Distrib Parallel Databases
DOI 10.1007/s10619-015-7173-2

Performance analysis of data intensive cloud systems
based on data management and replication: a survey

Saif Ur Rehman Malik - Samee U. Khan - Sam J. Ewen -
Nikos Tziritas - Joanna Kolodziej - Albert Y. Zomaya -
Sajjad A. Madani - Nasro Min-Allah - Lizhe Wang -
Cheng-Zhong Xu . Qutaibah Marwan Malluhi -
Johnatan E. Pecero - Pavan Balaji - Abhinav Vishnu -
Rajiv Ranjan - Sherali Zeadally - Hongxiang Li

© Springer Science+Business Media New York 2015

Abstract As we delve deeper into the ‘Digital Age’, we witness an explosive growth
in the volume, velocity, and variety of the data available on the Internet. For example,
in 2012 about 2.5 quintillion bytes of data was created on a daily basis that originated
from myriad of sources and applications including mobiledevices, sensors, individual

S.U.R. Malik (X)) - S. A. Madani
COMSATS Institute of Information Technology, Islamabad, Pakistan
e-mail: saif_ur_rehman@comsats.edu.pk

S. A. Madani
e-mail: madani @ciit.net.pk

S. U.Khan - S. J. Ewen
North dakota State University, Fargo, USA
e-mail: samee.khan@ndsu.edu

N. Tziritas
Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, China
e-mail: ntziri @ gmail.com

J. Kolodziej
University of Bielsko-Biala, Bielsko-Biala, Poland
e-mail: jkolodziej @ath.bielsko.pl

A.Y. Zomaya
University of Sydney, Sydney, Australia
e-mail: albert.zomaya@sydney.edu.au

N. Min-Allah
University of Dammam, Dammam, Saudi Arabia

L. Wang

Chinese Academy of Sciences, Beijing, China
e-mail: lizhe.wang @ gmail.com

Published online: 14 March 2015 @ Springer

Distrib Parallel Databases

archives, social networks, Internet of Things, enterprises, cameras, software logs, etc.
Such ‘Data Explosions’ has led to one of the most challenging research issues of the
current Information and Communication Technology era: how to optimally manage
(e.g., store, replicated, filter, and the like) such large amount of data and identify new
ways to analyze large amounts of data for unlocking information. It is clear that such
large data streams cannot be managed by setting up on-premises enterprise database
systems as it leads to a large up-front cost in buying and administering the hardware
and software systems. Therefore, next generation data management systems must
be deployed on cloud. The cloud computing paradigm provides scalable and elastic
resources, such as data and services accessible over the Internet Every Cloud Service
Provider must assure that data is efficiently processed and distributed in a way that
does not compromise end-users’ Quality of Service (QoS) in terms of data availability,
data search delay, data analysis delay, and the like. In the aforementioned perspective,
data replication is used in the cloud for improving the performance (e.g., read and
write delay) of applications that access data. Through replication a data intensive
application or system can achieve high availability, better fault tolerance, and data
recovery. In this paper, we survey data management and replication approaches (from
2007 to 2011) that are developed by both industrial and research communities. The
focus of the survey is to discuss and characterize the existing approaches of data
replication and management that tackle the resource usage and QoS provisioning with
different levels of efficiencies. Moreover, the breakdown of both influential expressions

C.-Z. Xu
Wayne State University, Detroit, MI, USA
email: czxu@wayne.edu

Q. M. Malluhi
Qatar University, Doha, Qatar
email: qmalluhi@qu.edu.qa

J. E. Pecero
University of Luxembourg, Walferdange, Luxembourg
email: johnatan.pecero@uni.lu

P. Balaji
Argonne National Laboratory, Lemont, IL, USA
email: balaji@mcs.anl.gov

A. Vishnu

Pacific Northwest National Laboratory,
Richland, USA

email: abhinav.vishnu@pnl.gov

R. Ranjan
CSIRO ICT Center, Marsfield, NSW, Australia
e-mail: rajiv.ranjan @csiro.au

S. Zeadally
University of the District of Columbia, Washington, DC 20008, USA
email: szeadlly @udc.edu

H. Li
University of Louisville, Louisville, Kentucky
email: h.li@louisville.edu

@ Springer

Distrib Parallel Databases

(data replication and management) to provide different QoS attributes is deliberated.
Furthermore, the performance advantages and disadvantages of data replication and
management approaches in the cloud computing environments are analyzed. Open
issues and future challenges related to data consistency, scalability, load balancing,
processing and placement are also reported.

Keywords Replication - Data management - Cloud computing systems -
Performance gradation - Data intensive computing

1 Introduction and motivation

An overwhelming flow of data caused by the continuous increase of computational
power has called for a paradigm shift in the computing architecture and large-scale
data processing mechanisms [1]. Data intensive computations are difficult to achieve
because of: (a) the increasing latency gap between multi-core Central Processing Units
(CPUs) and Hard Disk Drives, and (b) the imbalance between data and computing
capabilities of the current computing architecture [2]. Moreover, recent applications
that manipulate huge bytes of distributed data must provide guaranteed Quality of
Service (QoS) during network accessibility [3]. Providing the best effort services by
ignoring the network mechanism is not enough to satisfy the customer requirements
[4].

Recently, “Cloud Computing” has gained great hype, and according to Gartner
cloud computing is a top ten technology of the year 2012 [5]. Cloud computing is
a new paradigm related to the provision of computing infrastructure and is usually
associated with large-scale data processing mechanisms. The cloud reduced the cost
of managing software and hardware resources by pushing the infrastructure to the net-
work, which allowed users to access services anywhere around the world [1]. Amazon,
Google, IBM, Facebook, and Microsoft have started to establish data centers that host
cloud computing applications in geographically distributed locations [6]. To deliver a
desirable level of performance to the end users, the cloud must operate in a smooth
and efficient way. Moreover, to ensure efficient data management (reading, writing,
and storage), security, and availability, a data management system is required that effi-
ciently manages the cloud computing-based software (load-balancer, SQL appliance,
NoSQL appliance, monitoring appliance) and hardware services [virtual machines
(VMs), storage, and network] [7]. Furthermore, on-premises enterprise data manage-
ment systems have a large up-front cost of hardware and software that makes data
management systems an ideal choice to deployed in the cloud [8].

Conventionally, relational databases and file systems were used to store data. How-
ever, with the growing demands of user, size of data, and need to get more information
from the data, the utility of simpler storage systems that are easy to manage at a large
scale increases. Data is an important entity in the cloud environment, and a proper, well
maintained, and efficient system must be deployed to ensure reliability and availability
of data. Some examples of cloud management platforms are Cassandra [9] and Hive
[10] in Facebook, and HBase [11] in Streamy. A good data management system must
have the ability to provide data security, availability, accessibility, and fault tolerance

@ Springer

Distrib Parallel Databases

at all levels. Moreover, a system where data replication is used can provide better
aforementioned abilities and response time, which are crucial from the perspective of
the end users [12].

Data replication has been widely studied in the domain of distributed and cloud
computing, such as in [13-27]. The data replication is a mechanism in which the data
or some fragments of data are stored at multiple nodes or servers [28]. If one of the
nodes is not accessible then the data can be accessed from a different node [29]. Data
replication also involves staging, placement, and movement of data across a cloud.
Data staging is a term used for storing data temporarily for processing at later stages
of execution. In cloud computing systems, if a shared resource is not available then
the data is “staged-in” at the site of execution. After the execution of “staged-in” data,
the data is “staged-out” of the storage. Data placement is the process of placing data at
different locations, and data movement is concerned with how: (a) data must be moved
to preserve replication levels and (b) data will be accessed from different locations.
Different techniques that divide the file into multiple blocks and distribute the blocks
to data nodes for parallel data transfer were used previously for performance enhance-
ment in the cloud, such as in [30,31]. However, in the abovementioned mechanism a
node may be unreachable due to a failure, which is a norm rather than an exception. If
one block is not available, then the whole file is not accessible. Efficient data sharing
in systems is complex because of node failure, unreliable network connectivity, and
limited bandwidth. The abovementioned issues must be given due consideration while
implementing the cloud-based data management system architecture. To avoid per-
formance degradation, data management and replication techniques must be designed
with the goal of achieving QoS.

1.1 Performance measurement and analysis of the cloud services for data
management applications

Considerable facts are available that suggest that revenue is directly influenced by
the performance of services [32]. In an experiment by Google, a 20 % revenue loss
was reported due to a delay of 500 ms in response time. Moreover, Amazon reported
a sales decrease of 1% due to an additional response time of 100ms. The afore-
mentioned examples indicate the importance and impact of the performance of the
cloud services. Furthermore, the due consideration that needs to be given to, and the
benefit of, performance to the cloud services are also obvious from the examples.
The examples create a strong motivation to study and analyze the performance met-
rics of the cloud services (such as availability, throughput, and response time) for
the data management and replication techniques. Therefore, we have analyzed data
management and replication mechanisms based on the aforementioned performance
metrics.

In this section we will discuss in detail the QoS metrics that are used to quantify
the performance of the cloud services. Notably, the performance prediction in the
case of shared resources, such as I/O, has been found to be complicated [33,34]. The
situation becomes much complicated in context of cloud services due heterogeneity,
workload interference, and variable Internet latencies. Moreover, the abovementioned

@ Springer

Distrib Parallel Databases

‘ Privacy ‘ ‘ Data Encryption } ‘ Security ‘
‘ Data Retention ‘ ‘ Perfonpe'ince ‘
—J/‘//— Definition
‘Hardware Failure SLA Monitoring ‘
(Service Level T
Agreement , -
Regulatory S) Auditability ‘
‘ Compliance
Human
Interactions

‘ Transparency ‘

Throughput

Reliability

Metrics Certification ’

Customer Service|
Response time

‘ Automation
Load — L
Agility
Durability Linearity
Elasticity

Fig. 1 Classification of SLA factors and performance metric distribution

phenomena can cause a certain amount of variation in the performance of clouds and
are an active area of research [35].

The performance of a cloud services is negotiated between the CSP and the applica-
tion provider/end-user via Service Level Agreement (SLA) based contract agreement
that outlines the scale and scope of the QoS parameters [36]. A SLA can help improve
the performance of clouds as it bounds a CSP to meet the agreed QoS in terms of
availability, response time, and other parameters. Other QoS parameters that are con-
sidered in a SLA, includes privacy, data encryption, security, monitoring, auditability,
human interaction, certification, metrics, transparency, regulatory compliance, hard-
ware failure, and data retention/deletion, as depicted in Fig. 1 and elaborated below
[37]:

e Privacy is the isolation of private data and applications in an environment that
has multiple concurrent users of the system. A SLA should clearly address how
privacy will be achieved.

e Security refers to the set of policies, technologies, and controls that must be imple-
mented to protect data, the application, and associated infrastructure. Security is
another factor of high concern for a cloud service. The cloud provider must under-
stand the end user requirement and must enable appropriate control and federated
patterns accordingly.

e Data encryption refers to the techniques that transform simple text into cypher text
or any other form that is unreadable to unauthorized users. Encryption algorithms
and relevant details, along with the policies to control the accesses to the data,
must be pointed out clearly in the SLA (document).

e Performance definition is a term used to elaborate QoS parameters such as response
time, throughput, and server availability in certain conditions. The aforementioned

@ Springer

Distrib Parallel Databases

measurements are usually not known to the service users, so clear description of
these terms must be included in the SLA.

e Monitoring is a process of continuous observation of the performance of cloud
services that notices and reports any potential breach from the CSP or service end
users. To avoid conflicts between users and service providers, a third party that is
usually neutral is inducted for monitoring. The aforementioned inducted party is
responsible for reporting violations of the agreement, monitoring, and measuring
the critical service parameters from both sides.

e Auditability is the ability to assess the systems and procedures of service providers.
Users are liable for any breaches that occur with data loss or accessibility. The SLA
must clearly state when and how an audit can occur.

e Human interaction refers to the responsiveness of the service provider whenever
a request is dispatched. On-demand is a basic feature of the cloud, but in certain
rare cases human interaction is required. Therefore, an SLA should adhere to this
factor for some exceptional cases.

e Transparency refers to the extent to which nothing is hidden from the service users.
If any critical data or application in the SLA is breached then service providers
must be proactive in notifying the users

e Metrics refers to aspects that can be measured and monitored, such as throughput,
reliability, and durability, as listed in Fig. 1. The metrics must be objectively and
unambiguously defined in the SLA.

Performance of the cloud can be measured, monitored, and compared through
the metrics shown in Fig. 1. The metrics are also known as the QoS attributes
or parameters. Some other common metrics used for measuring the QoS of cloud
services are: (a) throughput, (b) reliability, (c) load balancing, (d) durability,
(e) elasticity, (f) agility, (g) automation, and (h) customer service response time
[37].

The performance measurement criteria of cloud computing systems are huge,
and to cover every aspect in one paper is infeasible. Therefore, in this survey the
scope is narrowed to factors related to data-intensive cloud computing systems.
The list of metrics used for the comparison and analysis of existing literature in
this survey are: (a) Availability (the probability that a system is alive and func-
tioning well in a stated environment, or the degree of liveliness of the system), (b)
Reliability (the probability that a system will operate predictably under the stated
environmental conditions over a specific period of time), (c) Scalability (the prop-
erty of the system to grow, usually achieved by adding or upgrading hardware),
(d) Fault-Tolerance (the ability of the system to respond gracefully to any unex-
pected failure of software or hardware), (e¢) Load balancing (the property of or
methodology used by the system to divide the workload across servers, network
links, CPUs, disks or other resources to achieve optimal utilization, throughput max-
imization, reduced response time and avoid overloading), (f) Throughput (amount
of data or size of the message a system can process or transact per unit of time),
and (g) Consistency (the probability that a system will not derive contradictory
statements).

@ Springer

Distrib Parallel Databases

——— Availability

Fault Tolerance

Scalability

Cloud Data Replication
and Management

Cloud Computing
Performance Metrics

— Throughput

Load Balancing

| Reliability

L Consistency

Fig. 2 A taxonomy of performance metrics used to study data replication and management strategies

1.2 Role of data management and replication in attaining high performance

Data management and data replication are the key elements instrumental for the
success of the data-intensive applications in cloud computing environments [6,38].
Data management strategies provide scalability, adoptability, load and user balancing,
multi-tenancy, and flexibility to the cloud services. Furthermore, availability, fault-
tolerance, and failure recovery can be achieved through proper implementation of
data-replication mechanisms over the cloud services [6]. These aspects require an
adequate consideration towards the successful implementation of data intensive cloud
computing systems. In the aforementioned respect, a fundamental understanding of
the terminologies “Data Management” and “Data Replication” is compulsory to con-
ceptualize the landscape of the novel field of cloud computing.

To comprehend the impact of data management and replication mechanisms on
the cloud computing environment, the most well-known and widely used approaches
are studied and compared at a single platform using some of the performance metrics
discussed in Fig. 1, as shown in Fig. 2. Moreover, we have analyzed and compared
the performance of data management and replication mechanisms based on the QoS
metrics discussed in Sect. 1.1. Furthermore, the performance advantages and disad-
vantages of each approach along with the assumptions made for each mechanism are
discussed. The study will help to define the strengths and imperfections of features
with respect to the adaptation to the cloud computing services. Several studies related
to data management and replications are available in the literature, such as [8,39-
41]. However, to the best of our knowledge no survey is written that discusses and
compares data management and replication approaches on the basis of performance
metrics. Knowing the characteristics of the applications and how data is managed
allows for optimistic utilization of network mechanisms in the cloud. Therefore, this
survey can be useful for the networking community.

The highlighted contributions of the survey are:

(a) analyzing the performance advantages and disadvantages of the current state-of-
the-art data management systems and data replication mechanisms in the cloud
environments,

(b) comparing data management systems and replication mechanisms based on the
SLA performance metrics,

@ Springer

Distrib Parallel Databases

(c) demonstrating the impact of different technical issues on the performance of sys-
tems and mechanisms, and

(d) identifying the open challenges and issues in the field of data replication and
management in a cloud.

The remainder of the survey is organized as follows. Section 2 presents an
overview of the service models, goals, and challenges involved in the cloud com-
puting environment. Data replication, including an overview, goals, techniques,
and the comparison of the techniques, is discussed in Sect. 3. Section 4 cov-
ers data management, including an overview, goals, platforms, and the compari-
son of data management techniques. The survey concludes with Sect. 5, which
includes a discussion on the open research issues of data replication and manage-
ment.

2 Cloud computing

The vision of cloud computing is to provide computing services in a manner sim-
ilar to daily utilities, such as power and water. There has been a lot of discussion
in industry and academia about the scope, definition, and future of cloud com-
puting [42—44]. According to the National Institute of Standards and Technology
(NIST) cloud computing is a model with which a shared pool of resources (net-
works, servers, storage, applications, and services) can be accessed conveniently
and on-demand and that can be released with service provider interaction [1]. There
are several characteristics of cloud computing, such as: (a) On-demand Self-service
(users can independently and automatically utilize computing powers, such as server
time and storage), (b) Broad-Network Access (user can access capabilities through
heterogeneous platforms such as laptops and PDAs), and (c) Resource Pooling
(resources, such as memory bandwidth and processing are available to any con-
sumer).

Cloud computing is further classified into the categories of: (a) Software as a Ser-
vice, in which applications or software are offered as services in real time to multiple
organizations and end-users, (b) Platform as a Service, which provides a higher level
environment where developers can build customized applications, and (c) Infrastruc-
ture as a Service (IaaS), which provides virtual resources, such as virtual machine
servers (e.g. Amazon EC2), storage systems (e.g., Amazon S3), routers, bandwidth,
network, switches, and other related tools that are necessary to build an application
environment [8]. Every category has a different purpose that offers different facil-
ities to businesses and individuals. These categories are also known as the models
of cloud services [45]. Figure 3 depicts the categories along with examples of each
service provider, and Fig. 4 shows the possible variations of cloud computing mod-
els.

The success of the cloud computing paradigm is a direct derivative of the advan-
tages it provides to industries and organizations [46,47]. There are several issues
and challenges that may hinder the successful implementation of data replication and
management systems in cloud computing environments, as depicted in Table 1 [7,48—
55].

@ Springer

Distrib Parallel Databases

Cloud Computing

SOFTWARE AS A SERVICE INFRASTRUCTURE AS A PLATFORM AS A SERVICE
(SaaS) SERVICE (IaaS) (PaaS)
e International Business e Google (GOOG)- managed e International Business machines
machines (IBM) hosting, development (IBM)- IBM cloud and IBM
e Salesforce.com (CRM) environment lotus
e EFRO Tech.com (HRIS) e International Business e Google (GOOG)- Apps engines
e Google (GOOG) machines (IBM)- managed e Amazon.com (AMZN)- EC2
e NetSuit (N) environment e Microsoft (MSFT)- Windows
e Cordys e SAVVIS (SVVS)- managed Azure
e Taleo (TLEO) hosting and cloud computing e SAVVIS (SVVS)- Symphony
e Concur Technologies (CNQR) e Terremark Worldwide VPDC
(TRMK)- managed hosting e Terremark Worldwide (TRMK)-
e Amazon.com (AMZN)- cloud The enterprise cloud
storage e Salesforce.com (CRM)-
e Rockspace Hosting (RAX)- Force.com
managed hosting and cloud
computing

Fig. 3 Cloud computing service models and examples

Cloud Computing Models

IaaS SaaS PaaS

APIs D) (Presentation)(Pr&senlatmn) (Integration and Middleware)

< — - Modality Platform
(Core Connectivity and Delivery
Abstraction (APIs) /\
Hardware A 94
() (‘Applications) PaaS PaaS
(Facilities) laaS Cloud
Data)(Meta Data)(_ Content) Cloud Infrastructure
Infrastructure
A4
TaaS
Cloud SaaS SaaS SaaS
Infrastructure PaaS PaaS T Cloud |
Cloud
TaaS Infr (‘:“ tur Infrastructure
Cloud structure
Infrastructure

Fig. 4 Cloud computing service models variations

3 Data replication in cloud computing

3.1 Overview and previous research

Replication in cloud computing can be defined as placing multiple instances or copies
of data across multiple data center locations (servers, nodes) [56]. A simple example
of data replication is the practice of keeping multiple copies of an important document

to recover in case of any failure or damage to the primary copy. Similarly, business
organizations, governments, and other companies replicate the important financial,

@ Springer

Distrib Parallel Databases

Table 1 Cloud computing goals and challenges

Cloud computing

Goals Challenges
Reduced operational costs Security and privacy issues
Adhering to service level agreement (SLA) Lack of trust

Heterogeneous cost model
Failure recovery or backup Bandwidth and latency uncertainty
Increased processing power Maintaining the SLA under
Collaborative tools utilization Performance uncertainties
Achieving energy efficiency Lack of interoperability

Lack of quality assurance body

personal, and legal data to guarantee security, availability, and durability [29]. Exam-
ples of data storage services that have implemented replication techniques are Google
file services (GFS) [57], and Amazon Simple Storage Service (Amazon S3) [58].

Data replication is used to increase the data availability of large-scale cloud
storage systems. Data Objects and files are divided into several blocks and spread
across the servers to enable parallel access that achieves high aggregate bandwidth.
Replicating objects across the nodes has potential benefits [59]. However, main-
taining replicas in excess can incur high overhead [60]. The number and place-
ment of replicas is a key issue in data-replication management [61]. To under-
stand how the number of replicas influences the availability and performance, an
experiment is performed in [62]. The experiment is performed with the node fail-
ure ratios (failed nodes divided by total number of nodes) of 0.2 and 0.1. Exper-
imental results illustrate that as the number of replicas increases, the availability
increases until the maximum availability is reached, and the addition of replicas
after the maximum point has no bearing on the system performance. Another obser-
vation from the experiment is that a lower node failure ratio reduces the number
of replicas needed to reach maximum availability. Therefore, the goal must be to
place the minimum number of replicas that satisfy the availability requirements.
The purpose of almost all replication approaches or techniques is to improve the
performance of the system (availability, reliability, fault tolerance) by keeping the
cost (time) as low as possible. Replication is mandatory for systems where require-
ments are fault-tolerance and reliability, as established in the real world example of
OceanStore [63].

The number of replicas needed and the placement of replicas is termed Replica
Placement Problem (RPP), sometimes known as file allocation problem [64]. The
number and location of replicas is an important aspect in replication management and
performance enhancement. Studies [60,65—67] have proved that access latencies were
reduced when the replica was placed in close proximity to the original on the servers.
However, the trends change in RPP with advancements in the distributed systems
[68]. In this survey we are concentrating only on techniques that perform or use file
(unstructured data) replication.

@ Springer

Distrib Parallel Databases

Chu was one of the first researchers who worked on the file allocation prob-
lem (also termed as RPP) in a year 1969. A simple model that allows only non-
redundant file allocation was proposed by Chu in [69,70]. The goal was to reduce
the read and write cost with limited storage constraints at every site. In 1972,
Casey [71] proposed a method of allocating multiple copies of files in an infor-
mation network by introducing a distinction between queries and updates. The dis-
tinction was introduced because the update has to be performed in all copies and
the query needs to access only one of the copies, which keeps the consistency in
all replicas. In 1974, Eswaran performed a research and find out the file allocation
problem is NP-complete problem [72]. In 1976, another approach was proposed
by Mahmoud that suggested a change in the hardware as well as in the allocation
of the files [73]. Moreover, Ref. [73] uses heuristic approach to develop a solu-
tion. In 1979, the file allocation problem was discussed in a distributed environ-
ment by Ramamoorthy [74]. Later in 1985, the file allocation problem was dis-
cussed under local area network environment with broadcasting abilities by Wah
in [75]. This is the time when the development in file allocation problem starts
progressing.

3.1.1 Distributed parallel file system (DPFS)

A DPFS stripes the data over different servers to achieve high performance in High
Performance Computing (HPC) systems. Usually, DPFS uses Object Storage Device
(OSD) for small chunks of data along with the centralized servers of metadata. Some
of the well-known DPFES are briefly discussed below.

Lustre is a parallel-distributed file system that is used at many HPC centers around
the world. Lustre was developed in 1999 at CMU and is now owned by Oracle. Lustre
is hosted on a Linux operating system environment. Different kinds of nodes and roles
are defined in Lustre by the separation of file data from the metadata using an object
storage environment. Lustre usually consists of thousands of clients, Object Storage
Servers, and a pair of failover metadata servers. More information about lustre can be
found in [76].

Cloudstore (previously known as kosmosfs), is a distributed file system that is used
to provide high performance with availability and reliability [77] and is built on the idea
of GFS. The intention of cloudstore was to provide the backend storage infrastructure
for data intensive applications such as data mining, cloud computing, grid computing,
and search engines. The architecture of cloudstore consists of the: (a) metadata server,
(b) Block server, and (c) Client library.

Parallel virtual file system (PVFS) is an open source file system that is widely
used in real production clusters and is widely supported by an active developer base
[78]. PVFS is a user level parallel file system that was designed for high-performance
access to large data sets. Applications that use PVFS are Argonne National Lab, Sandia
National Labs and Ohio Supercomputer Centers.

The following section briefly discusses various data replication and placement tech-
niques that are implemented (between the periods of 2009-2011) for cloud computing
environments in order to improve QoS parameters or metrics. Figure 5 provides tax-
onomy of strategies that are discussed in the paper.

@ Springer

Distrib Parallel Databases

_lkeda et al. [14] (replication for file versioning)

L Weietal. in [45] (maintaining a balance between no. of replicas and availability)
| Bonvin et al. in [63] (min. cost for R/W operations and replica dispersion)

| Gao et al. [13] (maintaining consistency among replicas)

Cloud Cloud Data Yangi et al. [65] (approach to deal with lazy updates and costly c ications)
Computing Replication

L Wang et al. [68] (Metadata replication to remove Hadoop's single point of failure)
L Bessani et al. [70] (guaranteed integrity, availability, and confidentiality)
L Tsai et al. [71] (service replication scheme that adjusts according to requests load)
| Cecchet et al. [72] (used cloning technique to produce database replicas)

| Twin Peak Sofiware [73] (real-time replication between two servers)

| Curino et al. [76] (hybrid data replication scheme to improve scalability)

Fig. 5 A taxonomy and description of data replication strategies

3.2 Data replication approaches

Ikeda et al. [29] proposed a distributed data replication protocol for file versioning. File
versioning is termed as the process of maintaining several versions of files. Reference
[29] focused on the applications where the frequency of requests for newer version
files is higher than for older version files. A distributed data replication protocol that
supports file versioning is also proposed. Moreover, an analytical model is constructed
for the optimal allocation of resources when the number of replicas and the read request
frequencies of each version are provided. Three versions of the files are supported by
the proposed protocol. In the protocol, only the client-sides are allowed to perform
read and write operations, which improve availability by eliminating single point
of failure. Replica nodes do not have any information about versions and only the
clients are aware of the versions and cyclic alignment. The read and write requests are
blocked during the write operation, causing large overhead in the cost (time) of the
approach. Ikeda et al. [29] have proved the scalability and tolerance of the approach
through simulations and experimentations. The strength of the proposed approach is
the ability to hold several versions of the file to facilitate varied needs of numerous
users. Moreover, as stated in Table 2, data recovery, scalability, and fault tolerance
are some of the positive aspects of the approach. However, to manage and maintain
multiple versions of the files require more resources and as the system expands the
maintenance becomes complex and resource requirements increases exponentially.
This may also lead to increase in cloud service leasing costs.

Wei et al. in [62] focused on the problems of: (a) placing replicas to effectively dis-
tribute the workload amongst data nodes and (b) computing the number of replicas that
are needed for satisfying the availability requirement. In the abovementioned perspec-
tive, Ref. [62] proposed a Cost-Effective Dynamic Replication Management (CDRM)
scheme that aims to provide cost-effective availability, improved performance, and
load balancing of cloud storage. The strength of this approach is to build up a cost
model that captures relationship between availability and replication that is used to
determine if the availability requirements can be satisfied or not. Wei et al. in [62]
considered the relationship between availability and the number of replicas for cap-
turing the relationship. CDRM calculates and maintains a minimal number of replicas
based on the availability requirements and can dynamically redistribute the workload
to the data centers in a cloud computing environments. The aforementioned is done by

@ Springer

Distrib Parallel Databases

x rP
rox VRV R
VRV

ror A

uonouny
ysey orydeisoydAo
JUB)SISAI-UOISI[[0D
© JO 90UQ)SIXH

VN

[TeJ IOAQU UEBD 9pOu
1adns ‘[ouueyod 9[qeIoy

OdId st
SI0M)3U UONEITUNWITIO))

IOAIAS PA)II[D
Ay JO SSAUIYIIOMISII],
mods
A[renba are wasAs
) I Sepou eyep [V

Sopou Jo uonIppe
STWeuAp OU ‘SUOTSIOA
JIOMAU 0} SO AIOA]

suonejuawe[dur

PNOJO 19Y)0 uey) Joy3Iy

st uonejuawedwr

J0 1509 ‘uonooid

'JRP JO Yo ‘[opowt
Seef jo uorsiaoid oN

pooerdax
9q J0UURD SIOIAIRS

A[1509 aIe SALIUL J[qe)

Sunnoi Sururejurew pue

saoue)sip [eoryder3oed
Jo uonenoe)

speai1y) Jo Jequinu J31e[
© 0} 9Np SUOI}OUUOD
aseqejep pajsneyxg

Yoauaoq
B W009q Aew
JOAIOS PIJII[Q ‘SA[qE]
Sunnoi agxe[A[renuaod
pa[puey jou are
S9[y Jo sedard paddins
Sururejuoo sopou payre]
sopou
Pa[Te] JO UOTIONNSUOIAI
OU ‘S90IN0SAI
93eI0)S AIOW SOWNSUOD)

Kouaye|
$59008 pasoxduy

owm
19A0[TR) pasoxduy

Kouayre|

§S900€ peaI

pue osuodsar

9yepdn paaredrad
198N I910g

owm asuodsar

$90npaI

pue indy3noxy
saaoxduy

JUAIOLYJR IS0
Liiqers
WAISAS ‘Koudje|
$$900' pasordwy
Suureys
peoj ‘aInjrey
Jo jurod 9[3urs
ou ‘A19A0031 vle(q

[68] '[2 10 1uessog

[98] Te 30 Suem

[¢8] Te 10 1buex

[82] 'Te 19 oen

[08] 'Te 10 utAuog

[29] e 10 tomy

[62] Te 10 epay]

SpNOJo-JO-pnofd

& U1 93LI0}S 2INd3S pue
s[qepuado(:XSIAA

uoneorjdar

ejepeow ysnoay)
Anpiqeqreae ysuy doopey

Suruonnred

eyep pue uoneordar

Jo pLIQAY uo paseq
uS1sap a8e10)s pno[)

uoneordor eyep 10y
uonededoid oyepdn Aze|

EX{AN

PNOJO 10J JWAYIS

uoneorjdar ojqeess

puE JuBIS[0}-)[Ne)
‘paziuegIo-j[os v

Quayos

juowadeurw uonesrdar
JTWRUADP 9ATIOJJ0-1S0))

Suruorsioa Iy
10 [000301d uoneordor
BJEp panqLnsig

1D

4 491 dL IS 14 IV

SOOI VIS

suondwnssy

(s)aSejueapesig

(s)aSejueApy

sioyiny

sanbruyoqy,

sonbruya) uoneordar ejep jo uosuredwo) g Jqe],

pringer

As

Distrib Parallel Databases

QInjeWw I0W JIE S[00)
ay) sny) pue ‘parpnys
pue pasn A[opim 10w

(-9q 03 paau

JOU S0P J1 Y3noy) UaAd
quowele)s B Sunndaxd
UL POAJOAUL 9q [[Im
uonnred e) saanisod

Qouewtojrad
ysSy ‘suonnred
paduereq
‘SUOTIOBSUET)
paInqLnsip jo

Suruonnred
pue uonesrdar aseqejep
0} yoeoidde uoaLp

»r L0 2 » st Sutuonnaed ydein 9S[eJ Jo uonoNpold IAqUINU AZIWIUTIA [96] Te 10 ouLn) PEO[IOM © (WISIYOS
S90IN0SAI
qIeM1JOS
pue aremprey
JO [01U0D 19)39q
‘YIpImpueq pue
paads y1omjou
paaoxdur Sunndwod pnopd
»r N »rr N VN VN ‘AInods 1m0g 6] 2remijos yead uimy, 10J WRISAS I JOLIA
oW JUBISUOD SBY PAUINSAI 9 O} AT
uonerado SuruoO Ayl 1502 JOU AT PuUE J2[0SqO spnopo deard
Jo syuouodwod [y -own Qwo0o9q sjoysdeus A pue orqnd
-joa 93e10)s oo[q on pue SN A pasned swos pazifemaA
-SB[0 QU} UO PaIo)s aIe owm 19AQ) ‘seordox ur seorjder pnoo oy} 10J
(aseqeep o) UIYIIM BIEp Jo Joquinu o3re| aseqerep Sumuorsiaold oseqerep
pue o[y uonem3yuod) 0) onp sjuowaImbar mau Sunress jo UQALIP-UOTIRZI[ENIIA
» » AN QIS YSIP JOAISS oseqele(] 93e103s YSIH Kouoje| paonpay] [z6] T8 19 10Y000) :A110g
pnorpo
oy Jo dourwrojrod
oY OpeISap [[IM SYS
Uy} SPEO[IdA0 SIAD
J1 ‘ssaoo1d donpaydey paoepdar oq ued Spnoyo ur aonpayde
X »r N1 »r N VN oy} ysiug o) pajeorjdwio) SOOIAISS ‘O[qIXQ[] s uoneosrjdor 9o1AI0g
1D 14 91 dL 1S I1d IV
SO VIS suondwnssy (s)oSeyueApesiq (s)agejueapy sanbruyoqy,

panunuod g I[qey,

pringer

As

Distrib Parallel Databases

adjusting the number and location of replicas according to the changing workload. The
placement of replicas is based on node capacity (how many replicas can be stored) and
blocking probability (number of replicas required to reduce access skews). Keeping
replicas active improves the availability, load balancing, and the overall performance,
provided that the replicas and requests are rationally distributed [12,79]. Reference
[62] implemented CDRM in Hadoop Distributed File System (HDFS) and uses B+
tree to manage and update the system. The high blocking probability of a node causes
the same node to be selected over and over again that causes imbalance in the system.
Although, CDRM deal with the said imbalance by distributing the load, the imbalance
still occurs, which the system has to deal repeatedly. This in turn also leads to the per-
formance degradation. Moreover, Wei et al. in [62] demonstrate that CDRM satisfies
availability requirements along with improved access latencies, load balancing, and
system stability.

Bonvin et al. in [80] proposed a self-organized, fault-tolerant, and scalable scheme,
termed Skute, for cloud data storage that dynamically allocates resources to several
applications in a cost-efficient and fair way. Moreover, Skute dynamically adapts to
load and disaster by determining the cost-efficient locations based on popularity. The
rent (cost of using cloud services) and query response time are made efficient by
using a self-managed key-value store. The scheme also offers and maintains multiple
differentiated guarantees to all of the applications, regardless of the failures. Skute has
a concept of Virtual Economy, in which every data partition (key range in a consistent
hashing space) has the choice to make that depends on the benefit maximization.
The utility offered, storage, and maintenance costs are usually considered for benefit
maximization. To achieve the aforementioned maximization, the data partition can
remove, replicate, or migrate itself. Furthermore, for several query rates and storage
requirements an optimal resource allocation mechanism is developed that balances the
query processing overhead and the availability objectives. Skute is designed for the
purpose of: (a) minimum response time for read and write operations, (b) cost efficient
replica dispersion, (c) distinguished availability guarantees for every data item, and (d)
minimization of storage and bandwidth consumption [81]. Through experiments and
simulations, the authors Bonvin et al. in [80] proved that the approach provides benefit
maximization, fast convergence, and low communication overheads. The strong point
of Skute is the provision of replication management scheme to evaluate replica prices
and revenue across different geographic locations that relies on equilibrium analysis
of data placement. However, the approach is not appropriate for high-quality content
delivery, because of inaccurate transfer rate allocation [82]. Moreover, the entries of
the routing tables are potentially very large that cause lookup time to increase.

Gao et al. [28] discussed the consistency between multiple data replicas. Reference
[28] proposed the use of lazy update propagation to maintain consistency amongst
the replicas in a cloud. In the lazy approach, the update is propagated to all other
replicas after the update is committed to the original site. The lazy update operation
reduces the transactional size, and the overall performance is improved due to fewer
deadlocks. The authors in [28] have focused on a specific lazy replication scheme,
termed “Lazy Master Replication” [59]. The approach can help increase the throughput
of the information and data services, while decreasing the response time. Moreover,
one of the strength of the approach is to allow consistent database maintenance, no

@ Springer

Distrib Parallel Databases

transactions, and consistent snapshot of local data. However, the concurrent behavior
of the requesting programs may cause exhausted database connections due to a large
number of threads running at the same time. Furthermore, the primary copy may
become a bottleneck and it must be placed online.

Yangqi et al. [83] proposed a Two-level Distributed Hash Table (TDHT) approach
in distributed clouds when data partitioning is used to address the problems of: (a)
applying lazy updates and (b) costly communications that occur during consistency
verification. The proposed TDHT approach is the hybrid of data replication and par-
titioning. DHT approach is adopted by Yangqi et al. to eliminate the need of directory
management, which is one of the major issues in data-partitioning-based systems [83].
The conventional centralized partitioning systems have the problem of scaling up as
the system size grows. However, DHT can scale up easily because of the properties
it holds, such as bounded hops and consistent hashing, as it was designed for peer-
to-peer file sharing systems. A Two Level Access protocol is also designed by the
authors to compare the performance of TDHT with the Distributed Version Server
(DVS) [84]. The storage servers are divided into groups based on the locality. In every
group, Short Secret Sharing, which is a well-known partitioning approach, is applied
to each data object and the shares are distributed to servers in the group. The shares are
then replicated to the other groups. Lazy approach is used to perform the updates that
significantly reduce the user-perceived access latencies. The forte of the approach is
to provide better user perceived update response latency and better read access latency
then DVS. Moreover, consistent share verification is independently performed within
a group, which reduces server-to-server communication cost. Furthermore, to achieve
better performance, one-hop-routing DHT [85] scheme is used in both server and
group levels. However, the approach has two important limitations. Firstly, it does not
support range query because of the inherent design issue of DHT and secondly, lack
of support for data migration leads to load-imbalance across the storage services. The
management of shares and replicas becomes complex as the system is evolved.

According to Wang et al. [86], Hadoop provides high availability within a limited
scope at a high cost of enhancement. Many mission critical applications that require
high availability use Hadoop, which is designed to support data intensive distributed
applications [11]. Hadoop uses the HDFS for storing data. By default, HDFS replicates
the data. According to Wang et al. [86], metadata is stored on one node, allowing a
system to be affected by a single point of failure. Reference [86] removed Hadoop’s
single point of failure to attain high availability through metadata replication approach.
The solution is based on the phases of: (a) initialization, (b) replication, and (c) failover.
In the initialization phase, the standby nodes are registered to a primary node and the
initial metadata (version file and system image file) of the standby node is placed at the
primary node. In the replication phase, the metadata, such as outstanding operations
and lease states, is replicated. In failover phase, all communications are taken over by
the newly elected primary node. The solution proposed by Wang et al. [86] identifies
several critical nodes to provide high availability. Two nodes, (a) Namenode and (b)
Jobtracker, are declared critical and are used by Wang et al. [86] to remove the single
point of failure in Hadoop. The topological architectures of nodes are supported in
the proposed execution environment are: (a) Active-Standby Topology, which consists
of one active critical node and one standby node, and (b) Primary-Slaves Topology,

@ Springer

Distrib Parallel Databases

which consists of one primary critical node and several slave nodes [86]. To reduce
the overhead of replication, only metadata is replicated instead of a complete data
copy. Moreover, experiments performed by authors illustrate the feasibility of, and
effectiveness in, attaining high availability by measuring the failover time and run-
time replication overheads. Furthermore, to maintain consistency among nodes, the
authors use a three-phase commit protocol with non-blocking capability [87]. The
highlighted aspect of the approach is to present an adaptive method that uses metadata
replication of the NameNode for failover recovery to reduce the failover duration.
However, the issue of single point of failure with Hadoop is still not solved by the
approach [88]. Moreover, the approach is suitable for medium and not for higher
number of I/O requests.

Bessani et al. [89] presented a system, DEPSKY, whose strength is to guarantee
integrity, availability, and confidentiality of data stored on the cloud storage, by imple-
menting encryption and replication on diverse commercial clouds. Byzantine Quorum
System Protocols, Cryptographic Secret Sharing, and Erasure codes are combined to
achieve the aforementioned objectives even in the presence of failures, data losses,
and corruptions in some of the clouds. Reference [89] addresses the limitations of a
cloud, such as loss and corruption of data, loss of privacy, loss of availability, and
vendor lock-in. Four commercial clouds are used for deployment, and Planet-Lab (an
open platform) is used to run clients and to access the service from heterogeneous geo-
graphical locations. DEPSKY needs a library to manage: (a) the heterogeneity of the
interfaces and (b) the format of data accepted by each cloud. Two protocols are also pro-
posed. The first DEPSKY protocol, which improves availability and integrity through
replication using quorum technique, is termed Available DEPSKY (DEPSKY-A). To
overcome the limitation in security of the DEPSKY-A, second protocol Confidentiality
and Available DEPSKY (DEPSKY-CA) was proposed. DEPSKY supports multiple
writer-locks and has read optimization protocols. Other protocols are provided by
DEPSKY, such as garbage collection and cloud reconfiguration. Through extensive
simulation and experiments, Bessani et al. [89], demonstrate that the proposed system
can provide confidentiality and high availability. Since many distributed cloud services
are combined together to achieve performance, it results in aggravated network upload
and download cost. Moreover, DEPSKY does not provide IaaS model and does not
protect data in TaaS clouds that provide VMs to the user [90].

Tsai et al. [91] proposed Service-Level MapReduce (SLMR), a new service replica-
tion scheme that allows a cloud to adjust its service instance deployments in response
to existing and projected service request loads. In a cloud environment, services wait
to serve the requests of users. If a service receives more requests than it can handle,
additional resources need to be acquired. The SLMR is based on MapReduce, which
is a parallel processing mechanism commonly used in cloud environments, such as
Google App Engine (GAE). The SLMR includes dynamic service replication and pre-
deployed service replication. Moreover, (a) a passive SLMR approach, which depends
on the Cloud Management Service (CMS), and (b) an active SLMR approach, which
does not need support from the CMS, are introduced in [91]. Tsai et al. [91] use
MapReduce to split a task into smaller tasks, distribute the tasks to all nodes, and
execute the tasks in parallel. The phases involved in MapReduce are: (a) map and
(b) reduce. Reference [91] implemented map and reduce as library functions instead

@ Springer

Distrib Parallel Databases

of services. Tsai et al. [91] developed two strategies for composing service-oriented
MapReduce applications: (a) Passive Service Replication Strategy (PSRS) and (b)
Active Service Replication Strategy. CMS manages the SLMR processes. Input data
is split into partitions according to user requirement service capabilities and processor
capacities. Map services are selected based on the request to make the service different
from other map services. The CMS dynamically creates an appropriate number of map
services, split services, shuffle services, cache services, reduce services, and output
services, based on processing capacity and the timing constraints. The strength of the
proposed technique is the ability to adjust its service instance deployment according
to the load of running and anticipated service requests. However, the approach does
not present any specific strategies for provisioning resources for computational tasks.
Moreover, if the CMS overloads, then the PSRS will affect the performance of the
cloud.

Cecchet et al. [92] address the challenges of providing shared-nothing replicated
database in the cloud environment by using cloning techniques to produce database
replicas. Reference [92] proposed Dolly, which is a system that dynamically pro-
vides database replicas in the cloud by efficiently using VM snapshots and cloning
techniques. The VM of an existing replica is cloned, including the operational envi-
ronment, database engine with all configurations, settings, and the database. In Dolly,
the cloned VM is initiated on a new physical machine that results in a new replica
that needs to be synchronized with other replicas before processing user requests.
Dolly incorporates a network performance model for the estimation of latency based
on the: (a) snapshot size and (b) database resynchronization latency that incurred for
producing a replica (copying data across servers). The aforementioned network per-
formance helps in guiding the replica scheduling process before the projected network
traffic (workload) could increase. Moreover, an intelligent scheduling technique is also
implemented in Dolly to determine whether to use a new VM snapshot or to use an
older snapshot for scheduling replica creation activity. Furthermore, to optimize the
resource usage administrators can tune the scheduling decisions, which are achieved
by implementing a user-defined cost function to characterize database-provisioning
policies in a cloud platform. The strength of Dolly is to create a new database instance
in advance from a disk image snapshot and replays the transaction log to bring the
new instance to the latest state. However, the instance created may take some warm-up
time that can further degrade the performance. The authors Cecchet et al. [92] imple-
mented the proposed system on commercial-grade open source databases and used
public (Amazon EC2) and private clouds for demonstrating the optimized resource
usage through the proposed cost estimation function.

Twin Peak Software [93] proposed a patented file system that is developed and
implemented on Solaris and Linux, termed Mirror File System (MFS) [94]. MFS
allows real-time replication between two servers. Moreover, the update can be repli-
cated to an additional server or servers. When a MFS system receives an update from
the application, all of the files linked by the MFS are updated in real-time [95]. All
access to files and directories in both file systems are controlled by MFS. The replica-
tion process is transparent to the user. Moreover, the user application performs normal
file and directory operations, such as read and write. Read operations only need to go
to one file system for accessing the data. However, MFS also makes sure that updates

@ Springer

Distrib Parallel Databases

are propagated to all of the file systems to make data consistent across all mirrored
systems. Experimental evaluation has shown that MFS achieves better performance,
security, and availability in the cloud [93]. The strength of the MFS is to replicate live
files between geographically distant systems in real time. However, if one replica is
updated, then all of the replicas have to be physically updated. Therefore, to reduce
the cost of writing replica, it is imminent to develop an optimized and efficient replica
placement technique.

Curino et al. [96] proposed Schism, a hybrid data replication and partitioning
approach, to improve the scalability of distributed databases. The Schism models
the system as a directed graph, where nodes and edges represent tuples and transac-
tions, respectively. The inputs to the proposed system are a database, the representative
workload, and the number of desired partitions. The basic steps involved in Schism
are: (a) data pre-processing, which computes the read and write sets for each input
transaction in the workload, (b) graph creation, representing database and workload
in terms of a graph, (c) graph partitioning, which produces a balanced minimum-cut
partitioning where each tuple is assigned to one partition and each partition is assigned
to one physical node, (d) partition explanation, which analyzes the statements from the
input workloads to extract the list of attributes and rules, and (e) final validation, which
is the cost of per-tuple partitioning and range partitioning compared with hash and full
table partitioning. The output of the Schism is a partitioning and a replication strategy
that minimizes the overall cost of running the query against the stored database tuple.
Distributed transactions are expensive in Online Transaction Protocol (OLTP), which
is why graph partitioning algorithms are used in Schism to find the balanced partitions
that can approximately minimize the number of multi-site transactions [96]. Moreover,
a number of heuristics containing sampling and grouping of records are proposed to
reduce the complexity of the graphs and to optimize the performance. Furthermore,
a decision tree based approach to explain the partitioning in terms of a compact set
of predicates is proposed. The authors Curino et al. [96] demonstrate through exper-
iments that Schism is highly practical and provides better partitioning performance
and ease of integration to existing databases. The strength of the approach is to find
out the balanced partitions that can minimize the number of multi-sited transaction
by using the graph partitioning algorithms. The focus is on fine grained partitioning
that is beneficial for OLTP. However, the proposed approach is not appropriate for the
complex and long queries that span around large data and tuples, such as in case of
data intensive applications.

3.2.1 Discussion

The breadth of the research challenges as regards to data replication in cloud computing
systems is very large, such as transactional replication, state machine replication, data-
base replication, disk storage replication, and file-based replication. The approaches
discussed in Sect. 3.2 are designed for a specific data management use-case or appli-
cation. For example, the approach discussed in [29] is suitable for applications where
user access patterns are imbalanced, such as most users access latest news, while others
access older versions that may have been published few days ago. However, the cost
of managing replicas in [29] is much higher as compared to other approaches, such as

@ Springer

Distrib Parallel Databases

[62] and [80]. Maintaining consistent replicas is one of the major issues in replication.
The approach in [28] discusses the consistency of multiple replicas using lazy update
that improves the throughput and response time. Reference [83] targeted the anom-
alies of using lazy updates and proposed a hybrid approach that provides better update
response and read access latency. A method for failover recovery to reduce the failover
time is proposed in [86]. To overcome the challenges in cloud services, such as loss
and corruption of data, privacy, loss of availability, an approach is proposed in [89],
which provide guaranteed data integrity, availability, and confidentiality. In general,
most of the replication approaches are designed to provide availability of the data (as
shown in Table 2). However, the application in which they can be implemented may
vary. Accordingly, the performance may vary based on the application type.

The comparison of data replication techniques discussed in Sect. 3 is given in
Table 2. A thorough analysis of each technique is presented with the summary on: (a)
advantages, (b) disadvantages, (c) assumptions, and (d) the SLA metrics addressed
in a particular technique. The legends for Table 2 are: (a) availability (AT), (b) fault
tolerance (FT), (c) scalability (ST), (d) throughput (TP), (e) load balancing (LB), (f)
reliability (RT), and (g) consistency (CT). NA denotes “Not Available”. The symbol
“[X]” s used to represent that the particular metric is not discussed in the paper, and
the“v”” and “x” symbols are used for “Provided” and “Not provided”, respectively.

4 Data management in cloud
4.1 Overview

The goals of cloud computing based data management systems and approaches include
availability, scalability, elasticity, performance, multi-tenancy, load and tenant bal-
ancing, fault tolerance, ability to run in a heterogeneous environment, and flexible
query interface [46,47,97,98]. There are several challenges that hinder the successful
deployment of data intensive applications on the cloud, including availability of a
cloud service, data confidentiality, data lock-in, data transfer bottlenecks, application
parallelization, shared-nothing architecture, performance unpredictability, and appli-
cation debugging in large-scale distributed systems [6,97]. Researchers have proposed
different strategies for enabling efficient data management systems using the cloud
services. In this section we discuss different data management techniques proposed
by researchers to achieve different performance goals and to deliver the required QoS
to the end users.

The following section explains some of the data management approaches and sys-
tem that are recently (2007-2011) been deployed in the cloud environment. Figure 6
shows taxonomy of the data management strategies studied in the paper.

4.2 Data management approaches and systems
Zhang et al. [99] proposed a multi-dimensional index approach that supports point and

range queries for managing data stored over cloud services. Lack of efficient indexing
techniques limits cloud based storage services, such as Amazon S3 and Azure Blob to

@ Springer

Distrib Parallel Databases

— Zhang et al. [79] (indexing approach for managing data stored over cloud)
L Tiwari et al. [82] (developed a framework to deploy database as a service)

t— Chang et al. [83] (design and implementation of big-table)

Cloud _ (CloudData — L Cooper et al. [85] (proposed PNUTS, a massive scaled database system)

Computing Management X . .
L Simmhan et al. [86] (built a workbench for data management in the cloud)
L Isared et al. [89] (distributed-execution system for coarse-grain data-parallel applications)

t—Das et al. [91] (proposed ElasTras, to provide scalable transactional data access)

L Hsieh et al. [95] (proposed SOLMR, which is a data management system for the cloud)

Fig. 6 A taxonomy and description of data management strategies

support only simple keyword-based queries rather than efficiently resolving complex
queries [11,57]. Data stored over the cloud storage service changes constantly and
increases at an exponential rate, which makes indexing a complicated task. Reference
[99] proposed a possible solution for supporting range queries by combining the R-Tree
[100] and KD-Tree [101] to organize data records and perform fast query processing
and efficient multi-dimensional indexing. Moreover, to accommodate the challenge of
maintaining a consistent indexing structure on a large, transient data volume, Zhang et
al. [99] proposed a cost-estimation-based strategy that can update the index structure
effectively. A series of experiments were performed to illustrate that the scalability of
the proposed indexing technique with the increase in the data volume and velocity.
Moreover, the approach is generic and is not dependent on the underlying virtualization
architecture, which makes the proposed approach suitable to implement on any cloud
computing platform. The strength of the approach in [99] is the provision of fast
query processing and efficient index maintenance by combining R-Tree and KD-Tree.
Moreover, the aforementioned also supports: (a) multi-dimensional queries including
range and point queries, and (b) data mining algorithms, such as K-Means and DBScan.
However, because of the distinct master and slave nodes structures, the application of
the approach is not possible to a typical DFS, such as GFS and HDFS [102].

Tiwari et al. [103] proposed a consistency model for a data store in the cloud
and developed a framework towards the goal of deploying Database as a Service
(DaaS). The DaaS over the cloud requires consistency across the data partitions and
replicas [103]. The desirable aspect is the provision of cost-effective algorithm that
ensures distributed consistency of data without compromising availability for fully
replicated data. Moreover, the proposed approach deals with the elastic and scalable
transaction management without any loss of functionality. The paper [103] targeted the
data intensive applications that needed stronger consistency guarantees. The general
architecture of the system consists of a node, which is a virtual-machine instance. Each
virtualized node consists of data objects, an update queue, a queue manager, Interest
Groups (IG), and Transaction Managers (TM). The IG is used for servicing client
requests. The algorithm presented by Tiwari et al. is dynamic and takes into account
the current performance of the network, while undertaking data replication or transfer
operations [103]. As long as the IG is up to date and running, the copies across the nodes
are consistent and synchronized. The latency of the access for the application depends
on two factors: (a) the current size of the IG and (b) the number of working replicas
(the size of the IG is dynamically varied based on the number of working replicas).

@ Springer

Distrib Parallel Databases

When a replica in the IG fails, the IG is automatically re-instantiated. Therefore, the
performance of the approach does not suffer because of the IG replica failure. A large
number of IG instances can lead to higher write latency for the application, as the
TMs have to wait for large number of acknowledgements. On the other hand, a small
number of IG would lead to larger update queues at each replica and will ultimately
have more queuing delay. The approach may have low performance due to the fact
that only a small number of nodes from the whole system are used for the replication.
In the said perspective, latency may increase for some other nodes.

Chang et al. [104] discuss the design and implementation of big-table that are
used by Google and other application-engine data stores. Structured data designed to
scale to a huge set of commodity servers can be stored by the big-table. The afore-
mentioned is a popular storage system used by most of the products and projects
designed by Google, including Orkut, Google Docs, and Google Earth. A variety of
demanding workloads that require throughput and data that is sensitive to latency,
such as batch-processing jobs, can be achieved through the use of big-table. Fully
relational data models are not supported by the big-table. Big-table is a distributed,
sparse, multidimensionally-sorted map, which is indexed by a row key, column key,
and a timestamp, where every value is an uninterrupted array of bytes [104]. The
row keys are arbitrary strings of up to 64KB in size and data is maintained in lex-
icographic order by row key. Column keys are grouped into a set of column fam-
ilies, which are used to form the basic unit of access control in the big-table. The
timestamp, which is a 64-bit integer, is used to index the versions of data stored in
the big-table. Big-table uses Application Programing Interface (API) that provides
the function of creating and deleting tables and column families. The API also per-
forms the function of changing the cluster, table, and column family metadata. Some
of the building blocks of big-table, such as Google File System, are rented from
Google [57]. Moreover, cluster management system is used to schedule jobs, manage
resources on shared machines, and machine failures. Chubby is a distributed lock-
ing service that forms the basis for the big-table [105]. Chubby performs several
tasks in big-table, such as (a) ensuring that at least one master node is active all the
time, (b) big-table data bootstrap location storage, (c) storage of schema informa-
tion, and (d) listing access controls. The tasks that Chubby performs are critical to
the functionality of big-table. If Chubby becomes unreachable for a certain period of
time, then the whole big-table operation stops. The performance analysis provided by
Chang et al. [104] demonstrated that big-table can help data intensive applications
in attaining high performance and availability. Moreover, the size of the clusters can
be easily scaled up by adding more machines as the resource demands change. The
nucleus of the approach is the ability to scale to a very large size and to support
varying demands of applications in terms of size of data and latency requirements.
Big-table provides a simple data model that supports dynamic control over data lay-
outs and formats. However, it weakens the ‘A’ (atomicity) guarantee from Atomicity,
Consistency, Isolation, and Durability (ACID) by not offering a complete relational
API. The only atomic sequence offered is read-modify-write sequence on data stored
under a single row key [6]. Moreover, support for secondary indexes, multiple table
creation, materialized views, and hash arranged tables, are not evidently discussed
[106].

@ Springer

Distrib Parallel Databases

Cooper et al. [106] proposed Platform for Nimble Universal table Storage (PNUTS)
to serve the data for the web applications rather than supporting complex queries.
PNUTS is a massive scale hosted database system that provides (a) data storage orga-
nized as hashed or ordered tables, (b) low latency for large numbers of concurrent
requests such as updates and queries, and (c) consistency guarantees. The PNUTS
serves online workload, which contains queries that read or write single records.
However, multiple records can be retrieved in parallel by using a “multiget” operation
provided in PNUTS and specifying primary keys and predicate. The router component
is responsible for routing a query (the storage unit required to be accessed for the read
or write purpose). The primary key spaces of the tables are divided into intervals,
where each interval leads to one tablet. The boundaries of each tablet map storage
units to the tablet. Join operations are not supported by the PNUTS query model, as
joins are considered too expensive in massive-scale systems [106]. The concept of
log or archive is not available in PNUTS. However, if the update is not completed
or lost before being applied to the disk, then PNUTS uses a redo log for replaying
the update. APIs supported by the PNUTS are: (a) Read-Any (returns any possible
version available from the record), (b) Read-Critical (returns versions that are nearly
as new or as new as the required version), and (c) Read-Latest (returns the latest ver-
sion of the record). Read-Critical and Read-Latest have higher latency and accuracy
than Read-Any. To manage the operational load, Ref. [106] designed the system to
cover and scale: (a) multiple replicas worldwide, (b) failover automation, and (c) load
balancing. Moreover, the experimental results demonstrate that an efficient level of
performance can be achieved under a variety of load conditions for individual record
lookups and range scans. The strong point of PNUTS is the provision of efficient read
access to geographically distributed clients, while providing serial writes. Moreover,
application level guarantees are provided by serializing all requests to the same key.
However, no consistency amongst the keys is provided in the PNUTS. Furthermore,
the said approach weakens the consistency model by adopting a form of timeline con-
sistency so that all replicas do not have to agree on the current value of the stored
data.

Simmbhan et al. [107] built a Trident scientific workflow workbench for data man-
agement in the cloud. The extensiveness of instruments and sensors that observe the
physical and biological world brings huge quantities and a diverse range of rich data
[108]. Therefore, data management of workflow in the cloud needs consideration. In
this aspect, Ref. [107] investigated two classes of workflows: (a) Science Application
workflows and (b) Data Preparation workflows. The workflows were used to drive
common and discrete requirements from workflow systems in the cloud. Simmhan
et al. [107] further use workflow examples from two collaborations, the North-East
Pacific Undersea Networked Experiments (NEPTUNE) oceanography project and
the Pan-STARRS astronomy project [109], to draw the comparisons. Furthermore, a
number of collaborative roles for large scale data intensive computing, such as Pan-
STARRS and NEPTUNE, are also defined by Simmbhan et al. [107]. The roles are: (a)
Producer (generates Level-0 data), (b) Curator (maintains the integrity of the shared
data contributed by the producers), (c) Data Valet (produces the shared data products),
(d) Publisher (builds and operates the entry point to search, curate, and use the data
products), and (e) Consumer (the scientist or researcher performing an investigation).

@ Springer

Distrib Parallel Databases

The data valets and curators bear a greater responsibility, as the actions can potentially
impact all consumers in ways that are often unknown to the consumer. Analysis of the
workflow classes can guide the evolution of managing data flow systems in a cloud
environment. Simmbhan et al. [107] identified two important classes of workflow users,
(a) Data Valets and (b) Domain Researchers. Trident focused on extending the func-
tionality of the commercial workflow management system, which resulted in a smaller
code to maintain, improved performance, and a complete requirements understanding
unique to a scientific workflow running on the cloud. The strength of Trident is to
build workflows with control and data flows from built-in and user-defined activities.
The activities include control flow operations, invocation of web services, and SQL
querying. However, open provenance model is not supported by the native Trident
model and integrating both of the models is a complex task.

Isared et al. [110] discuss Dryad, a general-purpose distributed-execution sys-
tem introduced by Microsoft for coarse-grain data-parallel applications. Dryad was
designed to achieve scalability from small clusters of computers to data centers with
thousands of computers. The strength of the Dryad execution engine is to handle sev-
eral issues and complexities, such as the creation of large (concurrent and distributed)
applications, scheduling, recovery, and data transportation. Moreover, Dryad provides
flexibility by providing fine control to the developers on the communication graph and
routines running inside the Dryad. Communication flow determines the overall struc-
ture of the job in Dryad. Communication flow consists of vertices and edges, where
vertices represent the program and edges represent the data channels. During runtime
the computational graph is automatically mapped to the physical resource. Structured
items are transported on each channel in a finite sequence. A job manager in Dryad,
responsible for coordination of the job, can be run at the user workstation or within
the cluster. Features of the job manager include: (a) construction of the job communi-
cation graph through the application specific code and (b) the work scheduling across
the resources that are available. The data can be sent directly in the graph between
the vertices. Dryad uses its own high-level language that is the generalization of two
other execution environments such as SQL and MapReduce. The aforementioned lan-
guage is termed DryadLINQ [111]. The generalization between the environments is
achieved: (a) through an expressive data model adopted by strongly typed .NET objects
and (b) by providing support for imperative and declarative operations within the high
level programming language. DryadLINQ provides a powerful hybrid of declarative
and imperative programming. The aforementioned is achieved by exploiting the LINQ
(Language Integrated Query). The purpose of the system design is to provide a flexi-
ble and efficient computation in any LINQ enabled languages such as C# and Visual
Basic. Data parallel portions of the program are automatically translated in a distrib-
uted plan, which is then sent to the Dryad execution platform for execution. Reference
[110] demonstrated an excellent behavior in scaling and performance of Dryad on
small-scale and large-scale clusters. Dryad puts disk materialization steps between
data flow stages that causes the Dryad iterative jobs to reload the data from disks,
incurring a significant performance penalty. Moreover, a complex programming inter-
face is required to support encapsulating multiple asynchronous stages into a single
process. Furthermore, the aforementioned is only targeted to batch processing and not
for continuous queries.

@ Springer

Distrib Parallel Databases

Dasetal. [112] proposed Elastic Transaction data Store (ElasTraS), which addresses
the issue of scalability and elasticity to provide scalable transactional data access.
ElasTraS provides elasticity similar to that of elastic cloud, with the additional provi-
sion of transactional guarantees. Reference [112] combined previously proved elastic
databases and scalable systems, such as [104,113,114] to deal with the concurrency
control, isolation, recovery, and the limitations of distributed database systems. Elas-
TraS consists of: (a) transactional managers, responsible for transactional guarantees
and providing elastic scalability with increase in demands, (b) application and web
servers, which interact with the database, (c) load balancer to handle requests and
implement the load balancing policy, (d) a higher level transactional manager, which
receives requests from the load balancer and determines whether to execute the request
locally or to forward it to the owning transaction manager, (¢) an owning transaction
manager, which has the rights to access the data by the transaction, (f) the distributed
storage layer, which stores actual data for data store, and (g) a metadata manager,
which manages information, such as system state and metadata, for the tables. The
strength of the proposed approach is the provision of transactional guarantees along
with the concurrency control, recovery, and isolation. ElasTraS supports static and
dynamic partitioning. However, in dynamic partitioning transactional guarantees are
limited to single partition because the applications are not aware of the other partitions.
Moreover, ElasTras offers limited transactional semantics (mini-transactions) when
dynamic partitioning is performed on the dataset and has no support for structuring
computations [115].

Hsieh et al. [116] proposed SQLMR, which is a data management system for the
cloud. SQLMR combines SQL and MapReduce. The desirable aspect of the approach
is the combination of the aforementioned technologies that inherits the programming
advantages of SQL along with the fault tolerant, heterogeneous, and scalable func-
tionalities of MapReduce. Moreover, Ref. [116] provides a compiler to translate SQL
programs to MapReduce. Furthermore, a technique to dynamically convert SQL files
to HDFS that is to be accepted as an input to MapReduce runtime engine is pro-
posed. The input to SQLMR is SQL queries that are translated into the MapReduce
jobs. The architecture of SLMR consists of: (a) a SQL-MapReduce compiler, which
converts SQL statements to sequential MapReduce jobs, (b) a query result manager,
which searches the log to find if similar query results are available in the cache, (c) a
database partitioning and indexing manager, which is responsible for managing data
files, partitioning the new data, and creating indexes, and (d) an optimized Hadoop,
which is responsible for the generation of optimized MapReduce jobs. Hsieh et al.
[116] conducted several experiments to illustrate the scalability of data and system
with respect to increasing data sizes. The approach suffers from the network load
unbalancing because of the random placement of reducers, causing the reducers to
become stragglers on a busy rack.

4.3 Discussion
Itis noteworthy to consider that every data management system has been implemented

to achieve different degree of performance metrics, such as consistency, scalability,
and fault tolerance. Therefore, it is not straight forward to compare the aforemen-

@ Springer

Distrib Parallel Databases

tioned systems. However, we attempt to compare the systems under some common
features. The big-table is built on column families having a low level query interface.
Moreover, eventual consistency model is used to ensure consistency and performance
requirements. Compared to big-table, PNUTS uses key-value store data model with
timeline consistency model that weakens the consistency of the system, while focusing
on the performance and availability of the data. The Dryad, on the other hand, uses
relational store data model and follow strict consistent consistency model to ensure
the consistency and availability requirements. Similarly, the approach presented in
[103], ensures distributed data consistency without compromising availability but is
not as scalable as big-table and PNUTS. The query processing mechanism and index
maintenance of the approach proposed in [99] is fast and efficient as compared to the
other approaches discussed in Sect. 4.2. One system cannot be best for all the work-
loads and different systems make different tradeoffs to provide optimized results.
In general, maintaining ACID guarantees in the presence of replication is very hard.
Moreover, according to CAP theorem [117], two out of three (consistency, availability,
and partitions) properties can only be provided by any system.

The comparison of data management platforms that are discussed in Sect. 4 is
given in Table 3. Analysis of each platform is presented with the: (a) advantages,
(b) disadvantages, (c) assumptions, and (d) SLA metrics addressed in a particular
technique. The legend for Table 3 is the same as that of Table 2.

5 Conclusions, open research issues, and future directions

In the last few decades, data has been produced in massive quantities by the Internet
connected devices and applications. Continuous increases in the computational power
and the advancements in recent technologies are the main reasons behind the data
growth [1]. In this paper we have studied Data Replication and Management, two
instrumental technologies that are widely used to manage massive quantities of data
on cloud services. These techniques are required to assure strict QoS on data oper-
ations (search, upload, download, replicate, and the like). A comprehensive survey
of techniques along with the (a) advantages, (b) disadvantages, (c) assumptions, and
(d) SLA-based performance metric topographies are explored in this paper. The tech-
niques are compared and analyzed based upon the abovementioned features. We also
analyze the working of numerous data replication techniques and how data-intensive
applications are deployed in the cloud. The knowledge provided in the paper can be
further exploited to design and model new mechanisms or approaches in the cloud.
Furthermore, the analysis of each approach, issue, and suitability to support and oper-
ate in certain environments led us to the identification of the following open research
issues.

e Managing data consistency in data replication: Maintaining the consistency of the
data across a number of mirrored nodes is a very complicated task in distributed
data replication systems as compared to centralized systems. Moreover, maintain-
ing consistency while balancing the cost of read and write operations is another
major concern. Several protocols have been proposed in [29,118-122] to address
this issue. There are different techniques of read and write operations that are used

@ Springer

Distrib Parallel Databases

JNSTUTULIS}OP IB SIOTMIIA

VN

VN

sapou
JO IoquUNU WNUWITUTI

Aquo sweigoxd
renuanbas 110ddng

suonerado

urof pue saronb
x9[dwos 103 110ddns oN

J[qe[reArun sI 9[qe]-31g

Uy} 9[qe[reAeun

st AqqnuD J1

‘[opowr Bjep [euone[al
110y & 1oddns jou seoq

Sopou Jo Joquunu

[Tewrs & Jo wolsAs josqns

Ay uo AJuo SuLLnd20

uoneorjdar eyep 03 anp

suoperodo uowruod
o1seq asodwod A[1sed
01 AN[IqIXoy 191ea1n)
‘saunnoiqns pue
yde3 uonesrunwwod
AU} JOAO [01IUOD U]

[o[eaed ur syeasLnax
spaodax opdnn

JewIoj pue Jnoke| eyep
IOAO [O1UO0D JTWRUA(]

[O11] T8 30 presy

[901] 'Te 32 1odoo)

[+01] ‘& 10 Suey)

s$3}00[q Surp[ing
[enuanbas woiy
sweidoid [o[ered-eiep

panquusip :pekiq

uuojjerd Suraias eyep
pasoy s jooyex :SLANd

BIEp PaINIoNns
10J wWaIsAs a8e10)s
paNqIISIp v :9[qu)-31g

pnoy
9} I0A0 JuoISeUBW

N »r NP o) 9ABY ISNW D] SAIOUSISUOOUT A[QISSOJ QATIOVJ-1S0D) [€0T] e 10 LremIp, BJEp [BUOTIOBSURI],
9pou 2AB[S 3y} JO SaqND
9pou Y} [[e JO AWN[OA Kouaroyje A1onb JuoweSeURW
oy 03 euontodoad st pasoxdur yuspuadopur BIEP PNO[D 10J Xopul
OPOU JAB[S 0) POpIBMIO] umouyun ULIOJJB[] ‘QouBU)UIEW [eUOTSUdWITP-T[NW
»r NP » sorrenb jo raquiny are sa[npayds aepdn Xopur JudIoyjg [66] Te 30 Sueyy JuardLyg
90IM] PIppE 3q Jouued pnop ay)
MO[PHIOM B UTYITM MOPHIOM ur JuowageuLw vjep 10§
KIATIOR WOISNY) "AWNSaI oynuaros 0) anbrupn [OUQIOM MOPSHIOM
X X pp0 N VN JOUULD IOWT) MOPSIOA ‘aseq opod Id[ewS [£07] T8 30 UeyqUIWIS JYNUAIOS JUIPLIL,
14 91 dL LS I1d IV
SOIQIA VIS suondwnssy (s)aSejueapesiq (s)oejueApy sioyiny anbruyoqy,

sutrojield juswoSeuew eyep pnopo jo uostredwo) ¢ J[qe],

pringer

As

Distrib Parallel Databases

AVAR A

JUB)SUOD ST
BJEp QJBIPAUWLIAUI JO ZIS

JIWoIe Ik 19AR] A3I0)S

SI9[33e1)S QUI003q Yorl
Asnq & uo s190npar ay)
oyew pue Surour[equn
PEO[YI0MIQU UI J[NSAT
Kew yorgm ‘wopuer

ST SI00NPAT JO JUAWAIR[J

uonnred 9[3urs

© 0] PAIWI[SUOTOBSURI)
10§ saqyuerens (qIOV)
AIMIqeIn(g pue ‘uonejosy
KoUQ)SISUO)) ‘AT

9pod
onpaydey
Sunum

Jo peaisur
pasn oq ued

souenb oYI[-10S

WERMIYSIT

‘IoUUBW J[qB[BIS

B Ul sa9juerens

Sunndwod
Pno[o 10J W)SAS
juoweSeuew aseqeiep

[911] T 19 YoIsH a1qe[eos B N'TOS

pnopo ay) ur
QI03S BJEp [RUOTIOBSURT)

Y A1) 0] SOIIM PUE SPEAY sop1aoxd Serpserq [euOTIOBSURI], [z11] Te 10 seq oNse[d Uk (SeILSerq
dL LS I1d IV
SO VIS suondwnssy (s)aSeueapesiq (s)eSeiueApy sIoyny anbruyoa,

panunuod ¢ Jqe],

pringer

As

Distrib Parallel Databases

by different protocols to maintain the consistency between the data. For exam-
ple in [29], write operations are assumed to occur very rarely in the applications.
When any write operation is to be performed, all other read and write requests are
blocked, which causes a huge overhead, narrows the applicability, and limits the
system dependability. Therefore, there is a need for an efficient technique that can
effectively overcome the aforementioned limitations while balancing the cost of
read and write operations. Conflict Resolution and data consistency is also main
concerns in data replication. Several tools and techniques have been proposed to
maintain consistency by using conflict resolution strategies [123]. However, the
time between the failure and triggering the conflict resolution strategy is an issue.

e Scalability problem: The databases scales-up in many dimensions, such as data
structures, no. of users, network complexity, size, and distance. Therefore, all of the
aforementioned aspects must be addressed as a whole, so that the resources can be
allocated in a way that can meet the requirements of a data intensive application
[124]. The design alternatives for the development of distributed data manage-
ment system are usually accompanied by some performance implications. The
suitability of distributed transaction mechanisms, such as two-phase locking and
two-phase commit protocol, in a WAN-based distributed environment is a big
question. Moreover, the feasibility and scalability of protocols and algorithms as
the system grows geographically, is another concern [125,126]. Furthermore, the
overheads of replica control protocols, such as ROWA, increases as the number
of replicas increases. For example, in ROWA, read operation is translated to one
physical read but a write operation is translated to physical writes on all of the
copies.

e Requirements mismatch between DBMS and distributed operating system: There is
arequirement mismatch between the DBMS and the underlying operating systems.
Functions, such as support for distributed transaction, concurrency control and
recovery, management of distributed persistent data, and access methods, are either
not provided or not fully supported by the distributed operating systems. Moreover,
the support for the aforementioned functions can affect the performance of the
systems [127]. Furthermore, the conventional functions, such as task and buffer
management, perform by the distributed operating systems needs to be modified to
support distributed DBMS [128]. The coupling of DBMS and distributed operating
system is a complex task and the architectural framework of commercial operating
systems does not allow a trivial incorporation of the considerations.

e Communication channels: Network communication and other related problems are
always related to distributed environment. Similarly, data replication and manage-
ment systems in cloud also have to deal with the said problems. Reliable communi-
cation channels have to be implemented to ensure data availability and to avoid data
loss during normal operations. A lot of research has been done in developing group
communication protocol, as in [129]. To ensure in order replica updates, a reliable
multicast with total order is required in data replication and the presence of group
communication limits the scalability for the aforementioned [129]. Moreover, the
group communication layer makes the configuration and tuning of the network
difficult. Furthermore, there are several tradeoffs between ease of configuration,
flow control, and performance, such as TCP performance in network switches vs.

@ Springer

Distrib Parallel Databases

UDP multicast. Network latency and unreliability of long distance links are big
hurdles in the extension of multi-master replication to WAN [130]. The bandwidth
availability is increasing, but the physical constraints on latency over worldwide
links limits the evolution of latency. DBMS communicate with database drivers
using TCP connections, which offers reliable communication and in order packet
delivery. However, to detect connections failure it relies on timeouts. In case of a
network failure, the communication is blocked till the keep-alive time is expired.
The aforementioned, results in an unacceptable long time of blockage (from 2 s to
2h) that affects the performance and availability of data.

e Energy efficient data management: Efficient utilization of energy can radically
reduce the cost of a cloud application. According to a certain estimate, the total
operational expenditure of cooling and powering a data center is 53 % of the over-
all cost. In the U.S. the total energy consumed by the data centers is more than
1.5% of the total energy produced by U.S., and the percentage is projected to
grow 1.8 % annually [131]. Therefore, the CSPs have to develop a management
platform that not only provides flexibility, scalability, multi-tenancy, and other ser-
vices, but also reduces the energy consumption while meeting the standards and
regulations implemented by the relevant governments. To overcome the challenge
of implementing the aforementioned platform, a number of approaches from sev-
eral authors have been proposed, such as discussed in [132] and [133]. Design
of efficient hardware that can minimize energy use by powering off certain idle
components is now trivial [134]. Moreover, there are software-oriented techniques
to improve energy efficiency like Energy-Aware Job Scheduling [135,136], and
Server Consolidation [137]. Some network protocols and infrastructures are also
designed for the same purpose. Efficient routing tables can also be designed which
can switch off the idle routes and save the energy.

e Backups: A fundamental part of replicated and data management systems is the
backup. For large and problematic backups, the databases are taken offline. The
performance of the systems is usually degraded during the backup operations.
The backup time is not only the time to dump the data, it also involves the time to
resynchronize the replicas by reapplying all the updates missed during the backup.
Therefore, the backup time can take several hours depending on the size of database
that results in a performance gradation.

Other issues related to the use of data replication and database management systems
to support data management platforms over high performance computing systems,
such as clouds, are listed below.

(a) There exists a lack of powerful I/O optimizations that can harness parallel I/O
capabilities of current multiprocessor architectures [138].

(b) Data consistency and integrity semantics provided by almost all DBMS are an
added obstacle in achieving high-performance.

(c) There exists a lack of application-specific access pattern information.

(d) Current I/O access strategies and optimizations are targeted at only a few well-
defined access and storage patterns [138].

(e) Distributed query and transaction processing.

@ Springer

Distrib Parallel Databases

We have highlighted some of the aforementioned research issues involved in data
replication and management in cloud. Future directions may involve striving for the
solutions of the above issues. For example, one way to deal with the scalability issue
is to develop measurement tools and performance models. However, performance
models for distributed DBMS have not been extensively studied. A proper discussion
for the solutions of the issues listed above can easily be the topic of a paper about
the size of this paper. Therefore, we have only highlighted some of the open research
issues, there are many other important technical problems that await solution and new
ones may also arise as a result of the technological changes.

Acknowledgments The authors are thankful to Kashif Bilal and Osman Khalid for the valuable reviews,
suggestions, and comments.

References

1. Mell, P, Grance, T.: Definition of cloud computing. Technical report, National Institute of Standard
and Technology (NIST) (2009)

2. Bell, G., Gray, J., Szalay, A.: Petascale computational systems. [EEE Comp. 39(1), 110-112 (2006)

3. Lamanna, M.: High-energy physics applications on the grid. In: Wang, Lizhe, Jie, Wei, Chen, Jinjun
(eds.) Grid Computing: Infrastructure, Service, and Applications, pp. 433-458. CRC Press, Boca
Raton (2009)

4. Khatib, Y., Edwards, C.: A Survey-Based Study of Grid Traffic. In: Proceedings of GridNets, pp.
41-48 (2007)

5. Gartner: Gartner top ten disruptive technologies for 2008 to 2012. Emerging trends and technologies
roadshow http://www.gartner.com/it/page.jsp?id=681107, Accessed (2011)

6. Abadi, D.: Data management in the cloud: limitations and opportunities. IEEE Data Eng. Bull. 32(1),
3-12 (2009)

7. Leinwand, A.: The Hidden Cost of the cloud: Bandwidth Charges, GIGAom, Jul. 17 2009,
http://gigaom.com/2009/07/17/the-hidden-cost- of-the-cloud-bandwidth-charges/, Accessed May
12 (2011)

8. Sakr, S., Liu, A., Batista, D., Alomari, M.: A survey of large scale data management approaches in
cloud environments. IEEE Commun. Survey Tutor. 09, 1-26 (2011)

9. Cassandra: Available at http://incubator.apache.org/cassandra/, Accessed (2011)

10. Thusoo, A., Sarma, J., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.:
Hive-A warehousing solution over a MapReduce framework. In VLDB, pp. 1626-1629 (2009)

11. HBase: Available at http://hadoop.apache.org/hbase/, Accessed (2011)

12. Loukopoulos, Thanasis, Ahmad, Ishfaq, Papadias, Dimitris: An overview of data replication on the
internet. In: Proceedings of the International Symposium on Parallel Architectures, Algorithms and
Networks (ISPAN.02), pp. 27-32 (2002)

13. Kia, H.S., Khan, S.U.: Server replication in multicast networks. In: 10th IEEE International Confer-
ence on Frontiers of Information Technology (FIT), Islamabad, Pakistan, pp. 337-341 (2012)

14. Khan, S.U., Ahmad, I.: A pure Nash equilibrium based game theoretical method for data replication
across multiple servers. IEEE Trans. Knowl. Data Eng. 21(4), 537-553 (2009)

15. Khan, S.U.: A frugal auction technique for data replication in large distributed computing systems.
In: International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA), Las Vegas, NV, USA, pp. 17-23 (2009)

16. Khan, S.U., Ardil, C.: A competitive replica placement methodology for Ad Hoc networks. In:
International Conference on Parallel and Distributed Computing Systems (ICPDCS), Oslo, Norway,
pp. 128-133 (2009)

17. Khan, S.U., Ahmad, I.: Comparison and analysis of ten static heuristics-based internet data replication
techniques. J. Parallel Distrib. Comput. 68(2), 113-136 (2008)

18. Khan, S.U., Maciejewski, A.A., Siegel, H.J., Ahmad, I.: A game theoretical data replication tech-
nique for mobile Ad Hoc networks. In: 22nd IEEE International Parallel and Distributed Processing
Symposium (IPDPS). Miami (2008)

@ Springer

http://www.gartner.com/it/page.jsp?id=681107
http://gigaom.com/2009/07/17/the-hidden-cost-of-the-cloud-bandwidth-charges/
http://incubator.apache.org/cassandra/
http://hadoop.apache.org/hbase/

Distrib Parallel Databases

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Khan, S.U., Ahmad, I.: A pure Nash equilibrium guaranteeing game theoretical replica allocation
method for reducing web access time. In: 12th International Conference on Parallel and Distributed
Systems (ICPADS), Minneapolis pp. 169-176 (2006)

Khan, S.U., Ahmad, I.: Game theoretical solutions for data replication in distributed computing
systems. In: Rajasekaran, S., Reif, J. (eds.), Handbook of Parallel Computing: Models, Algorithms,
and Applications. Chapman & Hall/CRC Press, Boca Raton (2007). ISBN 1-584-88623-4, Chapter
45

Khan, S.U., Ahmad, I.: Data replication in large distributed computing systems using supergames.
In: International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA), Las Vegas, pp. 38—44 (2006)

Khan, S.U., Ardil, C.: A frugal bidding procedure for replicating WWW content. Int. J. Inform.
Technol. 5(1), 67-80 (2009)

Khan, S.U., Maciejewski, A.A., Siegel, H.J.: Robust CDN replica placement techniques. In: 23rd
IEEE International Parallel and Distributed Processing Symposium (IPDPS). Italy, Rome (2009)
Khan, S.U., Ardil, C.: A fast replica placement methodology for large-scale distributed computing
systems. In: International Conference on Parallel and Distributed Computing Systems (ICPDCS),
Oslo, pp. 121-127 (2009)

Wu, Y., Li, G., Wang, L., Ma, Y., Kolodziej, J., Khan, S.U.: A review of data intensive computing. In:
12th International Conference on Scalable Computing and Communications (ScalCom), Changzhou,
(2012)

Khan, S.U., Ahmad, I.: A cooperative game theoretical replica placement technique. In: 13th Inter-
national Conference on Parallel and Distributed Systems (ICPADS), Hsinchu, (2007)

Khan, S.U., Ahmad, I.: Replicating data objects in large-scale distributed computing systems using
extended Vickery auction. Int. J. Comput. Intell. 3(1), 14-22 (2006)

Gao, Aigiang, Diao, Luhong: Lazy update propagation for data replication in cloud computing. In: 5th
International Conference on Pervasive Computing and Applications (ICPCA), pp. 250-254 (2010)
Ikeda, Takahiko, Ohara, Mamoru, Fukumoto, Satoshi, Arai, Masayuki, Iwasaki, Kazuhiko: A dis-
tributed data replication protocol for file versioning with optimal node assignments. In: Proceedings
of IEEE International Pacific Rim International Symposium on Dependable Computing 2010, pp.
117-125 (2011)

Khan, S.U., Ahmad, I.: Discriminatory algorithmic mechanism design based WWW content replica-
tion. Informatica 31(1), 105-119 (2007)

Khan, S.U., Ahmad, I.: A semi-distributed axiomatic game theoretical mechanism for replicating data
objects in large distributed computing systems. In: 21st IEEE International Parallel and Distributed
Processing Symposium (IPDPS). Long Beach (2007)

Kohavi, R., Henne, R.M., Sommerfield, D.: Practical guide to controlled experiments on the Web:
Listen to your customers not to the HiPPO. In: Proceedings of ACM International Conference on
Knowledge Discovery and Data Mining (KDD 2007), pp. 959-967

Gulati, A., Merchant, A., Varman, P.: pClock: An arrival curve based approach for QoS in shared
storage systems. In: Proceedings ACM International Conference on Measurement and Modeling of
Computer System (SIGMETRICS), (2007)

Gulati, A., Merchant, A., Varman, P.: mClock: Handling throughput variability for hypervisor 10
scheduling. In: Proceedings of the 9th OSDI, (2010)

Wang, J., Varmany, P., Xie, C.: Avoiding performance fluctuation in cloud storage. In: Proceeding of
High Performance Computing (HiPC), pp. 1-9 (2010)

Goiri, L., Julia, F., Fito, J., Macias, M., Guitart, J.: Resource-level QoS metric for CPU-based guaran-
tees in Cloud providers. In: 7th international workshop on economics of grids, Clouds, systems, and
services, pp. 34-47 (2010)

Amrhein, D., Anderson, P., de Andrade, A., Armstrong, J., Arasan, E., Bartlett, J., Bruklis, R.,
Cameron, K., Cohen, R., Crawford, T. M., Deolaliker, V., Easton, A., Flores, R., Fourcade, G.:
Review and summary of cloud service level agreements. http://public.dhe.ibm.com/software/dw/
cloud/library/cl-rev2sla-pdf.pdf

Kliazovich, D., Bouvry, P.,, Khan, S.U.: Simulation and Performance Analysis of Data Intensive and
Workload Intensive Cloud Computing Data Centers. In: Kachris, C., Bergman, K., Tomkos, I. (eds.)
Optical Interconnects for Future Data Center Networks.Springer, New York, USA, ISBN: 978-1-
4614-4629-3, Chapter 4

@ Springer

http://public.dhe.ibm.com/software/dw/cloud/library/cl-rev2sla-pdf.pdf
http://public.dhe.ibm.com/software/dw/cloud/library/cl-rev2sla-pdf.pdf

Distrib Parallel Databases

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Goel, S., Buyya, R.: Data Replication Strategies in Wide Area Distributed Systems. Enterprise Service
Computing: From Concept to Deployment, Robin G. Qiu (ed), pp. 211241, ISBN 1-599044181-2,
Idea Group Inc., Hershey (2006)

Pallickara, S.L., Pallickara, S., Pierce, M.: Scientific Data Management in the Cloud: A Survey of
Technologies, Approaches and Challenges. Chapter 22: pp. 517-534, Handbook of Cloud Computing.
Springer. ISBN: 978-1-4419-6523-3 (2010)

Ramakrishnan, R.: Data Management in the Cloud. In: Proceedings of IEEE 25th International Con-
ference on Data Engineering(ICDE *09), pp. 5-5 (2009)

Gonzalez, L., Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition.
Comp. Commun. Rev. 39(1), 50-55 (2009)

Plummer, D., Bittman, T., Austin, T., Cearley, D., Smith, D.: Cloud Computing: Defining and Describ-
ing an Emerging Phenomenon. Technical report, Gartner (2008)

Staten, J., Yates, S., Gillett, F., Saleh, W., Dines, R.: Is cloud computing ready for the enterprise?.
Technical Report, Forrester Research (2008)

Bojanova, 1., Samba, A.: Analysis of cloud computing delivery architecture models. In: IEEE Work-
shops of International Conference on Advanced Information Networking and Applications (WAINA),
Biopolis, pp. 453-458 (2011)

Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Rasin, A., Silberschatz, A.: Hadoopdb: an archi-
tectural hybrid of MapReduce and DBMS technologies for analytical workloads. Publ. Very Large
Database (PVLDB) 2(1), 922-933 (2009)

Cooper, B., Baldeschwieler, E., Fonseca, R., Kistler, J., Narayan, P., Neerdaels, C., Negrin, T., Ramakr-
ishnan, R., Silberstein, A., Srivastava, U., Stata, R.: Building a cloud for Yahoo!. IEEE Data Eng.
Bull. 32(1), 36-43 (2009)

Pfleeger, C.P,, Pfleeger, S.L.: Security in Computing, 4th edn. Prentice Hall PTR, Upper Saddle River
(2006)

Chen, Y., Paxson, V., Katz, R.H.: What’s New about cloud Computing Security?, Technical Report
UCB/EECS-2010-5, EECS Department, University of California, Berkeley (2010)

Ristenpart et al.: Hey, you, get off of my cloud! Exploring information leakage in third- party compute
clouds. In: Proceedings of the 16th ACM Conference on Computer and Communication Security
(CCS-09), pp. 199-212. ACM Press (2009)

Habib, S.M., Ries, S., Muhlhauser, M.: Cloud Computing Landscape and Research Challenges regard-
ing Trust and Reputation. In: 7th International Conference on Ubiquitous Intelligence & Computing
and 7th International Conference on Autonomic & Trusted Computing (UIC/ATC), 2010, pp. 410415
(2010)

Person, S.: Taking account of privacy when designing cloud computing services, Technical Report,
HPL-2009-54, HP Laboratories (2009)

Everett, C.: Cloud computing: a question of trust. Comput. Fraud Security 2009(6), 5-7 (2009)
Dillon, T.S., Wu, C., Chang, E.: Cloud computing: issues and challenges, In: Proceedings of 24th IEEE
International Conference on Advanced Information Networking and Applications (AINA-2010), pp.
27-33 (2010)

Mouline, I.: Why assumptions about cloud performance can be dangerous to your business. J. Cloud
Comput. 2(3), 24-28 (2009)

Goel, S., Buyya, R.: Datareplication strategies in wide area distributed systems. In: Qiu, Robin G. (ed.)
Enterprise Service Computing: From Concept to Deployment, pp. 211-241, ISBN 1-599044181-2,
Idea Group Inc., Hershey, PA, USA (2006)

Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles (Bolton Landing, NY, USA, 2003). SOSP *03.
pp. 29-43 (2003)

Amazon.com: Amazon simple storage service (Amazon S3), http://aws.amazon.com/s3, Accessed
on 2011

Gray, J., Helland, P., O’Neil, P., Shasha, D.: The danger of replication and a solution. In: Proceedings
of International Conference on Management of Data ACM SIGMOD, Montreal, pp. 173—182 (1996)
Loukopoulos, T., Ahmad, I.: Static and adaptive distributed data replication using genetic algorithms.
J. Parallel Distrib. Comput. 64(11), 1270-1285 (2004)

Ullah Khan, Samee, Ahmad, Ishfaq: A pure Nash equilibrium-based game theoretical method for
data replication across multiple servers. IEEE Trans. Knowl. Data Eng. 21(4), 537-553 (2009)

@ Springer

http://aws.amazon.com/s3

Distrib Parallel Databases

62.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Wei, Q., Veeravalli, B., Gong, B., Zeng, L., Feng, D.: CDRM: A cost-effective dynamic replica-
tion management scheme for cloud storage cluster. In: IEEE International Conference on Cluster
Computing 2010, pp. 188-197 (2010)

. Kangasharju, J., Roberts, J., Ross, K.: Object replication strategies in content distribution networks.

In: Proceedings of Sixth International Workshop on Web Caching and Content Distribution (WCW
’01), pp. 455-456 (2001)

Dowdy, L., Foster, D.: Comparative models of the file assignment problem. ACM Comput. Surveys
14(2), 287-313 (1982)

Khan, S., Ahmad, I.: Heuristic-based replication schemas for fast information retrieval over the
internet. In: Proceedings of 17th International Conference on Parallel and Distributed Computing
Systems (PDCS ’04), pp. 278-283 (2004)

Li, B., Golin, M., Italiano, G., Deng, X.: On the optimal placement of Web Proxies in the internet.
Proc. IEEE INFOCOM °00 1(1), 1282-1290 (2000)

Qiu, L., Padmanabhan, V., Voelker, G.: On the placement of web server replicas. Proc. IEEE INFO-
COM ’01 1(2), 1587-1596 (2000)

Loukopoulos, T., Lampsas, P., Ahmad, I.: Continuous replica placement schemes in distributed sys-
tems. In: International Conference on Supercomputing (ICS’05) Boston, June 20-22

Chu, W.W.: Optimal file allocation in a multiple-computer information system. IEEE Trans. Comput.
C-18, 885-889 (1969)

Chu, W.W.: Optimal file allocation in a computer network. In: Abramson, N., Kuo, EF. (eds.)
Computer-Communication Networks, pp. 83-94. Prentice-Hall, Englewood Cliffs (1973)

Casey, R.G.: Allocation of copies of files in an information network. In: Proceedings of AFZPS 1972
SJCC, vol. 40, pp. 617-625. AFIPS Press (1972)

Eswaran, K.P.: Placement of records in a file and file allocation in a computer network. In: Proceedings
of the ZFZP Congress on Information Processing 1974, pp. 304-307. North-Holland, Amsterdam
(1974)

Mahmoud, S., Riordon, J.S.: Optimal allocation of resources in distributed information networks.
ACM Trans. Database Syst. 1(1), 66-78 (1976)

Ramamoorthy, C.V., Wah, B.W.: The placement of relations on a distributed relational database. In:
Proceedings of the 1st International Conference on Distributed Computing Systems (Huntsville, Ala.,
Oct. 1979). IEEE, New York, pp. 642-650 (1979)

Wah, B.W., Lien, Y.-N.: Design of distributed databases on local computer systems with a multiaccess
network. IEEE Trans. Softw. Eng. SE-11(7), 606-619 (1985)

Wang, F., Oral, S., Shipman, G., Drokin, O., Wang, T., Huang, I.: Understanding lustre filesystem
internals. Technical Report ORNL/TM-2009/117, Oak Ridge National Lab., National Center for
Computational Sciences (2009)

Cloudstore (kosmosfs), http://code.google.com/p/kosmosfs/. Accessed 12 June 2012

Haddad, L.LE.: PVFS: A parallel virtual file system for linux clusters. In: 4th Annual Linux Showcase
and Conference, pp. 317-328. Atlanta (2000)

Huang, H., Hung, W., Shin, K.G.: FS2: dynamic data replication in free disk space for improving disk
performance and energy consumption. In: Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP 2005), (2005)

Bonvin, N., Papaioannou, T.G., Aberer, K.: A self-organized, fault tolerant and scalable replication
scheme for cloud storage. In: Proceedings of the Symposium on Cloud Computing, pp. 205-216.
Indianapolis, USA (2010)

Decandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubra-
manian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value store. In: Pro-
ceedings of ACM Symposium on Operating Systems Principles, pp. 205-220. New York (2007)
Silvestre, G., Monnet, S., Krishnaswamy, R., Sens, P.. AREN: A Popularity aware replication scheme
for cloud storage. In: IEEE International Conference on Parallel and Distributed Systems (ICPADS),
pp- 189-196 (2012)

Ye, Y., Xiao, L., Yen, 1., Bastani, F.B.: Cloud storage design based on hybrid of replication and data
partitioning. In: Proceedings of IEEE Sixteenth International Conference on Parallel and Distributed
Systems (ICPADS), pp. 415~422. (2010)

Ye, Y., Yen, L., Xiao, L., Bastani, F.: Secure. Dependable and high performance cloud storage. Tech-
nical Report: UTDCS-10-10

@ Springer

http://code.google.com/p/kosmosfs/

Distrib Parallel Databases

85.

86.

87.

88.

89.

90.

91.
92.
93.
94.
9s.
96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

Gupta, A., Liskov, B., Rodrigues, R.: One Hop lookups for peer-to-peer overlays. In: Proceedings of
the Hot Topics in Operating Systems, Hawaii (2003)

Wang, ., Qiu, J., Yang, J., Dong, B., Li, X., Li, Ying: Hadoop high availability through metadata
replication. In: Proceeding of the first international workshop on cloud data management, pp. 37-44
(2009)

Skeen, D., Stonebraker, M.: A formal model of crash recovery in a distributed system. IEEE Trans.
Softw. Eng. 9(3), 219-228 (1983)

Suresh, A.: HadoopT: Breaking the Scalability Limits of Hadoop. Diss, Rochester Institute of Tech-
nology, Rochester (2011)

Bessani, A., Correia, M., Quaresma, B., Andr’e, F., Sousa, P.: DepSky: Dependable and secure storage
in a cloud-of-clouds. In: Proceedings of the European Conference on Computer Systems (EuroSys),
pp. 31-46 (2011)

Francisco, R., Correia, M.: Lucy in the sky without diamonds: Stealing confidential data in the cloud.
In: IEEE/IFIP 41st International Conference on Dependable Systems and Networks Workshops (DSN-
W) (2011)

Tsai, W., Zhong, P, Elston, J., Bai, X., Chen, Y.: Service replication with MapReduce in clouds. In:
Tenth International Symposium on Autonomous Decentralized Systems, pp. 381-388 (2011)
Cecchet, E., Singh, R., Sharma, U., Shenoy, P.: Dolly: virtualization-driven database provisioning for
the cloud. In: Proceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pp. 51-62 (2011)

Twin Peaks Software Inc. http://www.TwinPeakSoft.com. Accessed 04 May 2012

Twin Peaks Software Inc., Mirror File System for Cloud Computing. U.S Patent number: 7418439
MES presentation at usenix.org fast 08, http://www.usenix.org/events/fast08/wips_posters/slides/
wong.pdf

Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven approach to database repli-
cation and partitioning. In: VLDB, pp. 48-57 (2010)

Armbrust, M., Fox, A., Rean, G., Joseph, A., Katz, R., Konwinski, A., Gunho, L., David, P., Rabkin,
A., Stoica, 1., Zaharia, M.: Above the clouds: A Berkeley View of cloud Computing. Tech. Rep.
UCB/EECS-2009-28, EECS Department, U.C. Berkeley (2009)

Khan, S.U., Min-Allah, N.: A goal programming based energy efficient resource allocation in data
centers. J. Supercomput. 61(3), 502-519 (2012)

Zhang, X., Ai, J., Wang, Z., Lu, J., Meng, X.: An efficient multi-dimensional index for cloud data
management. In: Proceedings of cloudDB’2009, pp. 17-24

Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The R -tree: a dynamic index for multi-dimensional
objects. VLDB J., pp. 507-518 (1987)

Garcia-Molina, H., Ullman, J.D., Widom, J.: Database System Implementation. Prentice Hall Inc,
Upper Saddle River (1999)

Haojun, L., Han, J., Fang, J.: Multi-Dimensional index on Hadoop Distributed File System. In: IEEE
5th International Conference on Networking, Architecture and Storage (NAS) (2010)

Tiwari, R.G., Navathe, S.B., Kulkarni, G. J.: Towards transactional data management over the cloud.
In: proceedings of Second International Symposium on Data, Privacy, and E-Commerce, pp. 100-107
(2010)

Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes, A.,
Gruber, R.: Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst.
26(2), 4 (2008)

Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In: Operating systems
design and implementation, pp. 335-350 (2006)

Cooper, B., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H., Puz, N.,
Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data serving platform. Publ. Very Large Database
(PVLDB) 1(2), 1277-1288 (2008)

Simmbhan, Y., Barga, R., van Ingen, C., Lazowska, E., Szalay, A.: Building the Trident Scientific
Workflow Workbench for Data Management in the cloud. In: Third International Conference on
Advanced Engineering Computing and Applications in Sciences, 2009. ADVCOMP ’09, pp. 41-50
(2009)

Hey, T., Trefethen, A.: The Data Deluge: An e-Science Perspective, in Grid Computing: Making the
Global Infrastructure a Reality. Wiley, Chichester (2003)

@ Springer

http://www.TwinPeakSoft.com
http://www.usenix.org/events/fast08/wips_posters/slides/wong.pdf
http://www.usenix.org/events/fast08/wips_posters/slides/wong.pdf

Distrib Parallel Databases

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.
127.

128.

129.

130.

131.

132.

Barnes, C.R., Bornhold, B.D., Juniper, S.K., Pirenne, B., Phibbs, P.: The NEPTUNE Project—a cabled
ocean observatory in the NE Pacific: Overview, challenges and scientific objectives for the installation
and operation of Stage I in Canadian waters. In: Symposium on Underwater Technology and Workshop
on Scientific Use of Submarine Cables and Related Technologies, pp. 308-313 (2007)

Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs from
sequential building blocks. In: European Professional Society for Systems (EuroSys), pp. 59-72
(2007)

Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P., Currey, J.: Dryad ling: A system
for general-purpose distributed dataparallel computing using a high-level language. In: OSDI, pp.
1-14 (2008)

Das, S., Agrawal, D., Abbadi, A.E.: Elastras: An elastic transactional data store in the cloud. In:
‘Workshop on Hot Topics in Cloud Computing (2009)

Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco (1992)

Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the Practice
of Concurrency Control and Recovery. Morgan Kaufmann Publishers Inc., San Francisco (2001)
Aguilera, M.K., Merchant, A., Shah, M., Veitch, A., Karamanolis, C.: Sinfonia, A new paradigm for
building scalable distributed systems. In: SOSP, pp. 159-174 (2007)

Hsieh, M., Chang, C., Ho, L.Y., Wu, J., Liu, P.. SQLMR : A scalable database management system for
cloud computing. In: Proceedings of International Conference on Parallel Processing, pp. 315-324
(2011)

Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News 33(2), 51-59 (2002)

Youn, H., Lee, D., Lee, B., Choi, J., Kim, H., Park, C., Su, L.: An efficient hybrid replication protocol
for highly available distributed system. In: Proceedings of IASTED International Conference on
Communications and Computer Networks, pp. 508-513 (2002)

Gifford, D.K.: Weighted voting for replicated data. In: Proceedings of 7th ACM Symposium on
Operating Systems Principles, pp. 150162 (1979)

Agrawal, D., Abbadi, A.: The tree Quorum protocol: an efficient approach for managing replicated
data. In: Proceedings of 16th Very Large Database Conference, pp. 243-254 (1990)

Taheri, J., Zomaya, A.Y., Bouvry, P, Khan, S.U.: Hopfield neural network for simultaneous job
scheduling and data replication in grids. Future Gener. Comput. Syst. 29(8), 1885-1900 (2013)
Khan, S.U., Ahmad, I.: Replicating data objects in large distributed database systems: an axiomatic
game theoretical mechanism design approach. Distrib. Parallel Databases 28(2-3), 187-218 (2010)
Moiz, S.A., Sailaja, P., Venkataswamy, G., Supriya, N.: Database replication: a survey of open source
and commercial tools. Int. J. Comput. Appl. 13(6), 1-8 (2011)

Khan, S.U., Ahmad, I.: Non-cooperative, semi-cooperative, and cooperative games-based grid
resource allocation. In: 20th IEEE International Parallel and Distributed Processing Symposium
(IPDPS). Rhodes Island, (2006)

Garcia-Molina, H., Lindsay, B.: Research directions for distributed databases. IEEE Q. Bull. Database
Eng. 13(4), 12-17 (1990)

Stonebraker, M.: Future trends in database systems. IEEE Trans. Knowl. Data Eng. 1(1), 33—44 (1989)
Razavi, A., Moschoyiannis, S., Krause, P.: Concurrency control and recovery management in open
e-Business transactions. In: WoTUG Communicating Process Architectures, pp. 267-285 (2007)
Christmann, P., Harder, T.H., meyer-wegener, K., Sikeler, A.: Which kinds of OS mechanisms should
be provided for database management. In: Nehmer, J. (ed.), Experiences with Distributed Systems,
pp. 213-251. Springer, New York

GORDA Project: State of the Art in Database Replication Deliverable D1.1, http://gorda.di.uminho.
pt/deliverables, Accessed on 08 June 2013 (2006)

Abdellatif, T., Cecchet, E., Lachaize, R.: Evaluation of a Group Communication Middleware for
Clustered J2EE Application Servers. ODBASE, Cyprus (2004)

Energy, STAR Data Center Energy Efficiency Initiatives, http://www.energystar.gov/ia/partners/
prod_development/downloads/EPA_Datacenter_Report_Congress_Finall.pdf?d7a4-0cec. Accessed
16 Aug 2012

Andersen, D.G., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., Vasudevan, V.: FAWN: A fast
array of wimpy nodes. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pp. 1-14 (2009)

@ Springer

http://gorda.di.uminho.pt/deliverables
http://gorda.di.uminho.pt/deliverables
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf?d7a4-0cec
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf?d7a4-0cec

Distrib Parallel Databases

133.

134.

135.

136.

137.

138.

Szalay, A.S., Bell, G.C., Huang, H.H., Terzis, A., White, A.: Low-power amdahl-balanced blades for
data intensive computing. ACM SIGOPS Oper. Syst. Rev. 44(1), 71-75 (2010)

Nedevschi, S., Popa, L., Iannaccone, G., Ratnasamy, S., Wetherall, D.: Reducing network energy
consumption via sleeping and rate-adaptation. In: NSDI’08: Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation, pp. 323-336, Berkeley (2008). USENIX
Association

Goiri, L., Le, K., Haque, M.E., Beauchea, R., Nguyen, T.D., Guitart, J., Torres, J., Bianchini,
R.: GreenSlot: Scheduling Energy Consumption in Green Datacenters. In: Proceedings of 2011 Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis, ACM, p.
20 (2011)

Khan, S.U., Bouvry, P., Engel, T.: Energy-efficient high-performance parallel and distributed com-
puting. J. Supercomput. 60(2), 163-164 (2012)

Marzolla, M., Babaoglu, O., Panzieri, F.: Server Consolidation in Clouds through Gossiping, TR
UBLCS-2011-01. Department of Computer Science, University of Bologna, Italy (2011)

Shen, X., Liao, W., Choudhary, A., Memik, G., Kandemir, M.: A high-performance application data
environment for large-scale scientific computations. IEEE Trans. Parallel Distrib. Syst. 14(12), 1262—
1274 (2003)

@ Springer

	Performance analysis of data intensive cloud systems based on data management and replication: a survey
	Abstract
	1 Introduction and motivation
	1.1 Performance measurement and analysis of the cloud services for data management applications
	1.2 Role of data management and replication in attaining high performance

	2 Cloud computing
	3 Data replication in cloud computing
	3.1 Overview and previous research
	3.1.1 Distributed parallel file system (DPFS)

	3.2 Data replication approaches
	3.2.1 Discussion

	4 Data management in cloud
	4.1 Overview
	4.2 Data management approaches and systems
	4.3 Discussion

	5 Conclusions, open research issues, and future directions
	Acknowledgments
	References

