
Versioned Distributed Arrays for
Resilience in Scientific

Applications: Global View
Resilience	

Andrew A. Chien, The University of Chicago
and Argonne National Laboratory

ICCS 2015, June 1
Reykjavik, Iceland

Outline	
•  GVR Approach and Flexible Recovery
•  GVR in Applications Programming Effort
•  GVR Versioning and Recovery Performance
•  Summary
•  ...More Opportunities with Versioning

June 1, 2015 (c) Andrew A. Chien

GVR Approach	

•  Application-System Partnership: System Architecture
o  Exploit algorithm and application domain knowledge
o  Enable “End to end” resilience model (outside-in), Levis’ Talk

•  Portable, Flexible Application control (performance)
o  Direct Application use or higher level models (task-parallel, PGAS, etc.)
o  GVR Manages storage hierarchy (memory, NVRAM, disk)
o  GVR ensures data storage reliability, covers error types

•  Incremental “Resilience Engineering”
o  Gentle slope, Pay-more/Get-more, Anshu’s talk

June 1, 2015 (c) Andrew A. Chien

Applications	 System	

Global-view Data	
Data-oriented Resilience	

Effort	

Resilience	

Data-oriented Resilience
based on Multi-versions	

•  Global-view data – flexible recovery from data, node, other
errors

•  Versioning/Redundancy customized as needed (per structure)
•  Error checking & recovery framed in high-level semantics

(portable)

June 1, 2015 (c) Andrew A. Chien

Phases create new	
logical versions	

Checking, 	
Efficient coverage	 App-semantics	

based recovery	

GVR Concepts and API	
•  Create Global view structures

o  New, federation interfaces
o  GDS_alloc(...), GDS_create(...)

•  Global view Data access
o  Data: GDS_put(), GDS_get()
o  Consistency: GDS_fence(), GDS_wait(),...
o  Accumulate: GDS_acc(), GDS_get_acc(), GDS_compare_and_swap()

•  Versioning
o  Create: GDS_version_inc(), Navigate: GDS_get_version_number(),

GDS_move_to_newest(), ...

•  Error handling
o  Application checking, signaling, correction: GDS_raise_error(),

GDS_register_local_error_handler()...
o  System signaling, integrated recovery: GDS_raise_error(), GDS_resume()

June 1, 2015 (c) Andrew A. Chien

Put Get Put

Check Error Repair

Applications have portable control over coverage and
overhead of resilience.	

GVR Flexible Recovery I	
•  Immediate errors: Rollback
•  Latent/Silent errors: multi-

version
o  Application recovery using multiple

streams

•  Immediate + Latent: novel
forward error recovery
o  System or application recovery using

approximation, compensation,
recomputation, or other techniques

•  Tune version frequency, data
structure coverage, increased
ABFT and forward error
recovery for rising error rates

June 1, 2015 (c) Andrew A. Chien

CR	

GVR: 	
Multi-version	
Multi-stream	

Immediate: rollback	
 Latent: fail	

Immediate: rollback	
Latent: rollback	

Immediate + Latent: 	
Forward Error recovery	

GVR Flexible Recovery II	
•  Complex errors, Rollback-

diagnosis-forward
o  Flexible, Application-based recovery
o  Walk multiple versions
o  Diagnose
o  Compute corrections/approximations,

execute forward

•  Complex errors, Forward from
multiple versions
o  Flexible, Application-based recovery
o  Partial materialization of multiple versions
o  Compute approximations, execute

forward

•  Tune version frequency, data
structure coverage, increased
ABFT and forward error
recovery for rising error rates

June 1, 2015 (c) Andrew A. Chien

GVR flexibility enables scalability across a wide range
of error types and rates.	

Recovered	
Application	

Recovered	
Application	

Simple Version Recovery:
Preconditioned Conjugate Gradient	

•  Version x “solution vector”
o  Restore x on error

•  Version p “direction vector”
o  Restore on error

•  Version A “linear system”
o  Restore on error

•  Restore from which version?
o  Most recent (immediately detected

errors)
o  Older version (latent or “silent” errors)

Unlike many other methods, CG functions only for symmetric matrices. The symmetry

of the matrix is used to simplify the algorithm. In a general Krylov subspace method, we

need to keep track of the entirety of the subspace over which we are currently minimizing.

Due to symmetry, CG needs only to keep track three vectors of length m: the current

approximate answer x, the current residual r, and the current direction of search p. Our

particular implementation also caches two iterations of the scalar ⇢ = (r, r). Note that r is

updated in-place, rather than being recalculated in each iteration from b�Ax. This means

that, if a fault occurs in the computation, the values of r and b� Ax may diverge.

The norm residual krk for CG is expected to converge at an exponential rate. In general,

each iteration of krk should be smaller than the previous iteration by some factor. The

convergence factor is dependent on the spectral condition number of A [50, p. 215].

2.1.2 Preconditioned Conjugate Gradient (PCG)

1: r = b� Ax

2: iter = 0
3: while (iter < max iter) and krk > tolerance do
4: iter = iter+1
5: z = M

�1
r

6: ⇢old = ⇢

7: ⇢ = (r, z)
8: � = ⇢/⇢old
9: p = z + �p

10: q = Ap

11: ↵ = ⇢/(p, q)
12: x = x+ ↵p

13: r = r � ↵q

14: end while

Figure 2.2: The preconditioned conjugate gradient algorithm is nearly identical. to CG,
except that the preconditioner M is applied to r once per iteration.

One approach to speeding up the convergence of CG is by applying a preconditioner M to

A and b and then solving the equation M

�1
Ax = M

�1
b [50, p. 276]. It is often less expensive

9

 A= ...

June 1, 2015 (c) Andrew A. Chien

Multi-stream in PCG: Matching
redundancy to need	

June 1, 2015 (c) Andrew A. Chien

	
	

Iteration	 1

A

p
2 3 4 5 6

0

1 2 3 4 5 60

1 2 30

x

Low redundancy	

High redundancy	

Medium redundancy	

Molecular Dynamics: miniMD, ddcMD	
•  miniMD: a SNL mini-app, a version of LAMMPS
•  ddcMD is the atomistic simulation developed by LLNL --

scalable and efficient.

June 1, 2015 (c) Andrew A. Chien
LLNL (Dave Richards & Ignacio

Laguna)	

ddcMD + GVR	
main() {
 /* store essential data structures in gds */
 GDS_alloc(&gds);
 /* specify recovery function for gds */
 GDS_register_global_error_handler(gds, recovery_func);
 simulation_loop() {
 computation();
 error = check_func() /* finds the errors */
 if (error) {
 error_descriptor = GDS_create_error_descriptor(GDS_ERROR_MEMORY)
 /* signal error */
 /* trigger the global error handler for gds */
 GDS_raise_global_error(gds, error_descriptor);
 }
 if (snapshot_point){GDS_version_inc(gds);
 GDS_put(local_data_structure, gds);};
 }
}
/* Simple recovery function, rollback */
recovery_func(gds, error_desc) {
 /* Read the latest snapshot into the core data structure */
 GDS_get(local_data_structure, gds);
 GDS_resume_global(gds, error_desc);
}

June 1, 2015 (c) Andrew A. Chien
A. Fang, I. Laguna, D. Richards, and A. Chien. “Applying GVR

to molecular dynamics: ...” CS TR-2014-04, Univ of Chicago.	

Fission

Elas)c

Inelas)c

CESAR’s Nuclear Reactor Coupled Neutronics/Hydraulics Problem

 Vessel Æ Core Æ Fuel Assembly Æ Fuel Rod Æ Nozzles/Spacer Æ Fuel Pellet
(14 m x 4.5 m) (4 m x 4 m) (4 m x 20 cm) (4 m x 1 cm) (20 cm x 4 cm) (1 cm x 1.5 cm)

ASCAC Meeting, March 31, 2013 5
5

Monte Carlo Neutron Transport (OpenMC)	

•  High fidelity, computation intensive and large memory (100GB~ cross
sections and 1TB~ tally data)

•  Particle-based parallelization is used with data decomposition
•  Partition tally data by global array
•  OpenMC: best scaling production code
•  DOE CESAR co-design center “co-design application”

June 1, 2015 (c) Andrew A. Chien ANL/CESAR (Siegel, Tramm) 	

OpenMC + GVR	
Initialize initial neutron positions	
GDS_create(tally & source_site); //Create global tally array and source sites	
for each batch	
 for each particle in batch	
 while (not absorbed) 	
 move particle and sample next interaction	
 if fission	
 GDS_acc(score, tally) // tally, add score asynchronously	
 add new source sites 	
 end	
 GDS_fence() // Synchronize outstanding operations
 resample source sites & estimate eigenvalue	
 if (take_version) GDS_ver_inc(tally) // Increment version	
 GDS_ver_inc(source_site) // Increment version	
 end	
end	

June 1, 2015 (c) Andrew A. Chien

•  Create Global view tallies	
•  Versioning: 259 LOC (<1%)	
•  Forward recovery: 250 (<1%)	
•  Overall application: 30 KLOC	

Tally	Tally	

Monte Carlo “Compensating”
Forward Error Recovery	

“Random”
Sample	

Computation	

Statistics	

 Convergence?	

Tally	

Batch	

Monte Carlo
Simulation	

Initial	

Corrupt
Tally	

Error
detected

June 1, 2015 (c) Andrew A. Chien
Versions	

Recovery	

Vn	 Vn-1	

Continue
Sampling

=	

Corrupt
Tally	

=	 Good
Tally	

Latent or	
current	

Good	
Tally	

OpenMC+GVR Performance	

New record scaling 	
for OpenMC !!	

June 1, 2015 (c) Andrew A. Chien
N. Dun, H. Fujita, J. Tramm, A. Chien, and A. Siegel. Data Decomposition in Monte Carlo

Neutron Transport Simulations using Global View Arrays, IJHPCA, May 2014	

(ranks)	

Chombo + GVR	
•  Resilience for core AMR hierarchy

o  Central to Chombo
o  Lessons applicable to Boxlib (ExaCT co-design

app)

•  Multiple levels, each with own
time-step

•  Data corruption and Process
Crash Resilience
o  GVR used to version each level separately
o  Exploits application-level snapshot-restart

•  GVR as vehicle to explore cost
models for “resilience
engineering” (Dubey)
o  Future: customize or localize recovery

June 1, 2015 (c) Andrew A. Chien ExReDi/LBNL (Dubey, Van Straalen) 	

GVR Gentle Slope	

June 1, 2015 (c) Andrew A. Chien

GVR enables a gentle slope to Exascale resilience 	

Code/
Application	

Size
(LOC)	

Changed
(LOC)	

Leverage
Global View	

Change SW
architecture 	

Trilinos/PCG	 300K	<1%	 Yes 	 No	

Trilinos/
Flexible
GMRES	

300K	<1%	 Yes 	 No	

OpenMC	 30K	<2%	 Yes 	 No 	

ddcMD	 110K	<0.3%	 Yes 	 No 	

Chombo	 500K	<1% 	 Yes 	 No 	

GVR Performance (Overhead)	

June 1, 2015 (c) Andrew A. Chien

0.00%	

20.00%	

40.00%	

60.00%	

80.00%	

100.00%	

120.00%	

Overhead	

Base	

Varied version frequency, against the native program. All < 2%.	

GVR performance scales over versions and partial materialization too!	

GVR Summary	
•  Easy to add to an application
•  Flexible control and coverage
•  Flexible recovery (enables variety of

forward techniques, approximations, etc.)
•  Low overhead
•  Efficient version restore (across versions)
•  Efficient incremental restore

June 1, 2015 (c) Andrew A. Chien

	
All Portable!	
	

Additional GVR Research	

June 1, 2015 (c) Andrew A. Chien

Latent Error Recovery	
When multiple versions are useful
Impact on high-error rate regimes
Impact on difficult to detect errors

(c) Andrew A. Chien
 G. Lu, Z. Zheng, and A. Chien. When is multi-version checkpointing needed?

3rd Workshop on Fault-tolerance for HPC at extreme scale, FTXS ’13, 2013. 	

Multi-version increases efficiency	
at high error rates	

Multi-version critical for
difficult to detect errors	

Latent or “silent” error
model	

June 1, 2015

Efficient Versioning	
•  Different implementations (SW, HW, OS, Application)

•  OS page tracking, dirty bits, SW declared
•  Skewed and Multi-version in-memory representations

•  Efficient storage and materialization
•  Leverages collective view
•  Exploit NVRAM, burst buffers, etc.

(c) Andrew A. Chien

RMA, competitive performance is challenging. Second, we
evaluate and compare the log-structured approach to the
traditional flat array approach using several micro-benchmarks
to measure communication latency, bandwidth, and version
increment cost. Finally we evaluate both log-structured and
flat implementations using three full applications, OpenMC,
canneal, and preconditioned conjugate-gradient. This last eval-
uation is done for a DRAM-only system, and a system that
uses DRAM and SSD/Flash to store versions.

Specific contributions include:

• design and build a log-structured implementation of
arrays that supports efficient versioning and RMA
access

• evaluation of versioning in flat (traditional) and log-
structured implementations using a variety of mi-
crobenchmarks shows that the log-structured can create
versions as much as 10x faster even for 1MB array,
introducing versions in an unobtrusive fashion

• further, in systems with RMA, log-structured imple-
mentations can achieve low latency and high bandwidth
for small access (< 128B or larger if block size is
increased) matching flat implementations,

• overall, the micro-benchmarks indicate that log-based
implementation deliver equal performance on reads
(within 74%), but as expected incur additional over-
heads on writes (from 7% to 99%). In short, overall
performance comparisons will depend on workload

• evaluation using several application benchmarks shows
that versioning runtime overheads can be negligible
(3.7% for PCG, 4.7% for OpenMC), and manageable
for the other (26% canneal). This means that versioning
for resilience may be viable in many settings.

• in all cases, where there is opportunity in the access
patterns, the log-based approach captures potential
memory usage savings (31% in canneal), in some
cases over 90%.

• adding NVRAM or SSD to the system resources,
experiments show that log-structured approach increase
tolerance of NVRAM limitations such as low write
bandwidth or limited lifetime, improving performance
by 20% (OpenMC, with SSD).

II. BACKGROUND

A. Global View Resilience

The Global View Resilience (GVR) project supports a new
model of application resilience built on versioned arrays (multi-
version). A programmer can select a global array [19] for
versioning and control timing and frequency (multi-stream).
Access to these arrays is provided through dedicated library
calls such as put or get. The timeline of application state created
by versioned arrays can then be used to both check application
data for errors, and to recover from said errors (application-
customized checking and recovery). Because the GVR library
operates at the level of application arrays, it is both convenient
to use and portable, enabling convenient portable resilience.

Processes

Put Get

Versions

Fig. 1. Multi-version global array in GVR

0 10 20 30

0

10

20

30

40

Version (# of iterations)

To
ta

lb
lo

ck
s

up
da

te
d

(%
)

bs=64B
bs=128B
bs=256B
bs=512B

Fig. 2. The canneal benchmark in the PARSEC benchmark suite modifies a
limited portion of the array per iteration

Its critical to understand how GVR global array are
versioned (see Figure 1), a process in which an application
determines when a version should be created by calling
version inc(), and multiple copies of the array are persisted.
These copies can be used later by the application for error
recovery, and while the GVR system provides consistent
versions of single array, any coordination across multiple arrays
(i.e. across the multiple streams) is an application responsibility.

Because errors can be difficult or costly to detect, they are
sometimes latent, and thus multiple versions can be used to
improve overall performance and reliability [20]. This capability
is beyond that of traditional checkpoint/restart systems that
only maintain a single checkpoint; if there are latent errors that
corrupt the checkpoint, there is no way to recover the system.
Lu et al. show when multi-version checkpointing is useful
[20] across a range of error and detection latency assumptions.
The application-level abstraction of multi-version arrays creates
a wide variety of opportunities for flexible error checking
and recovery exploiting application semantics. However, those
topics are the subject of other research studies.

B. Preserving Multiple Versions Efficiently

A central challenge for the multi-version foundation for
resilience is how to implement versioning efficiently. The
traditional method is to to create an copy of the array for
each new version; we call this the flat array approach. GVR
limits modification to the current version of the array, limiting
older versions to read-only which opens numerous avenues for
optimization.

Our studies show that many applications modify only

Metadata Data

Version 0 Version 1
Initial
Data

Log head Log tail

Tail pointer

Fig. 3. In-memory data structure of log-structured array

part of an array between versions. For example, Figure 2
shows the behavior of the canneal benchmark (from PARSEC
[21]). We instrumented accesses to the main data structure
called netlist::_elements, a contiguous array buffer,
to understand modification patterns using the PIN tool [22].
This structure is the core needed for resilient execution. We
assume that the array is divided into fixed-size blocks, and
mark each block if the contents of the block is modified. Figure
2 shows that only a small amount of the array is updated during
each iteration. Because the canneal benchmark runs for several
iterations with a barrier synchronization at the end of each
iteration, it naturally corresponds to a version. Our results show
that a small fraction of the array is updated in each iteration,
creating opportunity for optimization.

III. DESIGN

We present the design of log-structured implementations for
global arrays. We first describe the in-memory data structure,
then two implementations—RMA-based and message-based
protocol.

A. Data Distribution

Each global array is a distributed collection of buffers that
together comprise a single logical array. We assume that data
distributions map each range of array indices to a corresponding
remote memory buffer, and we assume the data distribution
does not change across versions. For a given operation, the
memory buffer (target) we need to access may be in a remote
node. We use the term “client” to indicate the originating node
and “server” for the target node.

B. Data structures

Figure 3 illustrates the in-memory log data structure of a
log-structured array. A log-structured array is constructed from
a single contiguous memory region, dividing it into two parts—
data and metadata blocks. Within the log-structured array, a
region of the global array is divided into fixed-size blocks, each
storing a portion of user data. Each metadata block contains a
pointer to a user data block. Thus for a given array size, we
have a fixed number of metadata blocks for each version. For
example, given that L is the length of array and B is block
size, single version requires dL/Be metadata blocks.

C. Operational semantics

There are two cases for a put operation. In the base case,
new data blocks are allocated at the tail of the log to record
the modified data. Then the corresponding metadata blocks

are updated, pointing to the newly allocated blocks. If the put
operation is overwriting data that has already been modified
since the most recent version creation, then it simply overwrites
the current data block. No new allocation is required. Thus new
versions are created incrementally based on new modifications
of a region.

Upon version inc(), we can create a logical new version by
simply creating a new set of metadata blocks for the version
(similar to a copy-on-write process creation). The new metadata
blocks are simply appended to the tail of the log. And the
location of the metadata (current version), but not their contents
is broadcast to all of the clients. At this moment, all metadata
blocks are identical to those of the previous version.

If there are concurrent and non-conflicting put and get oper-
ations, the implementation must merge the updates and capture
all modifications. GVR provides synchronization operations to
order conflicting updates, and if operations are not well-ordered,
then arbitrary interleavings of update are acceptable.

D. Data Access Protocols

A key feature of modern cluster networks is RDMA (Re-
mote Direct Memory Access). RDMA can be high performance
because it is 1-sided, not requiring involvement from the remote
CPU. However, implementing complex data manipulations
with RDMA is complicated, and often not the most efficient.
Therefore we present two access protocols, one with RDMA
and the other without RDMA. Hereafter we use more generic
term RMA (Remote Memory Access), instead of RDMA.

1) RMA-based Protocol: Uses RMA operations only, with
all data operations implemented by clients. The server exposes
memory regions through RMA, but performs no operations.

a) Metadata cache: To access array data, a client needs
the metadata blocks to find the location of the needed data
blocks. Upon access, the client first checks the cache for the
needed metadata, and if necessary fetches it from the remote
node. Because the metadata may be correct even across a
version inc(), the metadata cache is not flushed at new version
create. Instead, it is checked upon access, and if determined to
be stale (failed access), then is it updated.

As described in III-C, each metadata block is updated at
most once in a single version, This means if a metadata block
is already updated in the latest version, it will never change.
Therefore, if a metadata cache is for the updated block, that
cache is guaranteed to be always valid.

As a result, each metadata cache has two states: valid and
maybe invalid. Each client can determine the state of the cache
without involving communications. Upon a version increment,
all processes exchange the position of the log tail. If a metadata
cache points to a location after the known log tail, that cache
is valid because that data block is allocated in that version.

b) Put: RMA put requires a relatively complex proce-
dure illustrated in Figure 4. Log area is exposed via the RMA
interface as a single contiguous memory buffer. At a fixed
location in the area, there is a special integer field to contain
tail pointer of the log.

1) A client first tries to increment the tail pointer to
allocate a new data block at the end of the log. This
is done by an atomic operation.

2 4 8 16 32

2,000

2,500

3,000

Number of Processes

C
al

cu
la

tio
n

R
at

e
(n

eu
tro

ns
/s

/p
ro

ce
ss

) Flat-RMA (DRAM)
Flat-RMA (DRAM+NVRAM)
Flat-RMA (DRAM+SSD)
Log-RMA (DRAM)
Log-RMA (DRAM+NVRAM)
Log-RMA (DRAM+SSD)

Fig. 9. OpenMC Performance with NVRAM emulation (computation rate)

Figure 8 shows overall results of OpenMC. Log-RMA
performs almost as good as Flat-RMA. In 32-node case, Log-
RMA is just 4.7% slower compared to Flat-RMA. While
achieving similar performance, log-structured array consumed
14.5% less memory to preserve versions, as shown in Figure
14.

Figure 9 compares performances when NVRAM or SSD
is introduced in the system. Since the tally size per process
shrinks as the number of processes increases, results are plotted
in per-process performance. Performance difference is most
significant in 2-process case where each process holds the
biggest size of data. In 2-process case, Flat-RMA performance
is significantly dropped when NVRAM or SSD is introduced
in the system. However for Log-RMA, NVRAM or SSD adds
smaller impact to the performance. In the most extreme case for
2 processes, where SSD is introduced, Log-RMA outperforms
Flat-RMA by 20%. This is because Flat-RMA is blocked at
slow memory copy at each version increment while Log-RMA
is not.

2) PCG Solver: Preconditioned Conjugate Gradient method
(PCG) is a common way to solve linear systems (i.e. find
x in Ax = b) [27]. The PCG algorithm is a three-term
recursion, which means that, in each iteration, three vectors
are recalculated based on the values of these vectors from the
previous iteration. Our implementation uses the linear algebra
primitives Trilinos library [28], [29]. The vectors used in the
three-term recursion are stored in a customized variant of a
Trilinos Vector class that supports preservation and restoration
of values via a GDS object. In the course of computation, one
snapshot of each of these vectors is stored at every iteration.
Total number of versions (= number of iterations) depends on
the number of total number of processes, ranging from 114
(for 2 processes) to 141 (for 32 processes). For this study, we
use for A a sparse matrix derived from the HPCG benchmark
[30] of size 1000000⇥ 1000000.

Figure 10 shows the result of the PCG solver experiment.
This program shows a quite unstable behavior when the number
of processes becomes more than eight, so we pick the most
stable run among three trials. The Log-RMA result is pretty
close to Flat-RMA performance, even in the worst case the
additional overhead is just 3.7%. This program creates versions
more than 100 times during the run, the versioning cost is

2 4 8 16 32

2

4

6

8

Number of Processes

Ex
ec

ut
io

n
Ti

m
e

(s
)

Flat-RMA Flat-msg
Log-RMA Log-msg

Fig. 10. Preconditioned conjugate-gradient (PCG) solver runtime (seconds)

2 4 8 16 32

5

10

Number of Processes

Ex
ec

ut
io

n
Ti

m
e

(s
)

Flat-RMA (DRAM)
Flat-RMA (DRAM+NVRAM)
Log-RMA (DRAM)
Log-RMA (DRAM+NVRAM)

Fig. 11. Preconditioned conjugate gradient (PCG) solver runtime with
NVRAM emulation (seconds)

important. As shown in Figure 11, putting slower NVRAM into
the system heavily affects the performance. In this experiment
even Log-RMA is affected by NVRAM, possibly because
versioning frequency is too high. For this application, there is no
memory savings by Log-structured array because it overwrites
the entire region for every version.

3) canneal: Third application benchmark is a synthesis
benchmark based on canneal from the PARSEC benchmark
suite. It is a multi-threaded program which simulates an
optimization process of an electric circuit. It has an array
called netlist::_element, which is shared among all
worker threads. That array stores a huge list of elements of a
circuit, then the canneal program tries to swap two randomly-
chosen elements. If this swap improves the circuit, then the
result of swapping is written back to the array. The goal of
this benchmark is to reproduce the same access pattern to the
array using GVR.

To faithfully mimic the memory access patterns of real
applications, we developed a trace-replay framework to eval-
uate the performance of GVR arrays without rewriting the
applications with GVR library. First we extract the memory
access history of specified data structures by using PIN tool[22].
The interested data structures are marked up by inserting

Flat (Traditional)	 Log-structured	
Comparative Studies 	
with applications +	
varied memory hierarchies	

 H. Fujita, N. Dun, Z. Rubenstein, and A. Chien. Log-structured global array
for efficient multi-version snapshots. CCGrid, May 2015.	

June 1, 2015 H. Fujita, K. Iskra, P. Balaji, and A. Chien, "Empirical Characterization of
Versioning Architectures", submiued.	

N+1->N and N->N-1
Recovery	

•  MPI Recovery (ULFM)
•  Application Process Recovery
•  Load Balancing and Performance
•  Post-recovery Efficiency (PRE)

June 1, 2015 (c) Andrew A. Chien

GVR Software Status	
•  Open source release, Oct 2014 (gvr.cs.uchicago.edu)

o  Tested with Miniapps – miniMD, miniFE experiments, and Full apps – ddcMD,
PCG, OpenMC, Chombo

•  Features
o  Versioned distributed arrays with global naming (a portable abstraction)
o  Independent array versioning (each at its own pace)
o  Reliable storage of the versioned arrays in memory, local disk/ssd, or global file

system (thanks to Adam and SCR team!)

o  Whole version navigation and efficient restoration
o  Partial version efficient restoration (partial “materialization”)
o  C native APIs and Fortran bindings
o  Runs on IBM Blue Gene, Cray XC, and Linux Clusters

•  Key: all of the application investment is portable
because the abstractions are portable

June 1, 2015 (c) Andrew A. Chien

More GVR Info I	
Basic API’s and Usage
•  GVR Team. Gvr documentation, release 0.8.1-rc0. Technical Report 2014-06,

University of Chicago, Department of Computer Science, 2014.
•  GVR Team. How applications use gvr: Use cases. Technical Report 2014-05,

University of Chicago, Department of Computer Science, 2014.
GVR Architecture and Implementation Research
•  Hajime Fujita, Kamil Iskra, Pavan Balaji, and Andrew A. Chien, "Empirical

Characterization of Versioning Architectures", in CLUSTER, October 2015.
•  A. Fang and A. Chien, "How Much SSD Is Useful for Resilience in

Supercomputers”, in IEEE Symposium on Fault-tolerance at Extreme-Scale
(FTXS), June 2015.

•  Hajime Fujita, Nan Dun, Zachary A. Rubenstein, and Andrew A. Chien. Log-
structured global array for efficient multi-version snapshots. In CCGrid 2015..

•  Guoming Lu, Ziming Zheng, and Andrew A. Chien. When is multi-version
checkpointing needed? In Proceedings of the 3rd Workshop on Fault-
tolerance for HPC at extreme scale, ACM FTXS ’13, July 2013.

•  Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George
Bosilca, and JackJ. Dongarra. An evaluation of User-Level Failure Mitigation
support in MPI. Computing, 95(12):1171–1184, 2013.

June 1, 2015 (c) Andrew A. Chien

More GVR Info II	
Application Studies
•  A. Chien, P. Balaji, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Rubenstein, Z. Zheng, J. Hammond,

I. Laguna, D. Richards, A. Dubey, B. van Straalen, M Hoemmen, M. Heroux, K. Teranishi, A.
Siegel. Exploring Versioning for Resilience in Scientific Applications: Global-view
Resilience, submitted for publication, March 2015. (Best overall project summary)

•  A. Chien, P. Balaji, P. Beckman, N. Dun, A. Fang, H. Fujita, K. Iskra, Z. Rubenstein, Z. Zheng,
R. Schreiber, J. Hammond, J. Dinan, A. Laguna, D. Richards, A. Dubey, B. van Straalen, M
Hoemmen, M. Heroux, K. Teranishi, A. Siegel, and J. Tramm, "Versioned Distributed Arrays
for Resilience in Scientific Applications: Global View Resilience", in International
Conference on Computational Science (ICCS 2015), Reykjavik, Iceland, June 2015.

•  Nan Dun, Hajime Fujita, John R. Tramm, Andrew A. Chien, and Andrew R. Siegel. Data
Decomposition in Monte Carlo Neutron Transport Simulations using Global View Arrays.
Technical report, Computer Science, University of Chicago, IJHPCA, April 2014.

•  Aiman Fang and Andrew A. Chien. Applying gvr to molecular dynamics: Enabling
resilience for scientific computations. Technical Report, Computer Science, University of
Chicago, April 2014.

•  Zachary Rubenstein, Hajime Fujita, Ziming Zheng, and Andrew Chien. Error checking and
snapshot-based recovery in a preconditioned conjugate gradient solver. Technical
Report, Computer Science, University of Chicago, November 2013.

•  Ziming Zheng, Andrew A. Chien, and Keita Teranishi. Fault tolerance in an inner-outer
solver: A gvr-enabled case study. In 11th International Meeting High Performance
Computing for Computational Science VECPAR 2014, Oregon.

June 1, 2015 (c) Andrew A. Chien

Acknowledgements	
•  GVR Team: Hajime Fujita, Zachary Rubenstein, Aiman Fang,

Nan Dun, Yan Liu (UChicago), Pavan Balaji, Pete Beckman,
Kamil Iskra, (ANL), and application partners Andrew Siegel
(Argonne/CESAR), Ziming Zheng (UC/Vertica), James Dinan
(Intel), Guoming Lu (UESTC), Robert Schreiber (HP), Jeff
Hammond (Argonne/ALCF/NWChem->Intel), Mike Heroux,
Mark Hoemmen, Keita Teranishi (Sandia), Dave Richards
(LLNL), Anshu Dubey, Brian Van Straalen (LBNL)

•  SCR Team – some elements included in GVR system (thanks!)

•  Department of Energy, Office of Science, Advanced Scientific
Computing Research DE-SC0008603 and DE-AC02-06CH11357

•  For more information: http://gvr.cs.uchicago.edu/

June 1, 2015 (c) Andrew A. Chien

