
Overview of Current Performance
and Performance Plans

Bill Allcock

ANL

20 Jan 2004

Java Core

3

Core Performance

We’ve been working hard to increase basic
messaging performance

Factor 4 improvement so far

We’re testing reliability

We’ve shown that core can scale to a very
large number of resources (>>10000)

4

Core Messaging Performance

Messaging Performance

0

100

200

300

400

500

600

700

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57
Message Size

(number of GRAM subjob messages)

Ti
m

e
(m

s) Axis Update Branch (1/10/05)
CVS Head (1/10/05)
CVS Head (11/05/04)
CVS Head (11/01/04)

5

Security Performance

We’ve measured performance for both WS
and transport security mechanisms

See next slide for graph

Transport security is significantly faster
than WS security

We made transport security (i.e. https) our
default

We’re working on making it even faster by
using connection caching

6

Security Performance

0

200

400

600

800

1000

1200

1400

1600

1800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Message Size
(number of GRAM subjob messages)

Ti
m

e
(m

s)

Transport Security CVS Head
(1/19/2005)
Message Security CVS Head
(1/19/2005)
Conversation Security CVS Head
(1/19/2005)

C WS Core

8

C WS Core Clients:
Java vs. C

Java VM startup: large initial overhead
Simple Java client Request/Response:

~5 seconds

Simple C client Request/Response:

~0.5 seconds

9

C WS Core Performance:
Service Container

Without Security
Java Container

0.36s avg. Request/Response

C Container
0.015s avg. Request/Response

With Security
Java Container

0.66s avg. Request/Response

C Container
0.12s avg. Request/Response

10

C Performance Improvements

HTTP Persistence
No Security, No Caching

0.25s avg. Request/Response

No Security, With Caching
0.17s avg. Request/Response

With Security, No Caching
2.6s avg. Request/Response

With Security, With Caching
0.52s avg. Request/Response

11

C Performance Improvements
(Planned)

Improved Deserialization performance of
optional schema elements

WS-Security performance:
Inlined Canonicalization

12

C globusrun-ws Performance
Query Delegation Factories:

0.046s
Query Certificate Chain:

0.058s
CreateManagedJob:

0.12s
Active Notification:

5.11s
Cleanup Notification:

0.73s
Done Notification:

2.29s
C client total processing time:

1.12s

GRAM

14

Usage Scenarios: the Ideal

“GRAM should add little to no overhead
compared to an underlying batch system”

Submit as many jobs to GRAM as is possible
to the underlying scheduler

Goal - 10,000 jobs to a batch scheduler

Goal – efficiently fill the process table for fork
scheduler

Submit/process jobs as fast to GRAM as is
possible to the underlying scheduler

Goal - 1 per second

We are not there yet…
A range of limiting factors at play

15

Usage Scenarios: the Attempt

Efforts and features towards the goal
Allow job brokers the freedom to optimize

E.g. Condor-G is smarter than globusrun
Protocol steps made optional and shareable

Reduced cost for GRAM service on host
Single WSRF host environment
Better job status monitoring mechanisms

More scalable/reliable file handling
GridFTP and RFT instead of globus-url-copy
Removal of non-scalable GASS caching

GT4 tests performing better than GT3 did
But more work to do

16

GRAM 3.9.4 performance

Service performance & stability
Throughput

GRAM can process ~70 /bin/date jobs per minute

~60 jobs/minute that require delegation

Job burst
Many simultaneous job submissions

Are the error conditions acceptable?

Max concurrency
Total jobs a GRAM service can manage at one time without
failure?

Service uptime
Under a moderate load, how long can the GRAM service
process jobs without failure / reboot?

17

Plans for Future Testing

More throughput testing with different job
types (staging, schedulers, etc)

Max concurrency testing (how many jobs
can be queued up)

Long running test (Moderate load, service
running for weeks or months)

Also work being done on usability

GridFTP

19

Current Development Status
GT3.9.4 has a very solid alpha. This code base
has been in use for over a year.
The data channel code, which was the code we
added to wuftpd, was re-used and so has been
running for several years.
Initial bandwidth testing is outstanding.
Stability testing shows non-striped is rock solid
(leaks maybe 30K / day)
HOT OFF THE PRESS: Striped had a memory
leak, which we think we have fixed.
http://dc-master.isi.edu/mrtg/ned.html

http://dc-master.isi.edu/mrtg/ned.html

20

Status continued
Stability tests to date have been for a single
long running transfer
We are working on sustained load and “job
storm” tests
A usable response in the face of overload is a
key goal.
Completed an external security architecture
review

Likely to make changes to the “recommended
configuration”
This is a deployment issue, not a code issue.

Planning an external code review.

21

TeraGrid Striping results

Ran varying number of stripes

Ran both memory to memory and disk to
disk.

Memory to Memory gave extremely high
linear scalability (slope near 1).

We achieved 27 Gbs on a 30 Gbs link
(90% utilization) with 32 nodes.

Disk to disk we were limited by the storage
system, but still achieved 17.5 Gbs

22

Memory to Memory
Striping Performance

BANDWIDTH Vs STRIPING

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70

Degree of Striping

B
an

dw
id

th
 (M

bp
s)

Stream = 1 # Stream = 2 # Stream = 4 # Stream = 8 # Stream = 16 # Stream = 32

23

Disk to Disk Striping Performance
BANDWIDTH Vs STRIPING

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60 70

Degree of Striping

B
an

dw
id

th
 (M

bp
s)

Stream = 1 # Stream = 2 # Stream = 4 # Stream = 8 # Stream = 16 # Stream = 32

RFT

25

RFT Testing
Pre 3.9.4

Out Of Memory Exception when generating notifications @ ~3/sec. Fixed in
core.
Out of Memory When the transfer request size was > 5000 transfers. We
altered the schema to allow minOccurs=0 for optional fields. We currently
scale to 21020 transfers for a single request.
Out Of Memory When transferring a directory of more than 15000 files. We
had a data structure in memory that scaled with the size of the request, this
is no longer true. Now we can scale to ~60,000 files (that was what has been
tested)

Current Testing :
Infinite transfer - LAN - killed the container after ~120,000 transfers. Servers
were killed by mistake.

Was a good test. Found a corner case where postgres was not able to
perform ~ 3 update queries / sec and was using up CPU.

Infinite transfer - WAN - ~67000 killed because of the same reason as above
Infinite transfer - 3 scripts creating transfer resources of one file with life time
of 5 mins. Found a synchronization bug and fixed it. -- Active
We got an error at 28 transfers before with one script. Now each pf the three
scripts have successfully finished 200 resources each.
directory transfer with 16304 directories, 92578 files -- Currently active

MDS

27

MDS Query results
Only one set of data so far. No data yet for Trigger
Service. Ran at this load for 10 minutes without failure.

DefaultIndexService
Message size 7.5 KB
Requests processed: 11262
Elapsed Time: 181 seconds
Average round-trip time in milliseconds: 16

ContainerRegistryService
Message Size 32KB
Queries processed: 6232
Elapsed Time: 181 seconds
Average round-trip time in milliseconds: 29

	Overview of Current Performance and Performance Plans
	Java Core
	Core Performance
	Core Messaging Performance
	Security Performance
	C WS Core
	C WS Core Clients:Java vs. C
	C WS Core Performance:Service Container
	C Performance Improvements
	C Performance Improvements(Planned)
	C globusrun-ws Performance
	GRAM
	Usage Scenarios: the Ideal
	Usage Scenarios: the Attempt
	GRAM 3.9.4 performance
	Plans for Future Testing
	GridFTP
	Current Development Status
	Status continued
	TeraGrid Striping results
	Memory to MemoryStriping Performance
	Disk to Disk Striping Performance
	RFT
	RFT Testing
	MDS
	MDS Query results

