
Simplifying the Recovery Model of User-Level
Failure Mitigation

Wesley Bland, Kenneth Raffenetti, Pavan Balaji
Argonne National Laboratory

Mathematics and Computer Science Division
Argonne, IL USA

{wbland, balaji}@anl.gov, raffenet@mcs.anl.gov

Abstract—As resilience research in high-performance comput-
ing has matured, so too have the tools, libraries, and languages
that result from it. The Message Passing Interface (MPI) Forum
is considering the addition of fault tolerance to a future version of
the MPI standard, and a new chapter called User-Level Failure
Mitigation (ULFM) has been proposed to fill this need. However,
as ULFM usage has become more widespread, many potential
users are concerned about its complexity and the need to rewrite
existing codes. In this paper, we present a usage model that
is similar to the usage already common in existing codes but
that does not require the user to restart the application (thereby
incurring the costs of re-entering the batch queue, startup costs,
etc.). We use a new implementation of ULFM in MPICH, a
popular open source MPI implementation, and demonstrate the
ULFM usage using the Monte Carlo Communication Kernel, a
proxy-app developed by the Center for Exascale Simulation of
Advanced Reactors. Results show that the approach used incurs
a level of intrusiveness into the code similar to that of existing
checkpoint/restart models, but with less overhead.

I. INTRODUCTION

Fault tolerance research in high performance computing
(HPC) has moved from an academic study to a serious concern
as we grow ever closer to exascale. More and more evidence
continues to point to the eventuality that machines will become
less reliable at large scale. Even some current machines see
failure rates of more than one failure per day. Applications will
face a variety of potential failures, including failures impacting
specific components of the system, such as volatile memory,
long-term storage, and communication interfaces, and full-
node failures, such as processor failures, power failures, and
thermal issues. Therefore, an application must have a complete
set of tools to detect, recover from, and repair a variety of
failures. This tool set is only now being constructed, but clearly
it must mix both interfaces with which application and library
developers are already familiar and new interfaces and libraries
that provide novel solutions to resilience issues.

The Message Passing Interface (MPI) [22] is the most
ubiquitous interface for communication in HPC applications.
The interface was first written in 1993 and has since been
adapted as the landscape of HPC has changed. With the
addition of new features such as one-sided memory access,
I/O, and dynamic process management, the MPI interface
remains applicable on today’s machines even after five orders
of magnitude of growth. To remain applicable to new scales,
however, MPI must confront the problems of future machines,
including resilience. The MPI Forum’s Fault Tolerance Work-
ing Group [2] has been working toward this goal and has put

forward a proposed chapter using the working title “User Level
Failure Mitigation” (ULFM) [17]. This chapter is specific
to process fault tolerance because this is currently the most
studied area of resilience. The working group will continue to
explore and potentially standardize (when necessary) a more
comprehensive set of tools to help applications recover from
other types of failures.

As ULFM has become more publicized and studied, one
of the most common responses has been to criticize its
complexity for existing large-scale codes, which are unlikely to
be completely redesigned to fully take advantage of ULFM’s
new features. Arguably, the applications that will initially be
the simplest to adapt to use ULFM are those that can perform
local recovery or continue executing with fewer processes.
Nevertheless, other types of applications will also gain from
the new APIs provided.

In this paper, we investigate how a common class of appli-
cations — iterative refinement stencil codes — can use ULFM
to achieve fault tolerance without requiring heavyweight disk-
based checkpoints or restarting the entire MPI application.
We show that using ULFM to achieve this does not require
any more code changes than does a traditional fault tolerance
model (i.e. checkpoint/restart). We also demonstrate that by
using ULFM, the total time to solution is reduced.

To demonstrate these advances, we use a new imple-
mentation of ULFM being added to MPICH [3], the most
widely used MPI implementation on HPC systems. We also
use the Monte Carlo Communication Kernel (MCCK) [20] as
a representative code for the class of applications discussed
here. MCCK is a proxy-app developed by the Center for
Exascale Simulation of Advanced Reactors (CESAR) as a way
for computer scientists to investigate new tools to be used in
large-scale codes without requiring the developer of the tool to
understand hundreds of thousands of lines of domain-specific
code. MCCK uses a standard stencil computation with a halo
communication style to simulate the movement of particles
in a nuclear reactor between computation domains. We adapt
this proxy-app in two ways to add resilience. First, we use the
traditional checkpoint/restart style of execution using check-
pointing to disk in order to demonstrate the performance of
the common model. Then, we modify the app again to use
ULFM to show the improvement gained by using the new
tools.

The rest of the paper is organized as follows. In Section II,
we discuss the background of the proposal and related work.



Section III briefly describes our implementation of ULFM
in MPICH. Section IV describes our work with MCCK.
Section V discusses the performance of MCCK after the
modifications. Section VI wraps up the paper and discusses
future work.

II. BACKGROUND & RELATED WORK

Resilience in MPI is not a new subject. Research specif-
ically into the checkpoint/restart model has be going on for
many years. Berkeley Lab Checkpoint/Restart (BLCR) [11]
is the checkpoint/restart library most commonly used by
applications and MPI implementations. It was initially de-
veloped in 2005 and remains the defacto model for saving
full-system checkpoints. BLCR support was added to many
MPI implementations including the most popular open source
implementations MPICH and Open MPI [12] as well as
predecessors such as LAM/MPI [19].

As the footprint of applications became larger and the time
spent writing checkpoints increased, researchers began to ex-
plore ways to improve the time necessary to write each check-
point. Initially, the focus was on moving the checkpointing
model from a synchronous model, where all processes would
simultaneously write a checkpoint to disk after quiescing the
network, to a more asynchronous one, where checkpoints could
be taken independently and messages between the checkpoints
were logged to allow the system to replay them after rolling
back to a previous checkpoint [8]. This work improved the
checkpoint times but also increased the memory requirement
of checkpointing due to the message logging. More work
was then done to attempt to make checkpoints even smaller
and store only the most necessary information. This led to a
large body of work involving application-level checkpointing
including FTI [5], SCR [16], or GVR [1].

While resilience in MPI has been studied extensively [7],
[9], [10], [15], ULFM is a relative newcomer. The chapter was
first proposed to the MPI Forum’s Fault Tolerance Working
Group in 2012 [6] as a reimagining of previous proposals for
MPI fault tolerance, including, most recently, Run-Through
Stabilization [13]. The goal of ULFM, as is true of MPI as
a whole, was not to make a particular model of resilience
easy, but to form the foundational tools necessary to allow
any model of resilience (roll-back recovery, roll-forward recov-
ery, application-based fault tolerance, natural fault tolerance,
transactions, etc.) to be constructible based on the provided
interface.

ULFM provides the foundational tools necessary for re-
silience: failure notification, discovery, and recovery. Notifi-
cation takes place by using the existing MPI error notifica-
tion system through error codes and MPI_ERRHANDLERs.
ULFM adds new error classes to inform the user
when a process failure has been detected. To dis-
cover which processes have failed, the application can
call the new functions MPI_COMM_FAILURE_ACK and
MPI_COMM_FAILURE_GET_ACKED, which will provide a
group of all processes that the local processes knows have
failed. This group is not synchronized across all processes
in a communicator. If such global knowledge is required,
the user can call MPI_COMM_REVOKE to enforce it. This
nonlocal, noncollective function causes all future nonlocal MPI

operations to return with the error class MPI_ERR_REVOKED.
This function is not matched on remote processes, so once
it is called locally, it will return as soon as the revoke
messages have been sent to all necessary remote processes,
and the application can continue, knowing that at some point
in the future, all processes will be notified of the failure.
Recovery takes place via the new communicator creation
function MPI_COMM_SHRINK. This function creates a new
communicator after internally agreeing on a list of processes
that have failed and excluding those processes from the new
communicator. The final new function, MPI_COMM_AGREE, is
used to perform a manual, fault-tolerant agreement operation at
the user level. This allows the application to determine global
status when necessary, such as at the end of algorithm segments
or before calling MPI_FINALIZE.

In [6], the authors evaluate the performance of a ULFM
implementation based on Open MPI. The evaluation is done
using micro-benchmarks and some small applications, but it
is focused largely on failure-free performance in an effort
to demonstrate the low overhead introduced by the changes
required by ULFM. This is important work in showing how
ULFM can be implemented with minimum impact on existing
applications, but it does not demonstrate the use of ULFM
to actually recover from failures. In this paper, we provide
a demonstration of how ULFM can be used with existing
applications and evaluate the performance including recovery.

Recently, St Pauli and Schwab demonstrated the use of
ULFM in real applications [21]. They showed how to im-
plement fault tolerance in a naturally fault-tolerant algorithm
by implementing redundancy within the algorithm to allow
the application to ignore failed processes and continue using
the stabilization features of ULFM. We demonstrate a more
practical, immediately accessible usage here.

III. ULFM IMPLEMENTATION

As part of the work of demonstrating the implementation
of a resilient application, we have implemented ULFM inside
MPICH. This implementation required modifications to some
of the existing pieces of MPICH but was largely kept isolated
from performance-critical code. Error checking remains dis-
abled by default and is activated only when the user provides
the configure flag --enable-error-checking=all.
This approach allows MPICH to internally check for more er-
rors and for unique situations such as revoked communicators.
It remains optional if fault tolerance is not required because
it introduces a new conditional statement that could have
a minor performance impact on extremely latency-sensitive
applications.

The algorithms used for the implementation of the new
ULFM functions are not complex or optimized, but they still
provide reasonable performance and will be better optimized
in future versions of the code. We provide some details about
the algorithms here:

a) Failed Processes: Acquiring the list of failed pro-
cesses is implemented by using the Process Management
Interface (PMI) [4]. PMI is responsible for all processes
involved in an MPICH job and tracks a variety of information
about those processes, including whether they have failed. This
information is aggregated at the PMI server and is shared



among the local PMI clients on each process. When a failure
occurs, the PMI client alerts MPICH via a signal that will
be handled the next time the user makes a call into the
MPICH communication library (but not for calls that act only
locally). To produce the list of failed processes in order to
construct the group for MPI_COMM_FAILURE_GET_ACKED,
MPICH gets the list of failed processes from PMI. However,
to prevent MPICH from needing to cache the list of failed
processes internally per communicator in order to satisfy the
requirement that MPI not provide a group of failed processes
that is different from the last time the user called the function
MPI_COMM_FAILURE_ACK, we track only the last acknowl-
edged process failure per communicator. When constructing
the group of failed processes, we parse the list from PMI
(which is in the same order every time it is retrieved) and
stop when we reach the last failed process.

b) Agree: The agreement algorithm is implemented as
a gather/scatter algorithm to determine the group of failed
processes. Then two calls to an internal allreduce function
determine the status of the flag provided as an argument and
the return value of the completed function. According to the
specification, these two values must be synchronized across
all processes. If a failure occurs during the agreement, the
remaining processes will return MPI_ERR_PROC_FAILED if
the failure occurs before the determination of the return code,
or MPI_SUCCESS if it occurs afterward.

c) Shrink: The implementation of the shrinking func-
tion is similar to that of the agreement function. The failed
processes are determined via a gather/scatter; success is de-
termined happens via an internal allreduce. The difference
comes with the addition of the communicator creation. The
communicator is constructed by using the MPI-3 function,
MPI_COMM_CREATE_GROUP, with some modifications to
ensure that a failure will not cause internal deadlock.

d) Revoke: Implementation of revocation is the most
complex of the new functions. This complexity is introduced
because MPI_COMM_REVOKE is a completely new type of
function. It is not a collective function, which provides match-
ing calls at all participating processes. Rather, the revoke
operation must act as an active message, or a one-sided
operation, which is handled in a packet handler without user
involvement. Because only one process can be involved in
starting the revoke algorithm and because redundant paths
between all processes may not exist, the current version
of revoke is implemented as a cascading all-to-all function.
When one process first calls MPI_COMM_REVOKE, it sends a
revoke message to all other processes in the communicator and
initializes a counter to track how many other processes have
yet to send a revoke message to the local process. As each
process receives the message to revoke the communicator, it
initializes its own counter and sends its own revoke message
to all other processes. As each process receives the revoke
messages, it decrements its own counter. Receiving a message
about a process failure also decrements the counter. When
the counter reaches 0, it deletes the communicator and frees
the internal context id to be reused by future communicators.
Obviously, this algorithm is not scalable for future machines,
but for current hardware it completes in a reasonable time and
will be called relatively infrequently. Improved versions of this
algorithm will be developed as future work.

IV. MONTE CARLO COMMUNICATION KERNEL

In this section, we detail the work done to extend the
Monte Carlo Communication Kernel (MCCK) [20] mini-app
to add process failure resilience. MCCK is a representative
application for a variety of domain decomposition applications
that perform stencil computation by sending and receiving data
only with their direct neighbors. This application is developed
as part of the Center for Exascale Simulation of Advanced
Reactors (CESAR) at Argonne National Laboratory.

We modified MCCK in two ways to demonstrate how
applications can use ULFM in a minimally intrusive fashion.
First, we used standard application-level checkpointing. Sec-
ond, we used ULFM to employ a similar protection strategy,
but keeping data in-memory. Both modifications require a
minimal amount of data to be protected in order to continue
executing after a failure. MCCK tracks the position of particles
as they move through a region that is divided among the
different processes in the computation. Hence, we needed to
preserve the location of these particles. In this section, we
describe how this data is protected and repaired using our two
mechanisms.

A. Application-Level Checkpointing Modifications

The first method of data protection is the most familiar to
most application developers. We used a basic checkpointing
scheme to store the position of the particles in checkpoint
files. After a predetermined number of intervals, we captured
the location of the particles and checkpointed that information
to disk. While this approach makes data protection relatively
simple, recovery after a failure is more involved. Because the
application does not attempt to continue to communicate after a
process failure, it must shut down and restart after each failure.
In practice, this approach might also involve re-entering the
batch queue and waiting for the job to be restarted. When the
job starts again, the data is re-initialized and the checkpoint
file read back into memory. Thus, the simulation is brought
back to the point where the failure occurred, and the job can
continue.

Two major sources of overhead are found with this form of
resilience: writing checkpoint files, and the recovery time after
a failure. Writing checkpoint files can be expensive because the
well known relative speed of writing data to disk as opposed
to storing the data in memory (even remote memory). The
problem of determining the optimal checkpoint overhead is
well-studied [14], [18], [23], and we will not cover it here.

The second source of overhead does not occur during
executions without failures; but if periodic failures become
commonplace (as expected with exa-scale) recovery time will
be an important metric to track the total time to completion. In
the checkpoint/restart model, recovery overhead involves the
time to restart the job, time to restart the application, and time
to restore the application data. While in some systems the time
to restart the job may be minimal (such as systems where no
batch scheduler exists or has a job is not aborted after a process
failure), on many systems this is not currently the case. For
example, on IBM Blue Gene machines, the batch scheduler
will abort any job in which a process has failed because of
technical limitations. Therefore, we need to account for this
time when considering the overhead of recovery. Moreover, the



time to restart the application must be considered. Usually, this
is the amount of time necessary to start an MPI job. While this
time has improved dramatically in recent releases of most MPI
implementations, it is still nonzero. This time also includes
any time necessary to reinitialize the application, including
setting up MPI communicators and data structures. In addition,
we must consider the time spent actually recovering the data
written to the checkpoint files. Recent advancements in check-
pointing techniques have minimized this time, and applications
are beginning to use less heavyweight checkpointing schemes;
but as with writing checkpoints, this recovery time involves
reading data from the disk and possibly communicating some
of the data to other processes. We evaluate all these costs in
Section V.

B. ULFM Modifications

For our ULFM version of the MCCK mini-app, we wanted
to mirror the checkpoint/restart version as closely as possible in
order to demonstrate a common use case for ULFM. However,
because the ULFM version of the benchmark does not require
the application to restart, the checkpoint data does not need
to be stored to disk. Instead, the data is kept by neighboring
processes. At the end of an iteration, each process sends
the location of its particles to its neighbor. Therefore, after
a failure, the recovery data can be acquired by asking a
neighbor instead of reading the data from disk. Our method
of repairing the execution after a process failure also changes
slightly because the application will not be restarting. Instead,
the application needs to replace the failed process in one of
two ways: using a replacement process created at the start
of the execution or spawning a replacement process as needed
during the execution. While the first method of including spare
processes during application startup is valid and compatible
with more existing systems at the current time, the method of
spawning replacement processes will allow an application to
tolerate an arbitrary number of process failures, so we use it
here. Our code can easily be modified to use the alternative
method if desired.

Because we no longer rely on MPI to automatically abort
after a process has failed, we must do some minor additional
work to determine the status of the execution after an iteration
of the algorithm is completed. In this instance, we use the
new function introduced in UFLM, MPI_COMM_AGREE. This
function performs a fault-tolerant agreement algorithm among
all alive processes in the execution by accepting an integer
value as input and performing a bitwise AND operation over
the value collected from each process. If a process failed before
calling MPI_COMM_AGREE, it will cause all other processes to
return MPI_ERR_PROC_FAILED. Therefore, we can detect a
failure from either the return value or the input value. If we
detect that a process has failed, then all processes return their
data to the last known good state (the state of the data after
the last call to MPI_COMM_AGREE), which is kept in local
memory. At this point, each process will discover the rank
of the failed process by using MPI_COMM_FAILURE_ACK
and MPI_COMM_FAILURE_GET_ACKED and construct a
working communicator by calling MPI_COMM_SHRINK.
This shrunken communicator is used to spawn a replace-
ment process using MPI_COMM_SPAWN, which is patched
into the position vacated by the failed process using
MPI_INTERCOMM_MERGE and MPI_COMM_SPLIT. At this

Fig. 1: Runtime of MCCK benchmark with application-level
checkpointing and ULFM

point, the resulting communicator contains the correct number
of processes, and all processes have the same ranks that they
did in the original communicator (with the replacement process
in the place of the failed process). In order to continue the
execution, the replacement processes must acquire the current
iteration number and data about its particles by querying its
neighbors.

V. PERFORMANCE EVALUATION

Performance analysis was done using the Fusion cluster at
Argonne National Laboratory. Fusion nodes have 8 compute
cores (2 Pentium Xeon Processors), and 36 GB of memory
and are connected by QDR InfiniBand and Gigabit Ethernet.
Runtime measurements were done for process counts up to
1,024, starting with 100,000 particles per process, and averaged
of three runs. For reproducibility, we used an MCCK-provided
option to always seed the randomness function with the same
value.

In these experiments, we evaluated our two versions of the
MCCK benchmark (one using application-level checkpointing
and one using ULFM) and modified the frequency of the data
protection. For the application-level checkpointing benchmark,
checkpoints were taken more or less frequently; for the ULFM
benchmark, the agreement was also performed more or less
frequently. We varied this value between every iteration, ev-
ery third iteration, and every fifth iteration of the mini-app.
Because the relatively short runtime of the benchmark we
were unable to produce meaningful results for higher iteration
counts, but we can make interesting observations from the
trends that emerge. During all the executions, we kill one
process near the midpoint of the job and allow the application
to recover using the predetermined strategy.

In Figure 1, we see the overall runtime of the MCCK
benchmark in multiple configurations. Across all executions,
at scales higher than 256 processes, the total execution time is
better with ULFM than with application-level checkpointing.
We expected to see these results because the time necessary to



Fig. 2: Overhead of resilience in MCCK benchmark with
backups every 1, 3, and 5 iterations

restart an MPI application and simultaneously read the check-
point files from disk increases with the number of processes in
the execution at a rate much faster than performing collective
operations inside an existing MPI application (which is the
requirement of the ULFM execution).

For a more detailed analysis of the execution time and the
impact of the resilience schemes, we analyzed the execution in
more detail. In Figure 2, we can see a breakdown of the time
spent protecting the application data from failures (Checkpoint
in the checkpoint/restart execution and Agree in the ULFM
execution) and the time spent repairing the execution after a
failure (Restart in the checkpoint/restart execution and Repair
in the ULFM execution). In this figure, each group of bars
represents a number of processes. Each green and blue (not
seen due to small size) bar represents the overhead introduced
by traditional checkpoint restart, and each orange and yellow
bar represents the overhead introduced by ULFM. The first two
bars in each group demonstrate a checkpoint every iteration,
the second two show checkpoints every third iteration, and the
final two every fifth iteration.

We can see that the time spent protecting the data is
actually greater in the ULFM execution (approx. 6 seconds)
than in the checkpoint/restart execution (less than 1 second).
This is not surprising since the ULFM implementation on
which this work is based has not yet been optimized to use
sophisticated agreement algorithms. We expect this number to
decrease as future versions of the agreement algorithms will
scale better and minimize communication compared with the
current naive implementation. Another point to consider when
evaluating the overhead of the both MCCK implementations
is that while the MCCK mini-app performs representative
communication, it does not perform all of the computation that
would be present in a full large-scale application. Therefore, at
large scale, we would expect the relative overhead introduced
by the both resilience strategies to drop significantly as the
time spent performing computation will eclipse the time spent
writing checkpoints or performing agreements.

When we evaluate the recovery time, we see that the

ULFM implementation vastly outperforms the checkpointing
implementation. This is expected because of the overhead
of completely restarting the MPI runtime and reading a full
set of checkpoints simultaneously. To determine how the
recovery time is being spent, we evaluated an execution of
MCCK with checkpointing running with 512 processes and
checkpointing every 5 iterations. We found that the amount
of time spent restarting the MPI job took more than 99%
of the recovery time, and relatively little time was spent re-
reading the checkpoint. Alternatively, we see that the repair
time of ULFM grows at a much slower rate. The reason is
that the ULFM implementation does not have to restart the
MPI job or read data from disk. Instead, it only needs to
spawn a replacement process and recreate its communicator
(which involves performing a small number of collective
operations). The data is read from memory instead of disk, thus
dramatically decreasing the recovery time. While the ULFM
algorithms used during the recovery period have also not yet
been optimized, their impact is much lower since they are
called only once a failure has actually occurred and therefore
do not impact normal runtime.

We also see that for the MCCK mini-app, the checkpoint
frequency has relatively little impact on the overall runtime.
We can see a minor drop in total runtime as the number
of checkpoints or agreements decreases (specifically in the
ULFM implementation as the previous performance discussion
would indicate). For applications that have larger checkpoint
times, the impact of checkpoint frequency will be much more
dramatic.

VI. CONCLUSION AND FUTURE WORK

As users have begun to evaluate how their applications
can take advantage of possible new fault tolerance additions
coming to the MPI standard, early feedback indicates that not
all the tools will be necessary for all applications. In this
paper, we demonstrate how an application that already uses a
traditional checkpoint/restart recovery model can easily convert
to using ULFM and improve its recovery time dramatically
by not requiring the application to restart the entire MPI job
and read and write checkpoints to disk. We used the Monte
Carlo Communication Kernel mini-app as a representative
application for large scale executions and showed that the total
time to completion for some executions can improve by as
much as 75% by using ULFM.

We intend to improve the performance of the various new
ULFM functions as they are implemented in MPICH. We
also plan to demonstrate ULFM’s usage in more complex
applications that will use the full set of ULFM features.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy Office of Science, Office of Advanced
Scientific Computing Research, under contract number DE-
AC02-06CH11357.

REFERENCES

[1] “Global View Resilience: GVR.” [Online]. Available: https://sites.
google.com/site/uchicagolssg/lssg/research/gvr



[2] “MPI Forum Fault Tolerance Working Group.” [On-
line]. Available: https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/
FaultToleranceWikiPage

[3] “MPICH.” [Online]. Available: http://www.mpich.org/
[4] P. Balaji, D. Buntinas, D. Goodell, W. D. Gropp, J. Krishna,

E. L. Lusk, and R. Thakur, “PMI: A Scalable Parallel Process-
Management Interface for Extreme-Scale Systems,” in 17th EuroMPI
Conference, Lecture Notes in Computer Science, Stuttgart, Germany,
2010, 11/2009 2009. [Online]. Available: http://www.springerlink.com/
content/q9u361j4q6800773/

[5] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High Performance Fault
Tolerance Interface for Hybrid Systems,” in Proceedings of
2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: ACM, 2011, pp. 32:1–32:32. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063427

[6] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J.
Dongarra, “An evaluation of user-level failure mitigation support in
MPI,” in Recent Advances in the Message Passing Interface. Springer,
2012, pp. 193–203.

[7] W. Bland, P. Du, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra,
“A Checkpoint-on-Failure protocol for algorithm-based recovery in
standard MPI,” in Euro-Par 2012 Parallel Processing. Springer, 2012,
pp. 477–488.

[8] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain,
T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and
A. Selikhov, “MPICH-V: Toward a Scalable Fault Tolerant MPI for
Volatile Nodes,” in Supercomputing, ACM/IEEE 2002 Conference, Nov
2002, pp. 29–29.

[9] G. E. Fagg and J. J. Dongarra, “FT-MPI: Fault tolerant MPI, supporting
dynamic applications in a dynamic world,” pp. 346–353, 2000.

[10] W. Gropp and E. Lusk, “Fault Tolerance in Message Passing Interface
Programs,” International Journal of High Performance Computing
Applications, vol. 18, no. 3, pp. 363–372, 2004. [Online]. Available:
http://hpc.sagepub.com/content/18/3/363.abstract

[11] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart
(blcr) for linux clusters,” Journal of Physics: Conference Series,
vol. 46, no. 1, p. 494, 2006. [Online]. Available: http://stacks.iop.org/
1742-6596/46/i=1/a=067

[12] J. Hursey, J. Squyres, T. Mattox, and A. Lumsdaine, “The design and
implementation of checkpoint/restart process fault tolerance for open
mpi,” in Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, March 2007, pp. 1–8.

[13] J. Hursey, R. L. Graham, G. Bronevetsky, D. Buntinas, H. Pritchard,
and D. G. Solt, “Run-through stabilization: An MPI proposal for process
fault tolerance,” in Recent Advances in the Message Passing Interface.
Springer, 2011, pp. 329–332.

[14] W. M. Jones, J. T. Daly, and N. DeBardeleben, “Impact of sub-
optimal checkpoint intervals on application efficiency in computational
clusters,” in Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, ser. HPDC ’10. New
York, NY, USA: ACM, 2010, pp. 276–279. [Online]. Available:
http://doi.acm.org/10.1145/1851476.1851509

[15] A. Kanevsky, A. Skjellum, and A. Rounbehler, “MPI/RT - an emerging
standard for high-performance real-time systems,” vol. 3, pp. 157–166
vol.3, 1998.

[16] A. Moody, G. Bronevetsky, K. Mohror, and B. de Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in High Performance Computing, Networking, Storage and
Analysis (SC), 2010 International Conference for, Nov 2010, pp. 1–11.

[17] MPI Fault Tolerance Working Group, “User level failure mitigation.”
[Online]. Available: https://svn.mpi-forum.org/trac/mpi-forum-web/
wiki/User Level Failure Mitigation

[18] J. S. Plank and M. G. Thomason, “Processor allocation and
checkpoint interval selection in cluster computing systems,” Journal
of Parallel and Distributed Computing, vol. 61, no. 11, pp. 1570 –
1590, 2001. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0743731501917575

[19] S. Sankaran, J. M. Squyres, B. Barrett, V. Sahay, A. Lumsdaine,

J. Duell, P. Hargrove, and E. Roman, “The LAM/MPI
Checkpoint/Restart Framework: System-Initiated Checkpointing,”
International Journal of High Performance Computing Applications,
vol. 19, no. 4, pp. 479–493, 2005. [Online]. Available:
http://hpc.sagepub.com/content/19/4/479.abstract

[20] A. Siegel, K. Smith, P. Fischer, and V. Mahadevan, “Analysis of
communication costs for domain decomposed Monte Carlo methods in
nuclear reactor analysis,” Journal of Computational Physics, vol. 231,
no. 8, pp. 3119–3125, 2012.

[21] P. A. St Pauli and C. Schwab, “Intrinsic fault tolerance of multi level
Monte Carlo methods,” ETH Zurich, Computer Science Department,
Tech. Rep., 2012.

[22] The MPI Forum, “MPI: A Message-Passing Interface Standard, Version
3.0,” Tech. Rep., 2012.

[23] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, Sep. 1974.
[Online]. Available: http://doi.acm.org/10.1145/361147.361115


