
Optimizing Synchronization Operations for Remote Memory
Communication Systems

�

Darius Buntinas
�

Amina Saify
�

Dhabaleswar K. Panda
�

Jarek Nieplocha
�

�
Network-Based Computing Laboratory

�
Scalable Systems

Dept. of Computer and Information Science Dell Computer Corporation
The Ohio State University amina saify@dell.com�

buntinas, panda � @cis.ohio-state.edu
�
Computational Sciences & Mathematics
Pacific Northwest National Laboratory

j nieplocha@pnl.gov

Abstract
Synchronization operations, such as fence and lock-

ing, are used in many parallel operations accessing
shared memory. However, a process which is blocked
waiting for a fence operation to complete, or for a lock
to be acquired, cannot perform useful computation. It is
therefore critical that these operations be implemented
as efficiently as possible to reduce the time a process
waits idle. These operations also impact the scalabil-
ity of the overall system. As system sizes get larger,
the number of processes potentially requesting a lock in-
creases. In this paper we describe the design and imple-
mentation of an optimized operation which combines a
global fence operation and a barrier synchronization op-
eration. We also describe our implementation of an op-
timized lock algorithm. The optimizations have been in-
corporated into the ARMCI communication library. The
global fence and barrier operation gives a factor of im-
provement of up to 9 over the current implementation in
a 16 node system, while the optimized lock implemen-
tation gives up to 1.25 factor of improvement. These
optimizations allow for more efficient and scalable ap-
plications.

1. Introduction
Aggregate Remote Memory Copy Interface

(ARMCI) [13] is a portable one-sided communica-
tion library compatible with message-passing libraries
such as MPI [11] or PVM [19]. It has been used to
for implementing distributed array libraries, such as
Global Arrays [14], other communication libraries,
such as Generalized Portable SHMEM [17], and

�
This research is supported in part by a DOE grant #DE-FC02-

01ER25506 and NSF Grants #EIA-9986052 and #CCR-0204429.
2A portion of this work was performed as part of this author’s mas-

ters thesis while she was a graduate student at the Ohio State Univer-
sity

compiler run-time systems such as PCRC Adlib [6]
or more recently Rice Co-Array Fortran compiler
(http://www.pmodels.org). ARMCI provides remote
memory copy, accumulate and synchronization op-
erations optimized for non-contiguous data transfers.
Among the synchronization operations are fence oper-
ations, which ensure that previous memory operations
have completed, as well as lock operations.

Such synchronization operations are necessary for
many parallel operations accessing shared memory.
However, a process which blocked waiting for a fence
operation to complete, or for a lock to be acquired, can-
not perform useful computation. It is therefore critical
that these operations be implemented as efficiently as
possible to reduce the time process wait idle. These op-
erations also impact the scalability of the overall system.
As system sizes get larger, the number of processes po-
tentially requesting a lock increases. Similarly, the num-
ber of potential remote memory operations increases, in-
creasing the number of nodes which must be contacted
for a fence operation increases. So efficient implemen-
tation of these operations is also critical for scalability
of the system.

In this paper we have described our design and im-
plementation of a new ARMCI operation which com-
bines a global fence operation with a barrier synchro-
nization operation. We have also described how we in-
corporated an improved algorithm for locking local and
remote locks in ARMCI. We then evaluate the perfor-
mance of these improvements comparing them to the
original implementation.

The combined operation of the global fence and
barrier synchronization is used in the Global Arrays
GA Sync() function. The original implementation per-
formed a global fence by having every process contact
each remote process to ensure that all memory oper-
ations it issued had completed. The running time of
this algorithm is linear in the number of processes in
the system. We propose a new logarithmic time op-

eration, ARMCI Barrier(), that performs the global
fence operation and performs a barrier synchronization
operation. Our new implementation gives a factor of im-
provement of up to 9 over the original implementation in
a 16 node system.

The original lock implementation is a hybrid algo-
rithm which uses a ticket-based lock algorithm for lock-
ing local locks and a server-based algorithm for locking
remote locks. We implemented a software queuing lock
algorithm [10] using atomic memory operations which
reduced the lock synchronization time, and improved
overall lock performance. We have observed up to a 1.25
factor of improvement over the original implementation
in a 16 node system.

The rest of the paper is organized as follows. We
will briefly describe the ARMCI library in the next sec-
tion. In Section 3 we will describe the design and im-
plementation of the ARMCI Barrier() and lock op-
erations. We evaluate the performance of our modifi-
cations in Section 4, and present our conclusions and
future work in Section 5.

2. ARMCI - Aggregate Remote Memory
Copy Interface

ARMCI is a portable communication library that of-
fers remote memory copy functionality. ARMCI of-
fers both a simpler and lower-level model of one-sided
communication than MPI-2 which improves its perfor-
mance [16, 7]. The ARMCI specification does not de-
scribe or assume any particular model for the lower-level
implementation, for example threads or active messages.

In scientific computing, applications require trans-
fer of non-contiguous data. With remote copy APIs
which support only contiguous data transfer, it is nec-
essary to transfer non-contiguous data using multiple
communication operations. ARMCI, however, is opti-
mized for non-contiguous data transfer. It is meant to be
used primarily by library implementors rather than ap-
plication developers. Examples of libraries that ARMCI
is aimed at include Global Arrays, P++/Overture and
PCRC Adlib run time system.

Applications frequently use a hybrid programming
model, requiring both shared memory and message
passing operations. For this reason, ARMCI is designed
to be compatible with several separate message passing
libraries, such as MPI and PVM.

It is very important for a communication library such
as ARMCI to have straightforward progress rules. Sim-
ple progress rules simplify the development and perfor-
mance analysis built on top of libraries that use ARMCI,
and avoid dealing with ambiguities of the platform-
specific implementations. Therefore, the ARMCI re-
mote copy operations are truly one sided, and complete
regardless of the actions taken by the remote process.

To support the full set of remote memory operations
on a cluster of workstations using GM[12], ARMCI uses
a client-server architecture [15]. Figure 1 shows the
client architecture on a cluster of SMP nodes. Each node
has a server thread which handles remote memory op-
erations for each of the user processes running on the
node. When a user process wants to perform a memory
operation on the remote memory of a process, it sends a

Node
Server thread
User process
Shared memory

Network

Figure 1. Client-server Architecture of
ARMCI

request to the server thread at the node where the remote
process is running. Each user process shares a mem-
ory region with the server thread, so when the server
thread receives a request, it performs the operation on
the memory region for that process. In order to reduce
the processor usage by the server thread when the server
is idle, the server will use blocking receives and sleep
while waiting for incoming requests.

ARMCI supports data transfer operations such as get
and put, atomic operations such as accumulate and read-
modify-write, distributed mutex operations such as lock
and unlock, as well as progress and ordering operations
such as fence and allfence.

ARMCI allows user processes to issue non-blocking
put operations on remote memory. For example, a pro-
cess can issue a put operation to write a value in remote
memory, but does not have to wait until the operation
has completed. A put operation is considered complete
when the value is actually written to the destination lo-
cation. When a process issues a put operation on remote
memory, a message is sent to the server at the remote
node containing the data to be written and the location
of where it should be written. The server receives the
message and writes the data in the appropriate location.
Because the put operation is non-blocking, the process
does not have to wait for the message to be received, and
for the operation to be completed, improving the perfor-
mance of the system.

A side-effect of using non-blocking put operations is
that the process does not know when a put operation
completes. A special operation, called fence, is provided
to guarantee that all previous put operations have com-
pleted. A call to the ARMCI Fence() function returns
when all put operations previously issued to a specified
server have completed. ARMCI also provides a func-
tion called ARMCI AllFence() which returns when
all previously issued put operations have completed on
all servers.

3. Design and implementation
In this section we describe our modifications of

ARMCI. We first present the ARMCI Barrier()
function which combines a global fence operation with
a barrier synchronization. We then describe how we in-
corporated software queuing locks into ARMCI.

x = N / 2;
while(x > 0) {

send op_init[0..N-1] to process (my_id XOR x);
receive into temp[0..N-1] from process (my_id XOR x);
op_init[0..N-1] = op_init[0..N-1] + temp[0..N-1];
x = x / 2

}

Figure 2. Algorithm for distributing op init[] elements over � processes, where � is a
power of two

3.1. ARMCI barrier
The ARMCI Barrier() function combines two

operations which are commonly used together in a
single, more efficient function. These functions are
ARMCI AllFence() and a barrier synchronization
function provided by the message passing library.
ARMCI is designed to work with either the MPI or
PVM message passing libraries. In this paper we de-
scribe the implementation using MPI. However, an im-
plementation over PVM would be similar. The ARMCI
AllFence() function is used to ensure that all put
operations have completed at remote nodes. The MPI
Barrier() function is a barrier synchronization oper-
ation which ensures that all processes have reached the
same point in the code. The ARMCI Barrier() func-
tion will ensure that all put operations to remote nodes
have completed and also perform a barrier synchroniza-
tion operation.

3.1.1 Existing implementation of ARMCI Fence()
Depending on the underlying communication subsys-
tem, ARMCI will use two different algorithms to per-
form an ARMCI Fence() function. In certain com-
munication subsystems, such as LAPI or VIA, put mes-
sages generate acknowledgement messages from the
server for flow control, and reliability. When the server
thread has completed the put operation, it sends an ac-
knowledgement back to the initiating process. When
ARMCI Fence() is called, the process simply has to
wait until it receives acknowledgements for all put re-
quests sent to that server. However, with other com-
munications subsystems, such as GM, there is no need
for the server thread to send acknowledgements for put
operations. In this case the ARMCI Fence() function
must send a message to the server requesting a confir-
mation that all put operations have been completed. The
server sends this confirmation once it has done so.

In communication subsystems in which acknowl-
edgement messages are not sent for put operations, the
ARMCI AllFence() function sends requests to each
server requesting confirmation. The communication
time a process spends to perform this operation can be
as high as ���������
	 one-way message latencies, where
� is the number of processes.

We designed the ARMCI Barrier() function to be
used as a replacement for the ARMCI AllFence()
in the case when all processes are performing the
ARMCI AllFence() function concurrently, for exam-
ple, in the Global Arrays GA Sync() function. Our
new function is designed to significanly reduce the com-
munication time.

3.1.2 Our design
The MPI Barrier() function is performed using a
binary-exchange communication pattern. The opera-
tion proceeds in �
����������	 phases. In a phase, a pro-
cess, � , sends a message to another process, � , and
waits for a message from process � , before going on
to the next phase. Because the messages in a phase
can be overlapped, the communication time of this op-
eration is �
����������	 one-way message latencies. So per-
forming an ARMCI AllFence() followed by a MPI
Barrier()would take ����������	���������������	 one-way
latencies.

The new ARMCI Barrier() is semantically equiv-
alent to performing an ARMCI AllFence() function
followed by a MPI Barrier() function. The ARMCI
Barrier() function is performed in three stages.
First, each user process determines how many put re-
quests were sent to its server thread. Next, each user
process waits until all of the requests have completed
at its server thread. Finally, the processes perform a
barrier synchronization. The barrier synchronization en-
sures that no process can continue until all put requests
have been completed at all server threads.

In our implementation each user process keeps track
of the number of put operations it issues to each server
thread, in an array op init[]. Each server thread
keeps track of the number of put operations it has com-
pleted, in a variable op done. In the first stage, the
op init[] arrays are distributed among the user pro-
cesses so that each process knows how many put re-
quests were sent to its server. Such an operation is
called an all-scatter or an all-to-all operation. We im-
plemented this operation using a binary-exchange algo-
rithm. Figure 2 shows the algorithm when the number
of processes is a power of 2. This algorithm proceeds
in ������������	 phases. In each phase the process will ex-
change messages with another process. Since the mes-
sages in a phase can be overlapped, the communication
time for this algorithm is ������������	 message latencies.

At the end of the first stage of the ARMCI
Barrier() function, the value of the � th element of
the op init[] array at process � is equal to the num-
ber of put requests sent to the server thread of process
� by all processes in the system. In the second stage,
each process will wait until the value of its op done
variable is equal to the value of its element of the op
init[] array. The server thread of a process will in-
crement the op done variable as it completes incoming
send requests. Once the server thread has completed all
of the put requests sent to it, the value of op done will
match the corresponding value of op init[], and
the process will proceed to the third stage, which is to
perform a barrier synchronization operation. A binary-

User process

Server thread

counter queue

User process
ticket

a

b

cd

Figure 3. Local and remote lock operations

queue
User process

Server thread

counter

User process

a
b

b

a

Figure 4. Local and remote unlock opera-
tions

exchange algorithm similar to the one used in the first
stage is used for the barrier synchronization operation,
so the communication time of this operation is ������������	
message latencies. The total communication time of the
ARMCI Barrier() function is � �
����������	 message la-
tencies which is considerably smaller than the commu-
nication time for performing an ARMCI AllFence()
followed by an MPI Barrier().

Note that in certain situations, such as when pro-
cesses perform put operations on memory locations at
less than �
��� � ����	 � � other processes, the original imple-
mentation may provide better performance. In such a
case the communication time to contact the servers to
which put operations have been sent, will be less than
the time to perform the binary-exchange algorithm to ex-
change the op init[] arrays. An alternative imple-
mentation would be to allow the programmer to choose
which algorithm to use in the ARMCI Barrier func-
tion when the communication pattern of an application
is known.

3.2. ARMCI lock
Currently, ARMCI uses a hybrid locking mecha-

nism [16], where local locks are locked using a ticket-
based algorithm, while remote locks use a server-based
queue algorithm. This method requires the use of the
server thread even if the lock is local, and the next pro-
cess to acquire the lock is located on the same node.
There are many algorithms for implementing locking on
parallel or distributed systems, such as QOLB [8], LH
and M [9], Raymonds [18], and Naimi Trehel [20]. We
propose using a software queuing lock algorithm based
on the MCS lock [10] which eliminates unnecessary in-
volvement of the server thread, and reduces the lock
synchronization time. In this section we will describe
the exisiting algorithm, then describe our proposed al-
gorithm and its implementation.

3.2.1 Existing lock algorithm
The existing ARMCI lock algorithm is a hybid algo-
rithm combining ticket-based locking and server-based
queue locking. Because ticked-based locks require
polling on a variable, they are not well suited for re-
mote locks. Server-based locks require interaction with
the server thread which can be reduced when the lock is
local, allowing processes to directly access the lock vari-
ables. Combining the two methods gives a more general
algorithm.

In ticket-based locking, a lock consists of two vari-
ables, ticket and counter, located at a process.
These are both initialized to zero. To request a lock,
a process gets a unique ticket number by performing an
atomic fetch-and-increment operation on ticket. The

process is now guaranteed to have a unique ticket num-
ber. The process now polls on the counter variable
until its ticket number is equal to the value of counter.
When these two values are equal, the process has ac-
quired the lock. To release the lock the process in-
crements its ticket number and writes this value to the
counter variable, thus allowing the next process wait-
ing on the lock to acquire it.

In the hybrid algorithm, when a process requests a
lock located on a remote process, it sends a lock request
message to the server at that node, and waits for a reply.
Upon receiving a lock request, the server thread takes
a ticket number on behalf of that process by performing
an atomic fetch-and-increment operation on ticket. If
this ticket number is equal to the value of counter,
then the server sends a reply message to the process, no-
tifying the process that it has acquired the lock. If the
ticket number is not equal to the value of counter the
server puts the process’ request on a queue until the val-
ues are equal. Processes requesting local locks follow
the same steps for locking described above for ticket-
based locks.

Figure 3 gives an example of a user process request-
ing a local lock and a user process requesting a remote
lock. The user process on the left requests a local lock
by a) performing an atomic fetch-and-incrment opera-
tion on the ticket variable, then b) polling on the
counter variable. The user process on the right re-
quests a remote lock by c) sending a lock request to
the server thread at the node where the lock is located.
The server thread then d) performs an atomic fetch-and-
incrment operation on the ticket variable on behalf
of the remote process and queues the request until the
processes ticket number is equal to the value of the
counter variable.

When a process unlocks a lock, whether it is local
or remote, it contacts the server which increments the
counter variable, then checks if the request at the
head of the queue associated with the lock has acquired
the lock, and sends that process a reply if so.

Figure 4 gives an example of a user process unlocking
a local lock and a user process unlocking a remote lock.
The user process on the left is unlocking a local lock
and the user process on the right is unlocking a remote
lock. Both processes unlock the lock in the same man-
ner, by a) contacting the server thread at the node where
the lock is located. The server thread, then b) increments
the counter variable and checks if any queued lock re-
quests have acquired the lock.

Notice that the existing lock mechanism requires that
the server thread be contacted whenever a lock is re-
leased, even if the lock is local to the process releasing
the lock. This impacts the time to pass the lock from

1 struct node {
2 struct node *next;
3 int locked;
4 } *mynode, *prev_node;
5 struct node *Lock;
6
7 request (Lock, mynode) {
8 mynode->next = NULL;
9 prev_node = swap (Lock, mynode);

10 if (prev_node != NULL) {
11 mynode->locked = TRUE;
12 prev_node->next = mynode;
13 while (mynode->locked) {};
14 }
15 }

16 release (Lock, mynode) {
17 if (mynode->next == NULL) {
18 if (compare&swap (Lock, mynode, NULL))
19 return;
20 while (mynode->next == NULL) {};
21 }
22 mynode->next->locked = FALSE;
23 }

Figure 5. Pseudocode for software queuing locks

L 1 2LL 1

2 3L 1 3L

(a) (b) (c)

(d) (e)

Figure 6. Example of locking and unlocking with software queuing locks
one process to the next waiting process, because of the
communication time to send the lock release request, as
well as the time to wake the sleeping server thread. Fur-
thermore, if the next process waiting for the lock is not
on the same node as the lock, then the server thread will
have to send a message to that process indicating that
it has acquired the lock. So up to two messages are re-
quired to pass the lock. In the next section we present
our implementation of software queuing locks. Software
queuing locks promise to eliminate the shortcomings of
the existing implementation. Using this method, locks
can be passed using only one message, or even zero mes-
sages, if the next waiting process is on the same node as
the process holding the lock. This method also elimi-
nates the need to involve the server when the processes
requesting the lock, and the lock itself, are all on the
same node.

3.2.2 Our design
We propose to use a software queuing lock to improve
locking performance in ARMCI. First we will describe
the general algorithm, and describe how we have imple-
mented it. Figure 5 shows the pseudocode for the soft-
ware queuing lock. In this algorithm, each process has
a data structure, a node structure, consisting of a next
pointer and a locked variable. A lock consists of a
Lock variable located in global memory. The algorithm
works by constructing a linked list of processes request-
ing a lock, with the process at the head of the list holding
the lock. Initially, the Lock variable is set to NULL.

When a process requests the lock it first sets its next
variable to NULL then performs an atomic swap opera-
tion swapping the value in Lock variable with a pointer
to its node structure. If the value stored in the Lock
variable was NULL, then the process has acquired the
lock. If the Lock variable was not NULL, then the Lock
variable held a pointer to the node structure of the last

process waiting on the lock. In this case, the process
adds itself to the linked list by first setting its locked
variable to TRUE then setting the next pointer of the
last process waiting on the lock to point to the its node
structure. It then polls on its locked variable, waiting
for locked to become false.

When a process releases a lock, it checks if another
process is waiting for the lock, by checking the next
variable. If this is not NULL it sets the locked variable
of the node structure pointed to by the next variable
to FALSE allowing the next process waiting on the lock
to acquire it. If, however, the next variable is NULL
the process must check whether another process is in
the process of requesting the lock and has not yet set
this process’ next variable. To do this it does this by
performing an atomic compare&swap operation on the
Lock variable, setting the Lock variable to NULL only
if no other process has requested the lock and the Lock
variable still points to this process’ node structure. If no
other process has requested the lock, then this process
has released the lock. If, however, the Lock variable
was not pointing to the node structure of this process,
then another process has updated the Lock variable, but
has not yet written to this process’ next pointer. In this
case, the process will wait until that process writes to
the next variable. It will then set the process’ locked
variable to FALSE allowing that process to acquire the
lock.

Figure 6 shows an example of locking and unlocking
using software queuing locks. We see in a) a free lock
where the Lock variable is set to NULL. In b) we see
that Process 1 has acquired the lock, and that no other
processes have requested the lock, so its next pointer
is set to NULL. In c) Process 2 has requested the lock,
but since Process 1 still holds the lock, it is added to the
queue. Notice that the next variable of Process 1 points

to the node structure of Process 2, and since Process 2
is the last process waiting on the queue, the Lock vari-
able also points to the node structure of Process 2. We
see in d) that Process 3 has requested the lock, so the
next pointer of Process 2, as well as the Lock vari-
able, now point to the node structure of Process 3. In
e) we see that Process 1 has released the lock, allowing
Process 2 to acquire and then release the lock, leaving
Process 3 holding the lock. After Process 3 releases the
lock, the Lock variable will be set to NULL like it was
in a).

In ARMCI, remote memory is referenced using a tu-
ple of the remote process’ id number and the virtual
memory address at the remote process. This means
that in order to implement the software queuing lock
on ARMCI, the next and Lock pointers must be rep-
resented as such tuples. However the atomic mem-
ory operations in ARMCI only support integer or long
operands. In order to implement the software queuing
locks, we added new atomic memory operations which
operate on pairs of long variables. Since ARMCI did not
have an atomic compare&swap operation we also added
this function.

To implement the locks, each process allocates a
global Lock variable for each lock that will be located
at that process. For example, if three locks are to be cre-
ated one at Process 1, another at Process 4 and the third
at Process 11, each of these processes would allocate
one Lock variable. The other processes need only have
pointers to these variables. Each process must also allo-
cate its node structure. Note that only one node struc-
ture is needed per process regardless of how many Lock
variables are allocated. To request or release a lock, a
process performs the procedures described above, using
the new atomic memory operations to when operating
on remote memory pointers. The statements on lines 9,
12, 18 and 22 of Figure 5 are the statements which ac-
cess another process’ memory. In our implementation,
we used appropriate atomic operations or put operations
in those statements.

In ARMCI when performing get, put and atomic
memory operations the user process checks to see if the
referenced memory is local or remote. If the memory is
local, it performs the operation directly. If the memory
is remote, it contacts the server thread at the remote node
to perform the operation. This means that, with software
queuing locks, when a process is unlocking a local lock
the server thread is not involved if there is no other pro-
cess waiting for the lock. Furthermore, when requesting
a local lock, the server thread will not be involved un-
less the process waiting for the lock immediately before
this process is remote, and when releasing a local lock,
the server thread will not be involved unless the process
waiting for the lock immediately after this process is re-
mote.

The existing hybrid approach ARMCI uses, requires
that the process contacts the server each time it releases
the lock. Also the lock synchronization time, i.e., the
time between when one process releases the lock and the
next waiting process acquires the lock, for remote locks
in the existing approach is two message latencies: The
process releasing the lock sends a message to the server
thread, which then sends a message to the next waiting

process. In software queuing locks, the process releas-
ing the lock directly contacts the next waiting process, so
the synchronization time is one message latency. How-
ever, when releasing a lock when there is no other pro-
cess waiting for it, the software queuing lock performs
an atomic compare&swap operation. For remote locks,
this means that the process must contact the the server at
a remote node, and then wait for a response. The exist-
ing algorithm does not have to wait for a response from
the server. This means that the time a process spends re-
leasing the lock will be higher for the software queuing
locks in such a case, however we expect that the bene-
fits described above will improve overall system perfor-
mance despite this case.

4. Performance evaluation
In this section we evaluate our modifications against

the original implementation. We performed our evalua-
tion on a 16 node cluster consisting of 1GHz dual-SMP
Pentium III nodes with 32MHz/32 bit PCI slots. The
cluster was connected using a Myrinet-2000 network.

4.1. ARMCI barrier evaluation
To evaluate our ARMCI Barrier() function, we

modified the Global Arrays library to use this function
in the GA Sync() function. We then evaluated the per-
formance of this function and compared it with the orig-
inal implementation. In our test, we created a two di-
mensional array which is distributed uniformly over the
set of processes, and had each process write values into
portions of the array which are remote to them. Next, we
performed an MPI Barrier() operation to make sure
that all of the processes have completed this step, then
we called GA Sync() and timed it. We performed this
test 100 times and took the average time for all iterations
over all processes.

By writing to the array, we ensured that the processes
would have to perform fence operations with each other
in GA Sync(). We called MPI Barrier() before
calling GA Sync() to synchronize the processes in or-
der to ensure that the times we were reporting were not
due to process skew.

Figure 7 shows the results of this test. In Figure 7(a)
we see that the new implementation performs consid-
erably better than the current. The new implementation
can perform the GA Sync() operation in 190.3µs while
the current implementation takes 1724.3µs for 16 pro-
cesses. Figure 7(b) shows the factor of improvement for
the new implementation over the current implementa-
tion. We see a factor of improvement of up to 9 for 16
processes.

4.2. ARMCI lock evaluation
In order to test our new lock implementation, we had

each node repeatedly request and release a lock located
at one of the processes. We then timed how long each of
these operations took. We performed 10,000 iterations
of this test and took the average times over all iterations
and over all processes. By varying the number of pro-
cesses we varied the load on the lock. When only one
process is performing the test, we took two cases, one
where the lock was local and one where the lock was re-
mote. The numbers which we reported in the graphs are
a average of these two.

0
200
400
600
800

1000
1200
1400
1600
1800

2 4 8 16

La
te

nc
y

(µ
se

c)

Number of Nodes

current
new

(a) Latency

1
2
3
4
5
6
7
8
9

10

2 4 8 16F
ac

to
r

of
 Im

pr
ov

em
en

t

Number of Nodes
(b) Factor of Improvement

Figure 7. Comparison of current implementation of GA Sync() and new implementation of
GA Sync() which uses the new ARMCI Barrier() function

0
100
200
300
400
500
600
700

1 2 4 8 16

La
te

nc
y

(µ
se

c)

Number of Nodes

Current
new

(a) Latency

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

1 2 4 8 16F
ac

to
r

of
 Im

pr
ov

em
en

t

Number of Nodes
(b) Factor of Improvement

Figure 8. Time to request, acquire and release a lock

0
100
200
300
400
500
600
700

1 2 4 8 16

La
te

nc
y

(µ
se

c)

Number of Nodes

Current
new

Figure 9. Time to request and acquire a
lock

0

5

10

15

20

25

1 2 4 8 16

La
te

nc
y

(µ
se

c)

Number of Nodes

Current
new

Figure 10. Time to release a lock

Figure 8 shows the results of this test. Figure 8(a)
shows the average time each process spends requesting
and releasing the lock. Notice that when two or more
processes are competing for the lock, the new lock im-
plementation outperforms the current one. This is be-
cause in the new implementation passing the lock from
one process to the next waiting process only requires one
message, while the current implementation requires two
messages. However, when there is no process waiting
for the lock in the new implementation the process per-
forms a compare&swap operation which means that the
process must send a message to the server and wait for
a reply. In the current implementation, the process sim-
ply has to initiate sending a message to the server and
need not wait for a reply. We see this in the results for
the one process case. In this case, every time the pro-
cess releases the lock, it must perform a compare&swap
operation, so the results for the new implementation are
higher than for the current. Figure 8(b) shows the factor
of improvement for this test. We see up to a 1.25 factor
of improvement of the new implementation over the cur-

rent for the eight node case. Note that although the factor
of improvement decreases slightly for 16 nodes, the new
implementation continues to outperform the current im-
plementation. In fact, the time taken by the current im-
plementation continues to grow faster, as the number of
nodes increases, than that for the new implementation.

Figure 9 shows just the time to request and acquire
the lock. We see that the new implementation always
outperforms the current one. As mentioned previously
this is because of the reduced time to pass the lock from
one process to the next. Figure 10 shows just the time
to release a lock. Here we see that the new implemen-
tation takes more time than the current. This is because
of the compare&swap operation that is performed. This
operation is only performed when there is no other pro-
cess waiting for the lock. As the number of nodes in-
creases, the chance that there is no other process waiting
for the lock decreases, so the average decreases. Even
though the time to release a lock is higher in the new
implementation, this is offset for all but the single pro-
cess case by the lower time to request and acquire the

lock, so the overall performance of locking in ARMCI is
improved. We are currently investigating optimizations
which would eliminate the need for a compare&swap
operation when releasing a lock. Such an optimiza-
tion would improve the performance of unlocking a lock
when there is no other process waiting on that lock.

5. Conclusions and future work
In this paper we have described the design and im-

plementation of optimized synchronization operations.
These operations gave a significant improvement over
the current implementation, specifically, our ARMCI
Barrier() operation gave a factor of improvement of
up to 9 when used in the Global Arrays library, and our
optimized lock implementation gave up to a 1.25 factor
of improvement over the current implementation. Such
improvements will help improve the scalability of appli-
cations and systems that use such synchronization oper-
ations.

In future work we intend to investigate methods of re-
ducing or eliminating the interaction between user pro-
cesses and the server thread. This can be performed
through the use of NIC-based operations [1, 2, 4, 5, 3].
We are currently investigating which NIC-based oper-
ations would provide the best benefit to the applica-
tion. More immediately, we are working on optimiz-
ing the lock operation to eliminate the need for the com-
pare&swap operation when releasing a lock.

Acknowledgments
This work was performed under the auspices of the U.S.

Department of Energy at Ohio State University and Pacific
Northwest National Laboratory. PNNL is operated for DOE by
Battelle Memorial Institute. This work was supported by the
Center for Programming Models for Scalable Parallel Com-
puting sponsored by the MICS Division of DOE’s Office of
Computational and Technology Research.

Additional Information
Additional papers related to this research can be obtained

from the following Web pages: Network-Based Computing
Laboratory (http://nowlab.cis.ohio-state.edu), Parallel Archi-
tecture and Communication Group (http://www.cis.ohio-state.
edu/ � panda/pac.html) and the ARMCI webpage (http://www
.emsl.pnl.gov:2080/docs/parsoft/armci).

References
[1] R. A. F. Bhoedjang, T. Ruhl, and H. E. Bal. Efficient

Multicast on Myrinet Using Link-Level Flow Control.
In Proceedings of the 27th International Conference on
Parallel Processing (ICPP ’98), pages 381–390, August
1998.

[2] D. Buntinas, D. Panda, and W. Gropp. NIC-based atomic
remote memory operations in Myrinet/GM. In Workshop
on Nove Uses of System Area Networks (SAN-1), Febru-
ary 2002.

[3] D. Buntinas, D. K. Panda, J. Duato, and P. Sadayappan.
Broadcast/Multicast over Myrinet using NIC-Assisted
Multidestination Messages. In Proceedings of Int’l
Workshop on Communication and Architectural Support
for Network-Based Parallel Computing (CANPC), pages
115–129, 2000.

[4] D. Buntinas, D. K. Panda, and P. Sadayappan. Fast NIC-
based barrier over Myrinet/GM. In Proceedings of the
International Parallel and Distributed Processing Sym-
posium 2001, (IPDPS), April 2001.

[5] D. Buntinas, D. K. Panda, and P. Sadayappan.
Performance Evaluation of NIC-level Barrier over
Myrinet/GM. In Proceedings of Int’l Workshop on Com-
munication Architecture for Clusters (CAC), 2001.

[6] B. Carpenter, G. Zhang, and Y. Wen. NPAC PCRC
runtime kernel definition. Technical Report CRPC-
TR97726, Center for Research on Parallel Computation,
1997. Up-to-date version maintained at http://grids
.ucs.indiana.edu/ptliupages/projects/HPJava/pcrc/docs
.html.

[7] C. S. Guiang, A. Purkayastha, and K. F. Milfeld. Remote
memory operations on Linux clusters using the Global
Arrays tooklit, GPSHMEM and ARMCI. In Linux Clus-
ters: The HPC Revolution, October 2002.

[8] A. Kagi, D. Burger, and J. R. Goodman. Efficient Syn-
chronization: Let Them Eat QOLB. In International
Symposium on Computer Architecture, June 1997.

[9] P. Magnusson, A. Landin, and E. Hagersten. Efficient
software synchronization on large cache coherent multi-
processors. Technical Report T94:07, Swedish Institute
of Computer Science, Kista Sweden, February 1994.

[10] J. Mellor-Crummey and M. Scott. Algorithms for scal-
able synchronization on shared-memory multiproces-
sors. ACM Transactions on Computer Systems, 9(1):21–
65, February 1991.

[11] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard, Mar 1994.

[12] Myricom. Myricom GM myrinet software and doc-
umentation. http://www.myri.com/scs/GM/doc/gm toc
.html, 2000.

[13] J. Nieplocha and B. Carpenter. ARMCI: A portable re-
mote memory copy library for distributed array libraries
and compiler run-time systems. 3rd Workshop on Run-
time Systems for Parallel Programming (RTSPP) of In-
ternational Parallel Processing Symposium IPPS/SPDP
’99, April 1999.

[14] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global
Arrays: A non-uniform-memory-access programming
model for high performance compuers. The Journal of
Supercomputing, 10:197–220, 1996.

[15] J. Nieplocha, J. Ju, and E. Apra. One-sided communi-
cation on the Myrinet-based SMP clusters using the GM
message-passing library. In Proceedings of the Work-
shop on Communication Architecture for Clusters (CAC)
held in conjunction with IPDPS ’01, April 2001.

[16] J. Nieplocha, V. Tipparaju, A. Saify, and D. K. Panda.
Protocols and strategies for optimizing remote memory
operations on clusters. In Proceedings of the Workshop
on Communication Architecture for Clusters (CAC),
April 2002.

[17] K. Parzyszek, J. Nieplocha, and R. Kendall. A gener-
alized portable SHMEM library for high performance
computing. In Proceedings of the International Con-
ference on Parallel and Distributed Computing Systems
(PDCS), 2000.

[18] K. Raymond. A tree-based algorithm for distributed mu-
tual exclusion. ACM Transactions on Computer Science,
7(1):61–77, 1989.

[19] V. S. Sunderam. PVM: A Framework for Parallel and
Distributed Computing. Concurrency: Practice and Ex-
perience, 2(4):315–339, December 1990.

[20] M. Trehel and M. Naimi. An improvement of the log(n)
distributed algorithm for mutual exclusion. In Proceed-
ings of the IEEE International Conferece on Distributed
Computer Systems, pages 371–375, 1987.

