A Compression Framework for Multi-Dimensional Scientific Datasets

Introduction and Motivation

- Data collected from instruments and simulation are extremely valuable
- Data dissemination and analysis are complicated by the rapid growth of scientific data sizes
 - e.g., Global Cloud-Resolving Model (GCRM) produces 1PB of data for 4 km grid size over 10 day simulation
- Popular libraries for managing scientific datasets: NetCDF, PNetCDF, HDF5 etc.
- Compression can help storage and transfer

Challenges on Supporting Compression

- Compression can introduce additional computational complexity
- Domain specific properties of scientific datasets can be exploited
- Optimizations such as pipelining, parallel I/O and informed prefetching are desirable
- A framework which supports PnP of compression and decompression algorithms is needed
- Providing easy integration with data management and analysis software is challenging
- Features of scientific dataset management libraries can be exploited

Compression Method for Scientific Data

- Most of the scientific datasets consist of single or double precision floating point numbers
- These datasets are array-oriented and adjacent cells are closely related with each other
- This relationship can be exploited with prediction-based differential compression
- Example: Consider a climate dataset, \(x \), that consists of temperature of different locations

 - First below equation is applied to \(x \), and \(x' \) is generated
 \[
 x'[i,j] = \begin{cases}
 x[i,j], & j = 0 \\
 x[i,j] \oplus x[i,j-1], & j > 0
 \end{cases}
 \]

 - Second, the leading zeros are counted and represented in bits
 - Third, the remaining part is appended and \(x'' \) is generated

 - \(x'' \) is virtual and does not require storage
 - Dropping least significant bits can further improve compression ratio (lossy)

Proposed Compression Framework and Integration with PNetCDF

- Transparent access to compressed data from application layer
- Decoupled architecture between comp. engine and I/O layer
- Support for informed prefetching and in-memory cache

- We ported our comp. framework into PNetCDF library
- This library provides space efficient, array oriented data access with high performance I/O using ROMIO
- Widely used in scientific community

Experimental Results

- Olympus cluster at PNLL
 - Lustre file system (8 OSTs, 1MB)
 - Each node has 16 cores with 32 GB mem. (AMD Opteron 6272, 2.1GHz)
- GCRM Data: 68GB (35.4GB Comp.)
 - Simulation of 256 time steps, covers 28 km and 27 layers
 - Upto 16 nodes (256 cores)
 - Speedups for read ops. are between 1.31 and 1.98 for \(=>8np \) config.
 - Speedups for write ops. are between 1.52 and 2.07 for \(=>8np \) config.
 - Decompression overhead decreases while the # of processes increases
 - 32.1–3.5 % for \(=>8np \) config.

Current Research Focus

- Determining the best compress algorithm
 - Sample the dataset, calculate the benefit values (comp. ratio vs. time)
 - Apply the best comp. alg., store this info. to record’s metadata
- Find the optimum chunk size
 - Affects the comp. ratio as well as I/O throughput
 - Needs to exploit the parallel file system properties (e.g. stripe size, count)
- Detecting the application direction of the comp. alg.
 - Higher success ratios for predicted values result in better comp. ratio