L1 sizes on the order of kilobytes and upper-
level sizes on the order of megabytes are commonly found in
today’s systems.

B. Scratchpad

Scratchpad memories are a type of cache that is explicitly
managed by software. These are commonly used in embedded
processors and GPUs but are uncommon in current compute
nodes. Providing the same benefits as cache memory, they
offer the advantage of a high level of control, which prevents
performance issues caused by the heuristic-based automatic
management policies such as competition from different ob-
jects leading to undesirable early cache evictions. However,
the inconvenience of the explicit management at such small
granularity has prevented their adoption by general-purpose
processors so far.

In our heterogeneous memory proposal we consider a
scratchpad memory region placed along with the L2 cache
featuring the same size and latency as the latter.

C. On-Chip 3D-Stacked Memory

The recently introduced on-chip 3D-stacked memories, like
traditional main memory systems, are based on the widely
known DRAM (dynamic random access memory) technology.
What differentiates them is that they are physically stacked in
multiple layers within the microprocessor die, hence featuring
lower latencies and higher bandwidths than external DRAM
memories. Currently energy dissipation is one of the limiting
factors of this technology.

Today, 8 GB to 16 GB of 3D-stacked memory per chip
are usually considered reasonable [1], [11], [12], along with
30% reduction of access latency from that of their off-chip
counterpart [11], [12].

D. Main DRAM

DRAM is currently the technology on which the main
memory of computers is based. What makes it dynamic is the
fact that it needs to be refreshed (read and written) periodically,
thus introducing a delay in accesses during the refresh process
and causing a nonnegligible energy consumption. The most-
used class of DRAM is DDR SDRAM (double data rate
synchronous DRAM).

Usually, 32 GB, 64 GB, and even larger amounts of
DRAM memory are found in current compute nodes. On the
other hand, average latencies of around 200 CPU cycles are
commonly used as rough estimations of the data access times
to this kind of memory.

E. NVRAM

NVRAM (non-volatile RAM) is a memory technology
that does not require energy to maintain the data. On the
negative side, the number of write-erase cycles is limited,
and write speeds are considerably lower than those attained
by reads. In addition, current NVRAM-based memories may
feature limits on the access patterns, since these memories are
not byte addressable at low level, enforcing block accesses.
Nevertheless, this limitation can be overcome employing high-
level libraries such as NVMalloc [13], which offer a byte-
addressable view of this memory space by internally handling
the block access operations.1 The NVRAM technology has
recently been widely adopted for use in I/O-based storage.
Although its usage as main memory is uncommon, we adopt
it as part of our heterogeneous memory proposals—assuming
a byte-addressable approach—as a means of incorporating a
low-power high-capacity slow memory subsystem.

The fastest reported latencies to date start at 10µs [14]. Ac-
cordingly, we round the average data latency of our NVRAM
memory subsystem down to 100 times that of our DRAM
estimations (that is, 20,000 CPU cycles).

III. METHODOLOGY

Our methodology consists of profiling the execution of a
given application in order to determine the last-level cache
misses that occurred during its execution, grouped by the dif-
ferent memory objects2 that the application leverages. Next, we
assess their optimal distribution among the different memory
subsystems of a proposed heterogeneous memory system, in
order to minimize the processor stall cycles those accesses will
cause. We plan to publicly release our developed tool shortly,
after code cleanup and integration efforts.

A. Profiling

To be able to associate the last-level cache misses of an
application’s execution with its memory objects, we perform
executions in an emulated system. Specifically, we used the
Valgrind instrumentation framework [7], which provides the
execution platform, and its Callgrind tool [2], a call-graph
cache profiler, which provides the cache simulation features.
These include branch prediction and hardware prefetching,
based on the features of a third Valgrind tool: Cachegrind [15].

For our profiling analysis, we incorporated per-object dif-
ferentiation capabilities into Valgrind and adapted Callgrind
to make use of our object-differentiation engine and provide
last-level cache miss data per memory object [8].

The way we associate last-level cache misses with memory
objects is determined by the origin of the object. The informa-
tion about statically allocated objects, including those residing
on a stack frame, is located in the debug information of the
code, embedded at compile time by the compiler (for example,
by specifying the -g parameter in most current compilers). The
data include information that permits determining the address
range on where objects are placed, their scope (whether they

1Accesses not featuring space and time locality may suffer from relatively
high overheads.

2By “memory object” we refer to every data entity of an application, that
is, both statically and dynamically allocated variables and buffers.



Listing 1. Main cache miss recording algorithm.
found = false
i f trace_dynamic:
found = record_mem_access(addr, size, meta);

i f trace_static and not found:
found = record_var_access(addr, size, meta);

Listing 2. Pseudocode for the profiling procedure.
simulate(max_iter): /* max_iter = 2 */
CALLGRIND_START_INSTRUMENTATION
f o r i in 1..max_iter:
/* Simulation original code */
i f i = 1:
CALLGRIND_ZERO_STATS

CALLGRIND_STOP_INSTRUMENTATION

are defined given an instruction pointer), their name, and the
place on the source code where they are declared. We extended
Valgrind’s core debug information module with functionality
to locate the object containing a memory address and to store
the associated last-level cache misses within its data.

On the other hand, the approach we follow for dynam-
ically allocated memory is to deploy wrappers to intercept
the system memory management function calls. Upon an
intercepted allocation call, we store the corresponding address
range and stack trace. This information is arranged in a sorted
structure in order to provide efficient (logarithmic) searches.
We use Valgrind’s specific capabilities to intercept these calls,
and we provide a versatile module that different tools may
incorporate with minimal changes. For instance, in [8] we
demonstrate its usability from the Lackey [16] tool to obtain
object-differentiated memory access traces along executions.
Further details on our extensions to Valgrind and its tools with
object-differentiated analysis capabilities, including design and
implementation details, are presented in [8].

During the execution of a profiled application, every data
address accessed by the application causing a last-level cache
miss is checked against both the existing dynamically and
statically allocated objects, as depicted in pseudocode in List-
ing 1. Although in spite of our optimizations this approach
poses a considerable execution overhead in top of that of
the Callgrind tool, which is already far from negligible, we
use Callgrind’s capabilities to start code instrumentation and
reset counters upon the client’s request, in order to limit the
profiling overhead to our region of interest and hence be able
to profile production-sized executions. We run two iterations/
timesteps of our test-case applications, profiling the second
of them after using the first to warm up the caches and
avoid accounting for cold misses. Specifically, we start the
instrumentation just before the first timestep—used to warm up
the cache—clearing the profiling counters at the end of it and
finalizing the instrumentation at the end of the second iteration.
This process is illustrated in the pseudocode in Listing 2.

The output of our profiling stage is the per-object cache
misses that occurred during the profiled portion of the exe-
cution. Although we collect data relating cache misses with
the execution timeline, this information is not used in our
subsequent analysis; it is intended for future work targeting
memory migrations.

Listing 3. Object distribution algorithm.
memories.sort(key=latency, order=ascending)
f o r memory in memories:
packed = knapsack(objects, memory.size)
objects = objects - packed

B. Analysis

We next analyze the obtained profiling data, in order to
distribute the different memory objects among the available
memory subsystems and thus to minimize the number of
stalls caused by memory accesses. This turns to be a multiple
knapsack problem, where the knapsacks are the different
memory subsystems and the knapsack capacity is represented
by the memory size; the items to pack are the memory objects,
their weight is their size, and their value is the number of load
cache misses these feature. However, our case differs from
a textbook multiple knapsack problem in that the different
knapsacks modify the value of their items, since these multiply
the cache misses by a different factor (the average read latency,
in CPU cycles, for a data word to reach the CPU) in order to
obtain our actual metric: the CPU stall cycles caused by each
object given a particular memory subsystem.

To tackle this situation, we follow a greedy approach by
solving separate 0/1 knapsack problems [9]. We target the
different memories in ascending order of average access cycles,
as shown in the pseudocode in Listing 3, thus prioritizing
the placement of the most “valuable” objects in the faster
memory subsystems. Although this algorithm is not guaranteed
to attain an optimal global solution, because we consider the
different knapsacks separately, we do not foresee a large di-
vergence from optimal distributions in practice. Moreover, the
algorithm relaxes the problem, largely removing computational
complexity. Since the 0/1 knapsack problem is weakly NP-
hard with time complexity O(nW ), where n is the number
of items and W is the knapsack capacity, if m is the number
of memory subsystems, the complexity of our algorithm is
O(mnW ). Note that we express W by the number of 4 KB
pages, mimicking most real-use cases.

The output of our analysis stage is the proposed distribution
of the different memory objects of the analyzed application
among the different memory subsystems being considered,
along with an estimation of the stall cycles that would be
caused by that configuration. On the other hand, we limit our
study to the memory objects allocated within the user binary
object, discarding those used by external libraries or system
calls.

C. Assumptions and Current Known Limitations

Derived from the fact that our method relies on executions
on emulated hardware, our timeline is the number of executed
instructions instead of execution time. On the other hand,
Callgrind limits the cache simulation to a two-level shared
cache system: a first level of separate instruction and data
caches and a second level of unified cache. We also consider
write misses to cause no stall cycles, assuming a buffered write-
through cache policy with unlimited buffer size (in practice,
stall cycles caused by read misses are much larger than those
caused by write misses, and hence this relaxation is not
expected to notably impact the accuracy of our estimations).



TABLE I. CACHE CONFIGURATION IN OUR EXPERIMENTS

Description Total Size Associativity Line Size
L1 Instruction 32 KB 8 64 B
L1 Data 32 KB 8 64 B
L2 Unified 8 MB 16 64 B

TABLE II. MEMORY CONFIGURATION IN OUR EXPERIMENTS

Memory Scenario
Description Latency Baseline Scenario 1 Scenario 2
L1 0 c 32 KB + 32 KB
L2 20 c 8 MB
SP 20 c 0 B 8 MB 8 MB
3D 135 c 0 B 8 GB 1 GB
Main 200 c 32 GB 32 GB 4 GB
NVRAM 20,000 c 0 B 0 B 32 GB

Another limitation of our methodology of analysis lies
in the fact that we are not simulating the different memory
subsystems we consider; instead, we use average latency esti-
mations. Although these reduce the accuracy of our analysis,
we choose this approach because of factors such as the unavail-
ability of detailed low-level specifications from commercial
memory technologies and the large amount of time that those
simulations would involve.

Currently, we consider neither memory migrations nor
reuse of freed space (other than by the same memory object3):
our algorithm pursues a static placement of the different
objects assuming that these will be allocated during the
whole lifetime of the application. Memory migration would
be interesting in those cases where the access patterns of
the objects considerably change along the lifetime of the
execution. We note that our study is limited to profiling a
core part of an application in order to determine the best
object distribution during that execution part, and hence this
limitation is not expected to affect the validity of our analysis.
Studying memory subsystem migration is left for future work.

IV. TEST CASES

In this section we first introduce our target system. We then
present the software we use as test cases for our study.

A. System Setup

For our experiments we consider an 8-core processor fea-
turing a set-associative cache with the configuration specified
in Table I.

Our baseline system is equipped with a traditional DRAM-
based main memory space. We target two different het-
erogeneous memory configuration proposals, as depicted in
Figure 4. Scenario 1 (Figure 4a) features a scratchpad (SP)
memory region at level 2 cache, an on-chip 3D-stacked DRAM
subsystem, and the corresponding main memory system. The
common components (caches and main memory) are sized as
in the baseline compute node. Scenario 2 (Figure 4b) reflects
a more power-friendly system, featuring 3D-DRAM and main
memories of reduced size, and incorporating an NVRAM-
based memory subsystem, while the rest of the components are
left as in scenario 1. The sizes of the different configurations
are shown in Table II.

3We consider different memory objects to be the same as long as these are
allocated or declared from the same execution stack [8].

(a) Scenario 1. (b) Scenario 2.

Fig. 4. Target system memory architectures.

(a) Cutoff distance.

Proc. B Proc. A 

Own (A) 

G
h

o
st

 f
ro

m
 B

 

Own (B) 

G
h

o
st

 f
ro

m
 A

 

(b) Stencil communications.

Fig. 5. Some MiniMD features.

In our estimations, we consider that our processor leverages
one instruction per cycle and that no stall cycles are caused
by hazards. The average latencies that we use for the different
memory subsystems, expressed in CPU cycles, are specified
in Table II.

B. Applications

In our study we used a pair of miniapplications from the
Mantevo codesign project [17]: MiniMD and HPCCG. These
are intended as benchmarks for assessing the performance of
certain production applications. Hence, they are representative
of the behavior of more complex applications.

1) MiniMD: MiniMD is a reduced version of the
LAMMPS molecular dynamics simulator [18], [19], [20]. It
is defined as “a simple proxy for the force computations in
a typical molecular dynamics application.” It simulates the
movement of atoms in a box area following Newton’s laws.
Two methods are available in MiniMD: Lennard-Jones (LJ)
and the embedded atom model (EAM). As with LAMMPS,
MiniMD simulations are compute bound. MiniMD implements
all the major optimizations of its big brother, such as the
concept of cutoff distance to avoid computations of interactions
with distant atoms and atom binning to reduce the computa-
tional load (see Figure 5a). Other characteristics of MiniMD
include spatial decomposition by means of MPI processes
and stencil communications among them in order to exchange
ghost atoms, as illustrated in Figure 5b.

Users can set a variety of simulation parameters such
as the simulated size, atom density, temperature, timestep
size, number of timesteps, cutoff distance, or reneighboring
frequency.

The simulation is run iteratively computing the forces,
positions, and velocities of atoms on successive timesteps.



Every n number of timesteps, a reneighboring is performed,
in order to recompute each atom’s neighbors. Since the atoms’
mobility is limited, the reneighboring stage is not needed in
every iteration. The two most time-consuming tasks are the
compute of the forces, performed every timestep, and the
reneighboring (usually 4 to 5 times longer than the compute
forces stage), in a user-specified frequency.

An interesting characteristic of this miniapplication for our
study is that it leverages multiple relatively large memory
objects gathering largely different number of cache misses.
Thus, it enables us to explore the performance of different
object distributions among the available memory subsystems
and hence demonstrate the potential benefits of a careful object
distribution on heterogeneous memory nodes.

We use the reference implementation of miniMD (version
1.2). Our simulations leverage LJ interactions among 2.9 ·106
atoms in a multithreaded process running 8 threads, using
26 GB of memory. Our profiling reveals that 23% of the
estimated execution cycles in our baseline hardware setup are
produced by cache misses.

2) HPCCG: HPCCG is defined as “a simple conjugate
gradient benchmark code for a 3D chimney domain on an ar-
bitrary number of processors.” This miniapplication focuses on
mimicking the performance behavior of applications executing
a conjugate gradient solver as their main computational kernel
to address an unstructured grid problem, reproducing its finite-
element generation, assembly, and solution stages. The physi-
cal domain consists of a three-dimensional box decomposed by
using recursive coordinate bisection on hexahedric elements.
This is a linear problem resulting in a sparse symmetric matrix.
Interprocess communications are minimal, involved only in the
exchange of nearest-neighbor boundary information and scalar
computations in the conjugate gradient algorithm. The code is
designed to be highly scalable (in a weak sense).

The access pattern of this miniapplication has been demon-
strated to be highly memory demanding and sensitive to
different memory architectures [17]. Hence we expect a high
sensitivity to memory placement on this miniapplication.

We use HPCCG reference version 1.0 in our experiments to
run a 400×400×400 node problem on an 8-threaded process,
requiring 24 GB of memory. According to our profiling data,
this leads to 48% of the estimated execution cycles in our
baseline architecture being produced by cache misses.

V. EXPERIMENTAL RESULTS

In this section we discuss our experimental results. We
first profile the execution of our test case miniapplications
as described in Section III-A. From the profiling data, we
compute an optimized distribution of the memory objects as
discussed in Section III-B. To compare our optimized proposal
with an unoptimized case, while still presenting a realistic
distribution proposal for comparison, we compute a worse-
case scenario as follows:

• We invert the “value” of those objects presenting
nonzero cache misses, so that those featuring fewer
such misses are preferably allocated in the fastest
memory subsystems.

TABLE III. OBJECT DISTRIBUTION FOR MINIMD – SCENARIO 1

Memory Objects Occupancy Cycles Difference Execution
SP 21 53% -4 M 0.0%
3D 9 65% -743 M -7.6%
DRAM 0 0%
Total -747 M -7.6%

• We discard those memory objects not presenting cache
misses during our profiled portion of the execution
before feeding the profiling data to our knapsack-
based memory distribution algorithm. Doing so makes
our unoptimized case not be the worst possible case, as
it would be if we were to place in the fastest memories
those objects presenting zero cache misses.

Our results include an estimation of the execution cycles
(for the profiled portion of interest) from the modeling data
we introduced in Section IV-A for both the optimized and
unoptimized distribution proposals in the three hardware con-
figurations we consider: baseline, scenario 1, and scenario 2.

In the remainder of this section we first introduce the
MiniMD experiments, followed by those obtained for the
HPCCG miniapplication. We conclude this section with a
discussion of the obtained results.

A. MiniMD

Our profiling for MiniMD revealed that over 99% of the
4,716 memory objects this miniapplication leverages caused
no last-level cache read misses in our simulated cache during
the execution of our profiled region of interest. These occupy
almost 21 GB of memory. These objects are not considered in
our subsequent analysis, since their distribution in the different
memory subsystems does not affect our profiled region of
interest.

1) Scenario 1: Our results for MiniMD in scenario 1 are
summarized in Table III. In this case 21 objects are smaller
than the SP size, while 9 are larger than that size and smaller
than the 3D memory size. In addition all 21 small objects
fit together in the SP memory, and all 9 large objects fit in
the 3D memory. Hence, the distribution is trivial, and we do
not distinguish optimized and unoptimized distributions. Our
results show an improvement of 7.6% in execution time with
respect to the baseline memory architecture, contributed mostly
by the on-chip 3D memory performance benefits.

2) Scenario 2: In scenario 2 the memory size restrictions
make a choice available at the DRAM/NVRAM level, where
four of our objects of interest are small enough to be allocated
on the DRAM, although there is sufficient space for only three
of them. Our optimized distribution of the objects, summarized
in Table IV, attains a limited loss of 13.7% with respect to the
baseline configuration, led by the limited size of memories
featuring low latencies. On the other hand, the unoptimized
object distribution (see Table V) shows a slowdown of over
1,000% with respect to the baseline case, caused by the
placement of the memory object featuring the largest number
of cache misses in the NVRAM memory, thus illustrating the
relevance of an optimized object distribution.



TABLE IV. OPTIMIZED DISTRIBUTION FOR MINIMD – SCENARIO 2

Memory Objects Occupancy Cycles Difference Execution
SP 21 53% -4 M 0.0%
3D 5 21% -18 M -0.2%
DRAM 3 93%
NVRAM 1 4% +1 G +13.9%
Total +1 G +13.7%

TABLE V. UNOPTIMIZED DISTRIBUTION FOR MINIMD – SCENARIO 2

Memory Objects Occupancy Cycles Difference Execution
SP 21 53% -4 M 0.0%
3D 5 21% -18 M -0.2%
DRAM 3 94%
NVRAM 1 4% +130 G +1,330.5%
Total +130 G +1,330.3%

B. HPCCG

In the case of HPCCG, 742 of the 760 memory objects
this miniapplication leverages do not incur in any last-level
read cache miss during our profiled portion of the execution,
which occupy less than 2 GB out of the 24 GB of memory
that our execution requires. On the other hand, only 9 small
memory objects fit into the SP memory, saving a negligible
amount of CPU cycles. The remainder 9 objects, however,
can be distributed in different ways, as discussed next for the
different scenarios.

1) Scenario 1: In scenario 1 only one memory object is
larger than the 3D memory size and hence forced to be placed
in the DRAM memory space. The remaining eight objects can
be allocated in either the DRAM or the 3D memory, although
the space constraints prevent placing all of them in the 3D
memory. Our algorithm for an optimized distribution obtains
an 8.3% improvement in iteration execution time, as shown in
Table VI, whereas the unoptimized distribution reveals only a
4.9% improvement (see Table VII).

2) Scenario 2: The restrictions on the memory sizes in
scenario 2 mean that two of the memory objects of our execu-
tion fit only in NVRAM memory, leaving seven objects to be
distributed between the 3D and DRAM memory subsystems.
The result is a 3.8% performance improvement in the number
of accesses to the objects allocated in the 3D memory with
respect to our baseline with our optimized distribution, as
shown in Table VIII, and merely 0.1% when the unoptimized
placement is leveraged (see Table IX). Nevertheless, the large
penalty imposed by the objects allocated with no choice into
the NVRAM makes the overall benefit from the optimized
placement negligible in this case.

TABLE VI. OPTIMIZED DISTRIBUTION FOR HPCCG – SCENARIO 1

Memory Objects Occupancy Cycles Difference Execution
SP 9 0% -2 K 0.0%
3D 4 98% -497 M -8.3%
DRAM 5 45%
Total -497 M -8.3%

TABLE VII. UNOPTIMIZED DISTRIBUTION FOR HPCCG - SCENARIO 1

Memory Objects Occupancy Cycles Difference Execution
SP 9 0% -2 K 0.0%
3D 7 39% -294 M -4.9%
DRAM 2 60%
Total -294 M -4.9%

TABLE VIII. OPTIMIZED DISTRIBUTION FOR HPCCG – SCENARIO 2

Memory Objects Occupancy Cycles Difference Execution
SP 9 0% -2 K 0.0%
3D 2 95% -224 M -3.8%
DRAM 5 54%
NVRAM 2 60% +193 G +3,236.7%
Total +193 G +3,232.9%

TABLE IX. UNOPTIMIZED DISTRIBUTION FOR HPCCG – SCENARIO 2

Memory Objects Occupancy Cycles Difference Execution
SP 9 0% -2 K 0.0%
3D 2 95% -6 M -0.1%
DRAM 4 83%
NVRAM 2 60% +193 G +3,236.7%
Total +193 G +3,236.6%

C. Discussion

In all cases the SP memory presented low occupancy
rates along with low contributions to the overall performance
difference with the baseline case. The reason is that most of
the small objects of our studied pieces of code do not present
last-level cache misses. This result is expected in highly tuned
executions involving large memory objects, which are more
likely to present a large number of last-level cache misses,
while cache competition effects among memory objects are
minimized.

On the other hand, our results, summarized in Table X,
reveal nonnegligible performance benefits of an optimized
memory object distribution on two of our four test cases,
while the remaining two showed no noticeable difference.
Large performance benefits—more than 10 times that of the
unoptimized case—were obtained for MiniMD in scenario
2 by avoiding placing a memory object causing a large
number of last-level cache read misses in the performance-
expensive NVRAM memory subsystem. The other favorable
case, HPCCG in scenario 1, showed almost 4% improvement
for the optimized distribution over its unoptimized counterpart
thanks to the allocation of those memory objects presenting a
larger number of cache misses closer to the CPUs.

In summary, although different constraints—such as mem-
ory latency differences, memory sizes, and object sizes—
determine the gains of employing an optimized memory object
distribution among the different memory subsystems of a
heterogeneous memory system with respect to an unoptimized
placement, the potential gains are sufficiently large to merit
consideration.

VI. RELATED WORK

In this section we review previous work related to our
research. We first discuss data-oriented profiling. Next we
present prior research related to multiple-memory systems. We
also discuss prior work related to data placement in NUMA
systems. To the best of our knowledge, our work is the first

TABLE X. OVERALL PERFORMANCE IMPROVEMENT WITH RESPECT
TO UNOPTIMIZED DISTRIBUTION

Hardware Test Case
MiniMD HPCCG

Scenario 1 0.0% 3.7%
Scenario 2 1,158.0% 0.1%



proposing a method (along with a tool) to distribute data
among multiple heterogeneous memory subsystems based on
data-oriented profiling and to demonstrate its potential benefits
employing code representative of applications from the HPC
arena.

A. Data-Oriented Profiling

Data/object-oriented profiling has been of interest as a
means of helping developers optimize their applications or
optimize object arrangement for improved cache behavior
within a traditional memory hierarchy.

MemSpy [21], [22] was described as a “prototype tool” for
profiling applications based on the Tango [23] system simu-
lator. Apart from interesting code-oriented performance anal-
ysis assistance, it provided object-differentiated cache misses
similar to the way our profiling tool does. This was aimed at
offering a complementary profiling view to explore application
performance. To the best of our knowledge, however, both the
Tango and MemSpy projects were discontinued long ago, and
MemSpy was not made publicly available.

Gleipnir [24], [25], [26] is a Valgrind tool providing raw
object-differentiated data access tracing. It is combined with
the Gl cSim cache simulator (based on DineroIV [27]) to study
the cache behavior of the different data structures leveraged
by applications. This differs from our work in that we focus
on analyzing those data accesses overpassing the last-level
cache, since we are not interested in cache performance issues.
In addition, we directly analyze memory accesses within the
cache simulator, hence avoiding unnecessarily generating large
trace files and the time overhead that process implies.

Itzkowitz et al. [28] have studied hardware-assisted data-
oriented profiling for the UltraSPARC-III family of proces-
sors. Their work extended the Sun ONE Studio compilers
and performance tools to provide object-differentiated perfor-
mance data based on hardware counters. While their tech-
nique provides low-overhead profiling, it heavily relies on the
UltraSPARC-III hardware capabilities to attain a reasonable
accuracy.

Several studies have also focused on object-based profiling
techniques to leverage object placement optimizations in tra-
ditional memory hierarchies with the objective of improving
cache behavior [29], [30], [31] or differentiating per-object
access patterns to attain a reduction in the profile size [32].
We also find research in high-level programming languages
such as exploring object-alignment strategies based on code
pattern analysis for Java [33] or using hardware-based statistics
from the garbage collector for the same purpose in the Jikes
RVM [34].

B. Heterogeneous/Hybrid Memory Systems

Systems equipped with heterogeneous memories have been
studied in the past from different approaches. In this section
we review several relevant contributions in this field.

The architectural and hardware challenges of leveraging
heterogeneous memory systems were studied in [35]. Explor-
ing the use of secondary memory subsystems for different
purposes has also been explored in the past [36], [37].

Phadke ad Narayanasamy [38] proposed a system equipped
with three different DRAM-based memories optimized for
latency, bandwidth, and power, respectively. Similar to our
work, the system involves an offline profiling methodology
using the last-level cache misses as the metric in order to
determine the most appropriate memory subsystem for each
application. However, application granularity does not exploit
the fact that different memory objects may feature largely
diverse access patterns.

[39] proposes a similar profiling-based mechanism tar-
geting embedded systems. The fact that these architectures
lack hardware-managed (cache-like) memories, makes them
follow a different criteria. [40] approached the same problem
for cache-equipped embedded systems, but used heuristics to
estimate the probability of conflicts in the data cache, which
they used as their metric to partition data between on-chip and
off-chip memories.

C. Data Distribution in NUMA Systems

A relatively large amount of research has been done on data
distribution in NUMA systems. However, the constraints differ
from those we face. With NUMA systems, the problem to solve
is to distribute the application’s data so that it is as close as
possible to the processors that use it the most. In this case,
a given memory object is likely to be accessed by processors
located in different NUMA nodes, since multithreaded appli-
cations commonly leverage algorithms in which the different
threads work collaboratively in different parts of large memory
objects. For this reason, the NUMA data distribution research
focuses on distribution at page-level granularity. Examples of
this research include profiling-based distribution such as [41],
[42]. Conversely, in our proposal we consider architectures
with uniform access to the different memory subsystems. With
the uniform access from the different processes to the data
belonging to a given memory object, we follow the more
natural approach of distributing data with memory object
granularity. In future work we will explore the possibility of
splitting objects among different memory subsystems if these
present different access patterns on different parts of them.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have proposed a methodology to assess the
optimal distribution of application data among the different
memory subsystems of upcoming compute nodes equipped
with heterogeneous memory systems at memory object granu-
larity. We describe a tool that, based on data-oriented profiling,
provides an optimized distribution of the objects leveraged
by the profiled application. Our results, from two miniap-
plications as test cases targeting two different configurations
of heterogeneous memory systems, reveal the importance of
carefully distributing the different memory objects, justifying
our proposed analysis methodology and tool.

We plan to extend the capabilities of our tool to analyze the
feasibility of object migration between memory subsystems.
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