
Short Tutorials for Metagenomic Analysis

This manual describes metagenomic analysis with the matR package (Metagenomic Analysis Tools for R).
The sections form a progressive set, but can also be rearranged, and many can be treated as independent
10-15 minute tutorials. If this software helps your work, please cite us: Daniel T. Braithwaite and Kevin P.
Keegan (2013). matR: Metagenomics Analysis Tools for R. R package version 0.9.9.

Contact: mg-rast@mcs.anl.gov.

Contents

1 Preliminaries 2
1.1 Obtaining and Installing R . 2
1.2 Introduction to R . 3
1.3 Using R Help . 7
1.4 Exporting and Importing Data; Saving Images . 8
1.5 Data Type Conversions (including BIOM) . 9

2 Examples 10
2.1 Functional Comparison of Lean and Obese Mouse . 10
2.2 HMP Samples with External Metadata . 10
2.3 Variability of Clustering by Annotation Source . 10
2.4 Parallel Coordinates of Brazilian Coastal Samples . 10
2.5 Where to Find More . 10

3 Basics 11
3.1 Data in an Annotation Matrix . 11
3.2 Metagenome Collections . 12
3.3 Using Metadata . 14

4 Analysis 15
4.1 Singleton Removal and Normalization . 15
4.2 Distance between Samples and Groups . 15
4.3 Statistical Significance Tests . 16
4.4 Randomization Tests . 16
4.5 Boxplots of Diversity . 16
4.6 Principal Coordinates . 16
4.7 Heatmap-Dendrograms . 17
4.8 Parallel Coordinates . 17

5 Miscellaneous 18
5.1 API Calls for Extended Functionality . 18
5.2 Using matR within an iPython Notebook . 19
5.3 Other Packages: ggplot2, vegan, picante . 20

1

1 Preliminaries

1.1 Obtaining and Installing R

R is free software, easily downloaded from the R Project Homepage: http://www.r-project.org. Binary
versions are available for Mac and Windows systems, and source code for Linux. Download and install the
version appropriate for your system.

Users who already have R should update their version. R and its extensions are frequently updated.
Keeping current is important to avoid nuisance errors.

Add-on packages for many purposes, contributed by many people, are a great strength of R. For example,
see this list of packages, organized by application area: http://cran.r-project.org/web/views/. For a
repository dedicated entirely to biological functionality, see: http://www.bioconductor.org.

Now install matR, the MG-RAST interface add-on package. For this, use:

> install.packages("matR", repo="http://dunkirk.mcs.anl.gov/~braithwaite/R", type="source")

Open an R session. Use the following command to load the matR package (you would use a similar command
to load any other package):

> library(matR)

matR relies on various other packages. To install these, follow the instructions provided by running this
function:

> dependencies()

At the time of this writing, the packages relied on by matR are: RJSONIO, ecodist, gplots, scatterplot3d.
If the dependencies function doesn’t complete successfully, these need to be installed one at a time, as
follows:

> install.packages("RJSONIO")

> install.packages("ecodist")

> install.packages("gplots")

> install.packages("scatterplot3d")

Now your R environment is ready to go!

2

1.2 Introduction to R

Here we review some basics of working with data in R, but the treatment is necessarily brief. For detailed
R language tutorials, try: http://www.ats.ucla.edu/stat/r.

For us, two kinds of data objects are essential in R: matrix and data.frame. First, we create a matrix.
The function sample just creates a random permutation, as shown.

> sample(1:200)

[1] 101 147 42 41 81 21 99 25 169 117 44 26 110 185 189 98 163 197

[19] 17 73 173 182 28 36 187 157 105 178 113 67 114 134 63 84 153 151

[37] 188 6 122 57 196 152 132 143 140 124 5 135 90 61 184 89 190 200

[55] 49 128 123 179 15 175 52 145 71 1 11 116 40 23 125 160 87 8

[73] 115 48 27 18 159 139 30 142 10 121 83 127 161 168 199 66 193 64

[91] 47 141 164 92 154 32 129 38 167 82 24 68 130 108 86 102 76 155

[109] 180 120 106 165 54 9 133 34 53 80 7 94 109 78 174 150 59 4

[127] 22 60 70 162 77 103 50 104 16 43 131 191 20 118 13 146 111 170

[145] 138 107 93 65 166 186 194 176 2 39 156 119 69 31 33 181 144 19

[163] 56 51 72 112 12 62 198 126 137 45 171 37 74 100 46 183 91 75

[181] 85 88 172 29 79 96 136 158 177 95 35 55 192 97 3 195 58 149

[199] 148 14

> m <- matrix(sample (1:200), nrow=20, ncol=10)

> m

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 46 110 111 94 162 132 62 68 63 52

[2,] 150 71 176 169 96 148 5 82 135 140

[3,] 145 76 197 54 58 29 48 190 4 193

[4,] 120 14 92 192 144 53 59 81 2 185

[5,] 125 184 15 25 165 77 157 108 172 3

[6,] 196 126 16 17 102 83 44 134 129 67

[7,] 36 8 80 85 61 50 109 65 51 188

[8,] 112 194 118 131 84 186 199 170 163 178

[9,] 137 60 139 107 106 164 90 12 57 34

[10,] 149 146 161 55 173 200 101 11 91 6

[11,] 87 18 47 156 119 42 143 86 28 166

[12,] 32 177 133 116 187 40 103 105 38 43

[13,] 121 27 174 123 79 168 37 151 72 98

[14,] 104 74 127 24 158 89 22 124 142 21

[15,] 69 49 191 88 183 138 7 75 147 113

[16,] 154 189 93 56 30 114 117 19 66 175

[17,] 152 128 122 153 198 97 171 78 99 64

[18,] 26 155 160 181 141 41 167 1 31 179

[19,] 20 130 10 45 180 73 100 182 70 33

[20,] 115 136 13 23 95 9 35 39 195 159

The apply function, below, applies the function specified by its last argument (in this case, mean) along the
dimension of m specified by the second argument. So here we calculate the row means and then the column
means of m.

> apply(m,1,mean)

[1] 90 117 99 94 103 91 73 154 91 109 89 97 105 88 106 101 126 108 84

[20] 82

3

> apply(m,2,mean)

[1] 105 104 109 95 126 97 89 89 88 105

Generally speaking, a data.frame is different from a matrix because it may contain non-numeric data. So,
now we create a data.frame consisting of the column means and column standard deviations of m, but also
containing a third, descriptive column.

> df <- data.frame(mu=apply(m,2,mean), sigma=apply(m,2,sd))

> df$sample <- paste("sample", LETTERS[1:10], sep = "-")

> df

mu sigma sample

1 105 51 sample-A

2 104 62 sample-B

3 109 62 sample-C

4 95 57 sample-D

5 126 50 sample-E

6 97 57 sample-F

7 89 58 sample-G

8 89 57 sample-H

9 88 57 sample-I

10 105 70 sample-J

Suppose we wanted to reorder the columns. Flexible indexing of objects is a great strength of R. Here we
replace the first and third columns of df with (respectively) its own third and first columns — effectively,
reordering them.

> df [c(1,3)] <- df [c(3,1)]

> df

mu sigma sample

1 sample-A 51 105

2 sample-B 62 104

3 sample-C 62 109

4 sample-D 57 95

5 sample-E 50 126

6 sample-F 57 97

7 sample-G 58 89

8 sample-H 57 89

9 sample-I 57 88

10 sample-J 70 105

That almost worked, but notice that while the data moved, the column labels did not. It is possible to refer
directly to the row and column labels of a matrix or data.frame, as follows.

> rownames(df)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

> colnames(df)

[1] "mu" "sigma" "sample"

Now we finish by correcting the column labels.

4

> colnames(df) [c(1,3)] <- colnames(df) [c(3,1)]

> df

sample sigma mu

1 sample-A 51 105

2 sample-B 62 104

3 sample-C 62 109

4 sample-D 57 95

5 sample-E 50 126

6 sample-F 57 97

7 sample-G 58 89

8 sample-H 57 89

9 sample-I 57 88

10 sample-J 70 105

Here are some commands for viewing the first elements, last elements, and overall structure of large objects.

> head(m)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 46 110 111 94 162 132 62 68 63 52

[2,] 150 71 176 169 96 148 5 82 135 140

[3,] 145 76 197 54 58 29 48 190 4 193

[4,] 120 14 92 192 144 53 59 81 2 185

[5,] 125 184 15 25 165 77 157 108 172 3

[6,] 196 126 16 17 102 83 44 134 129 67

> tail(m)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[15,] 69 49 191 88 183 138 7 75 147 113

[16,] 154 189 93 56 30 114 117 19 66 175

[17,] 152 128 122 153 198 97 171 78 99 64

[18,] 26 155 160 181 141 41 167 1 31 179

[19,] 20 130 10 45 180 73 100 182 70 33

[20,] 115 136 13 23 95 9 35 39 195 159

> str(m)

int [1:20, 1:10] 46 150 145 120 125 196 36 112 137 149 ...

> str(df)

'data.frame': 10 obs. of 3 variables:

$ sample: chr "sample-A" "sample-B" "sample-C" "sample-D" ...

$ sigma : num 50.9 61.8 61.7 56.5 49.5 ...

$ mu : num 104.8 103.6 108.8 94.7 126 ...

Finally, any introduction to R should show how it easily renders statistical graphics, as with this boxplot of
the columns of m.

> boxplot(m)

5

1 2 3 4 5 6 7 8 9 10

0
50

10
0

15
0

20
0

There is a lot more to R, but the subset of commands shown here, together with the help tutorial (which is
next), already enable many things!

6

1.3 Using R Help

In R, as with any system, it’s important to know how to use the help.
First, locate the one-page quick reference for all matR commands:

> vignette("matR-quick-reference")

If that doesn’t work, the quick reference is also available at: http://dunkirk.mcs.anl.gov/~braithwaite/
library/matR/doc/matR-quick-reference.pdf. It may be handy to print a copy.

Help on any R command is available with:

> ?command

For example, try:

> ?mean

> ?sample

> ?apply

For keyword-based help, use the double question mark, as in these examples:

> ??random

> ??plot

Finally, to retrieve an index of all help topics for a specific package, use this command, replacing matR with
the name of the relevant package:

> library(help="matR")

matR is updated regularly. For a summary of the latest changes, see:

> vignette("matR-change-log")

The same document is also available at: http://dunkirk.mcs.anl.gov/~braithwaite/library/matR/

doc/matR-change-log.pdf.

7

1.4 Exporting and Importing Data; Saving Images

This tutorial explains how to get images out of R for publications, how to bring data into R from formats
such as csv, tsv, or biom; and how to save data for use in future R sessions, in Excel, or with other programs.

matR provides a function, asFile(), that conveniently exports several kinds of object in a default format.
It’s not flexible but may be adequate for many purposes. Try it on any vector or matrix object:

> asFile(cc$raw, file="saved_matrix.txt")

write.table() and read.table() are the workhorse commands for exporting and importing any kind of
tabular data. They have many options, as well as variants such as read.csv(). The following examples
show the most common options. These functions are very flexible, though, so consult the help system to
learn more.

> cc <- collection("4441679.3 4441680.3 4441682.3")

> write.table(cc$raw, file="data.txt", sep="\t")

> x <- read.table(file="data.txt")

> x

The functions save() and load() store R objects in a binary format for use in later R sessions. (By
convention, these files end with .Rda.) This is helpful, for example, to store a metagenome collection or the
result of an analysis that is computation-intensive. Here are some examples:

> cc <- collection("4441679.3 4441680.3 4441682.3")

> p <- pco(cc)

> ls()

> save(cc, p, file="saved_data.Rda")

> rm(cc, p)

> ls()

> load(file="saved_data.Rda")

> ls()

There is an easy method to export images from an R session. First develop the exact commands to produce
the desired image interactively. For instance, suppose we want to export the following PCoA.

> pco(Waters, main="functional level 3", col=c(rep("red",12),rep("blue",12)))

To produce a pdf file, simply amend the code in this way.

> pdf(filename="my_pco.pdf", width=5, height=5)

> pco(Waters, main="functional level 3", col=c(rep("red",12),rep("blue",12)))

> dev.off()

The function pdf() can be replaced with others, such as png(). For more detail, consult the help system.

8

1.5 Data Type Conversions (including BIOM)

In most programming languages, it is important to know the kind (or type or class) of data objects. This
can be a vexed subject in R. Our purposes require: vector, matrix, data.frame, list, collection, and
BIOM.

9

2 Examples

2.1 Functional Comparison of Lean and Obese Mouse

2.2 HMP Samples with External Metadata

2.3 Variability of Clustering by Annotation Source

2.4 Parallel Coordinates of Brazilian Coastal Samples

2.5 Where to Find More

A gallery of additional simple examples is maintained at: http://dunkirk.mcs.anl.gov/~braithwaite.

10

3 Basics

3.1 Data in an Annotation Matrix

The columns of a matR matrix are labeled by sample, and rows are labeled by annotation. The annotations
may be taxonomic or functional, at various hierarchy levels. Often, the matrix entries are raw counts of
annotations per sample. So an “OTU table” is just one kind of matR matrix.

The matrix may also contain other quantities such as (for instance) normalized abundance counts, or
average read length of annotated sequences, per annotation and per sample. Matrix entries may also be
qualified or limited. For example, counts may be requested only from a particular annotation database.

Suppose you have selected a particular set of metagenomes. Next, in order to retrieve related data, you
have to specify exactly what data you want. Such a description is called a view of the data, and it is spelled
out with predefined options. Here are some examples of views:

> c(level="level1")

> c(annot="organism",level="phylum")

> c(entry="normed.counts",source="NOG")

The first line indicates counts per functional annotation at level 1 of the Subsystems hierarchy. The second
indicates counts of taxonomic annotations at phylum level from the M5RNA database. The third indicates
normalized counts of functional annotations from only the NOG database.

The options for data views are listed and fully described in the matR package itself. Examine these
objects at the R prompt just by typing their names:

> view.descriptions

> view.parameters

> view.defaults

The last one, view.defaults, shows what data is retrieved if you don’t choose explicitly.

11

3.2 Metagenome Collections

Metagenome data is always retrieved by constructing a collection. The samples of interest must be
identified by ID. Here are some examples.

> IDs <- c(gut1="4441695.3", gut2="4441696.3")

> cc <- collection(IDs)

> dd <- collection("4441679.3 4441680.3 4441682.3 4441695.3 4441696.3 4440463.3 4440464.3")

> ee <- collection(file="test-IDs.txt")

In the first example, the samples are given names. The last example reads a list of IDs from a text file.
IDs in files should be whitespace-separated. The file may also contain names in a first column and IDs in
a second column. In addition to metagenome IDs, project IDs may be used. The effect is to request all
metagenomes from that project. Project IDs should begin with "mgp".

Choosing samples is only half the story: various data pertaining to those samples can be requested. In
each of the following examples, each part of the collection function names and describes a distinct view

of the data, as discussed above.

> collection(IDs,

+ raw=c(entry="count"),

+ nrm=c(entry="normed.counts"))

> collection(IDs,

+ L1=c(level="level1"), L2=c(level="level2"),

+ L3=c(level="level3"), L4=c(level="function"))

> collection(IDs,

+ nog=c(source="NOG"),

+ cog=c(source="COG"),

+ ko=c(source="KO"))

> collection(IDs,

+ lca=c(annot="organism", hit="lca"),

+ repr=c(annot="organism", hit="single"),

+ all=c(annot="organism", hit="all"))

A handy techniques is to make lists of views:

> top.levels <- list(

+ L1=c(level="level1"),

+ L2=c(level="level2"))

> all.ontologies <- list(

+ nog=c(source="NOG"),

+ cog=c(source="COG"),

+ ko=c(source="KO"),

+ sub=c(source="Subsystems"))

> all.count.methods <- list(

+ lca=c(annot="organism", hit="lca"),

+ repr=c(annot="organism", hit="single"),

+ all=c(annot="organism", hit="all"))

Such lists can then be used (and reused) as follows:

> cc <- collection (guts, top.levels)

> dd <- collection (guts, all.ontologies)

> ee <- collection (guts, all.count.methods)

The matrix of data corresponding to a view is accessed with $ plus the appropriate name:

12

> cc$L1

> dd$nog

> ee$all

views can be specified when a collection is constructed, as shown above, and can also be added to an
existing collection in this way:

> dd$cog <- c(source="COG")

Various common sense functions apply to collections:

> samples(cc) # show metagenomes in the collection

> projects(cc) # show projects in the collection

> names(cc) # show names of metagenomes

> views(cc) # show the data views in the collection

> viewnames(cc) # show just the names of the views

> groups(cc) # show grouping of metagenomes (if assigned)

> metadata(cc) # access metadata

(For more about metadata, see below.) Values may be assigned to names, viewnames, and groups, as with:

> names(cc) <- c("new.name.1", "new.name.2")

Within each view, the names of annotations are accessed with rownames. Annotation names are hierarchical,
and the sep parameter affects how the hierarchy is presented. There are four alternatives:

> rownames(Guts, view="raw", sep=NULL)

> rownames(Guts, view="raw", sep=FALSE)

> rownames(Guts, view="raw", sep=TRUE)

> rownames(Guts, view="raw", sep="\t")

The corresponding results are: annotations named by terminal hierarchy level only; a matrix of annotation
names with one column per hierarchy level; annotations named by semicolon-separated concatenation of all
hierarchy level names; same as previous, but with specified separator character.

Subsets may be taken of collections, as of other objects in R. Here we extract the first three samples of
dd into a new collection.

> ff <- dd[1:3]

13

3.3 Using Metadata

Collections have metadata elements, which are named. The names of elements reflect the hierarchical nature
of metadata. To see all metadata of the collection Guts, which is prepackaged with matR, simply enter:

> metadata(Guts)

Analyses usually require picking out specific metadata elements, and metadata can be indexed for that
purpose. Metadata indexing is by element name(s), and an arbitrary number of indices may be specified.
This is best understood by example. First, we use one index of length one to get all metadata from one
sample of the collection:

> metadata(Guts)["4440464.3"]

Here is an example of metadata indexing using two indices, each of length one, to get sampling location
information for all samples.

> metadata(Guts)["latitude", "longitude"]

An alternative form returns the same output in a more convenient form.

> metadata(Guts)["latitude", "longitude", bygroup=TRUE]

In this variant NA is placed when a field is missing, as in the next example.

> metadata(Guts)["host_common_name", "disease", ".age", bygroup=TRUE]

The next example obtains the entire environmental package from one metagenome using one index of length
two. Only metadata fields matching both strings are selected:

> metadata(Guts)[c("4440464.3","env_package.data")]

Finally, this example uses three indices all of length two to select miscellaneous elements:

> metadata(Guts)[c("env","temp"), c("4440464.3","PI_organization"), c("0464","biome")]

Actually, metadata can be handled independently of annotation data. This saves time when annotation data
is not needed. Metadata can be retrieved by sample, just as with the collection function:

> mm <- metadata("4441679.3 4441680.3 4441682.3 4441695.3 4441696.3")

Now mm can be used just as metadata(Guts) was used above.

14

4 Analysis

• matR provides new analysis methods as well as customized versions of functions included in base R and
contributed packages. The latter are gratefully acknowledged: qvalue, ecodist, gplots2.

• matR functions build on existing functions by adding features and helpful defaults. Options to existing
functions usually also apply to matR versions. The former are directly available to users who want more
control, of course.

• (Some analyses have graphical representations, and others do not. A universal function, render(),
visualizes the results of analysis computations. This functionality enables fast re-visualization (with
modified parameters) of costly computations. However, the implementation is not yet complete.)

• As discussed earlier, a matrix within a collection is called a view and can be extracted with $. Con-
versely, a standalone matrix can be converted into a collection with class coercion via as(my_matrix,

"collection"). Since some functions below apply to a matrix, and others to a collection, these
conversions are important to understand.

• Some functions accept a grouping, which can be specified by any vector equal in length to the number
of samples (columns). collection functions usually accept the parameters view and rows, which
determine what part of the collection is analyzed.

• More detail on inputs, options, and outputs is given below. matrix functions are discussed first, then
collection functions.

4.1 Singleton Removal and Normalization

It’s a good idea to ignore abundance counts of one (singletons). The remove.singletons() function accom-
plishes that. Also, abundance values that have been normalized can be more meaningful than raw counts.
For that matR includes the function normalize().

> cc <- collection(...)

> ns <- remove.singletons(cc$raw)

> nrm <- normalize(r)

Options to both functions are detailed in the help system.

4.2 Distance between Samples and Groups

matR extends the base R function dist in several ways. Additional metrics / dissimilarities can be selected
with the method parameter. For metagenomic analysis, the parameter bycol is usually appropriate, to
compute distance between columns rather than rows. With groups specified, a square matrix of intra- and
inter-group mean pairwise distances is returned.

> dist(m, method="bray-curtis", bycol=TRUE)

> dist(m, groups=c(1,1,1,2,2,2,3,3,4,4,4,4), bycol=TRUE)

With an additional vector specified, its distance to each row or column is computed. When groups are also
specified, mean pairwise distances from the vector to each group are computed.

> dist(m, y, bycol=TRUE)

> dist(m, y, groups=c(1,1,1,2,2,2,3,3,4,4,4,4), bycol=TRUE)

See the help system for more detail.

15

4.3 Statistical Significance Tests

The function sigtest is a convenient interface to apply any of several statistical signifance tests to anno-
tations (rows) of a matrix. The specified test is applied, given a grouping of samples (columns), to each
annotation (row). The tests typically test the null hypothesis that the group means of annotation abundances
(whether raw or normalized) are the same. Qvalue testing can be applied to the multiple tests, but must be
explicitly requested. As with all other function below, the components of the analysis results are returned
in a list.

> sigtest (m, groups=c(1,1,1,2,2,2,3,3,4,4,4,4), test="Kruskal-Wallis")

> sigtest (m, groups=c(1,1,1,2,2,2,3,3,4,4,4,4), test="Kruskal-Wallis", qvalue=TRUE)

> sigtest (m, groups=c(1,1,1,2,2,2,3,3,4,4,4,4), test="Kruskal-Wallis", qvalue=TRUE, fdr.level=0.01)

4.4 Randomization Tests

The function randomize facilitates randomization (or permutation) analyses. It returns the result of applying
any given summary function to each of a specified number of random permutations of a matrix. Several
different randomization methods are implemented.

> randomize (m)

> randomize (m, n=10, method="sample")

> randomize (m, n=10, method="rowwise", FUN=mean)

> randomize (m, n=10, method="dataset", FUN=colSums, na.rm=TRUE)

> randomize (m, n=10, method="complete", FUN=function (m) apply (m, MARGIN=2, hist, plot=FALSE))

sample randomization randomly permutes the entries of each column. rowwise randomization randomly
permutes the entries of each row. dataset randomization randomly permutes entries across the entire
matrix. complete randomization randomly reassigns each (unit) annotation count.

4.5 Boxplots of Diversity

Boxplots are useful to summarize the distribution of annotation counts in samples of a collection. Boxplots
are produced by the render function applied to a collection, since they illustrate data so directly. As with
other functions below that apply to collections, a view may be specified or omitted.

> render(Waters)

> render (Waters, notch = TRUE, pch = 19, cex = 0.5, names = names (waters),

+ main = "Annotation Diversity at Function Level 3", cex.axis = 1.1)

For applicable graphical parameters, see ?base::boxplot. The most useful are main, names, notch, and
outline.

4.6 Principal Coordinates

The pco function also operates on a collection object. rows can be used to limit the analysis to specified
annotations. comp specifies which principal components (1, 2, or 3 may be selectd) to plot, and method

specifies the metric / dissimilarity used (as in dist).

> pco(cc)

> col <- factor (metadata (cc) ["biome"])

> levels (col) <- c ("#1F78B4", "#E31A1C", "#B15928")

> col.vec <- as.character (col)

> pco (cc, view="norm", comp = c (2,3,4), sub = "Principal Coordinates 2 to 4", cex.sub = 1.5,

+ main = "", color = col.vec, labels = "", cex = 1.5, lty.hplot="dashed",

+ mar = c (5,5,0,3))

16

The most important graphical parameters are col (for 2-d plots), color (for 3-d plots), labels, and main.
For others, see ?graphics::points, ?graphics::text, and ?scatterplot3d::scatterplot3d.

4.7 Heatmap-Dendrograms

heatmap applies to collections and accepts optional parameters view and rows, as well.

> cc <- collection("....", n1 = c(entry="ns.normed.counts", level="level1"), raw=default.views$raw)

> test.result <- sigtest(cc$n1, "Kruskal")

> red.yellow <- rgb (colorRamp(c ("#FFFFCC", "#800026")) (seq(0, 1, length = 20)), max = 255)

> heatmap(cc)

> heatmap(cc, view="n1", rows=test.result$significant, main="significant annotations only", labRow=NA, labCol=names(cc), col=red.yellow)

Some common graphical parameters are illustrated above. See ?gplots::heatmap.2 for more possibilities.

4.8 Parallel Coordinates

17

5 Miscellaneous

5.1 API Calls for Extended Functionality

The full functionality of the MG-RAST API is available through matR. For API details, see http://api.

metagenomics.anl.gov.
Many API resources are available with a convenient syntax using the mid-level interface function, mGet.

> mGet("metagenome_statistics", "mgm4472882.3")

For more control, use the low-level function callRaw. This function simply prepends the API server name
and appends the session authorization key (if set) to its argument.

> callRaw("metagenome_statistics/mgm4472882.3")

Most API resources are returned as JSON objects and automatically parsed by mGet (or callRaw) into a list
structure. JSON text can be retained with parse=FALSE.

18

5.2 Using matR within an iPython Notebook

matR is easily invoked from iPython Notebook to leverage the many advantages of that scripting environment.

19

5.3 Other Packages: ggplot2, vegan, picante

matR interacts easily with other R software for graphics and analysis.

20

