
Task Parallel Programming in the Partitioned Global Address Space
James Dinan and Prof. P. Sadayappan

PGAS Models and The Asynchronous Gap

• PGAS models provide an asynch-
ronous irregular data model

• E.g. Global Arrays, UPC, CAF

• Computation model is still
regular, process-centric SPMD

– Irregularity in the data can
lead to load imbalance

• Scioto extends PGAS models to bridge asynchronous gap

– Dynamic task-based view of the computation

X[M][M][N]

X[1..9]
[1..9][1..9]X

Scioto Task Model

• Task Inputs: Global data, Immediates, Common Local Objects (CLO)

• Task Outputs: Global data, CLOs, Child tasks

CLO1 CLO1

SharedY[0]

Private

Y[1] Y[N]

Proc0 Proc1 Procn

CLO1

f(...)

In: 5, Y[0], ...

Out: Y[1]

Task:

Runtime System Design

• Per-process ARMCI circular task queues for efficient one-sided access

– Queues are prioritized by affinity

– Use the work first principle (LIFO task execution)

– Load balancing off the tail via random work stealing (FIFO stealing)

Introduction

This poster describes our work on Scioto, a new parallel
programming model that provides scalable support for task parallel
programming on distributed memory clusters. Scioto's task model
complements existing Partitioned Global Address Space (PGAS) data
models to form a complete environment for expressing and
managing irregular and dynamic parallelism. The Scioto
programming model is supported by a scalable runtime system that
provides dynamic load balancing and improves communication
overheads by co-locating tasks with data on which they operate. We
present an evaluation of Scioto on several benchmarks including the
MADNESS computational chemistry kernel and demonstrate strong
scaling and high efficiency on an 8,192 core cluster.

2. Reduce Search Time: Work Splitting

• Problem: Search time grows
with system size

• Strategy: Divide tasks evenly
between victim and thief

– Double number of work
sources after each step

– Reduce avg. time to find
work to log(ncpus)

Time

1. Optimize Local Accesses: Split Queues

• Queues are split into two parts:

– Private: Local-only

– Shared: Any, locked

• Removes locking from critical
path

– Local enqueue/dequeue

• Periodically move split as
computation progresses

– Reacquire work

– Release work (lockless)

Scioto: Scalable Collections of Task Objects

• Programmer expresses the computation as collection of tasks

– Tasks operate on data stored in PGAS (Global Arrays)

– Executed in collective task parallel phases

• Runtime system manages task execution / task parallel phases

– Load balancing, locality optimizations, fault resilience, etc

SPMD

SPMD

Task

Parallel

Process 0 … Process n

Termination

Shared

Private

Proc0 Proc1 Procn

Scalable Work Stealing

• Enhancements to enable efficient scaling to 8,192 cores

– Highest known scaling for work stealing

1. Split work queues

 Optimize local accesses, reduce locking on critical path

2. Work splitting: Steal-half

 Reduce search time, improve work distribution

3. Aborting lock operations

 Abort long waits on exhausted resources

tail

split

nlocal

3. Manage Contention: Aborting Steals

• ARMCI Locks: Bakery
Algorithm

– Take a ticket, wait in line

– Fair, but if victim runs out
of work must still wait to
give up ticket

• Spinlocks:

– while(!atomic_swap(lock))

– Can give up at any time

• Spinlocks + Aborting Steals:

– Periodically check if we should
abort lock()

– Avoid waits on stale resource

Experimental Setup and Benchmarks

• HP Infiniband Cluster

– 2,310 Nodes, 2x2.2GHz 4-core AMD

• BPC: Bouncing Producer Consumer

– Producer task migrates due to
load balancing operations

• MADNESS: Comp. chemistry kernel

– Project 3-d function into oct-tree spatial representation

• UTS: Unbalanced Tree Search Benchmark

– Exhaustive parallel DFS on highly unbalanced tree

