
Submitted to the Annals of Applied Statistics
arXiv: arXiv:0000.0000

STOCHASTIC SIMULATION OF PREDICTIVE SPACE-TIME
SCENARIOS OF WIND SPEED USING OBSERVATIONS AND

PHYSICAL MODELS

By Julie Bessac∗, Emil Constantinescu∗,† and Mihai Anitescu∗,†

Argonne National Laboratory∗ and The University of Chicago†

Preprint ANL/MCS-P5432-1015

We propose a statistical space-time model for predicting atmo-
spheric wind speed based on deterministic numerical weather predic-
tions and historical measurements. We consider a Gaussian multi-
variate space-time framework that combines multiple sources of past
physical model outputs and measurements along with model predic-
tions in order to produce a probabilistic wind speed forecast within
the prediction window. We illustrate this strategy on a ground wind
speed forecast for several months in 2012 for a region near the Great
Lakes in the United States. The results show that the prediction is im-
proved in the mean-squared sense relative to the numerical forecasts
as well as in probabilistic scores. Moreover, the samples are shown to
produce realistic wind scenarios based on the sample spectrum.

1. Introduction. In this study we propose a statistical space-time model for pre-
dicting atmospheric wind speed based on numerical weather predictions and historical
measurements. We focus on a region around Lake Michigan in the United States; how-
ever, the framework proposed here is not specific to that region. The wind speed pre-
dictions are based on deterministic numerical weather prediction (NWP) model outputs
in a framework that integrates past dependence between observational measurements
and the NWP model outputs. The aim of this work is to improve the wind speed fore-
casts provided by the NWP model based on the past relation, which is modeled linearly,
between measurements and NWP forecasts.

Atmospheric surface wind prediction is important for the energy, agricultural, and
security sectors, and it has received considerable attention in the past several years.
Several components of the wind field can be predicted: the zonal and meridional com-
ponents [16, 26], wind speed [6, 25], and wind direction [2]. Recent work on wind speed
and wind power statistical prediction focuses on the generation of predictive scenarios
that enable scientists to account for the prediction error [20, 19]. However, few criteria
of quality assessment of scenarios have been proposed; multivariate (multiple time-step
ahead and/or space or ensemble forecasts) criteria can be used but do not account for
the nature of time trajectory of scenarios. In [19] an event-based criterion is proposed to
assess the quality of scenarios to reproduce wind events and to compare scenarios from
different models.
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In general, predicting wind speed based on measurements and physical model outputs
results in multivariate space-time processes that are typically inhomogeneous because
of the presence of different types of data. Multivariate space-time modeling has been
an area of intense research in the past two decades; see [10] for a review of bivariate
geostatistical modeling, and see [3], where hierarchical Bayesian modeling is discussed
for multiple dependent datasets.

Combining multiple sources of data is an increasingly important field of research be-
cause of the large variety of sources of data available today. Data fusion is also part
of multivariate modeling, and various statistical models have been proposed. For exam-
ple, in [11] a Bayesian hierarchical model is presented that combines model outputs and
observed measurements to provide spatial prediction for chemical species. A hidden pro-
cess is used to represent the unobserved “true” concentration of sulfur dioxide, and the
sources of data are affine transformations of this “true” process. A similar approach was
used in a space-time context for multiple measurements of snow water equivalent data
in [8]. In [17], a hierarchical model based on a spatial random effects model is presented
that combines several outputs of regional climate models in a spatial framework. In [4],
a space-time hierarchical Bayesian model is proposed to fuse measurements and model
outputs of air-quality data, with an extension of a downscaling model introduced some
years ago. A hierarchical approach to multivariate spatial modeling and prediction is
developed in [22, 23], where the specification of the conditional and a marginal distribu-
tion is made instead of specifying the joint distribution, which involves cross-covariances.
Indeed the modeling of multivariate covariance structure is challenging and is still an
on-going research area; see [1, 12, 5].

Forecast uncertainty can be accounted for through ensemble forecasts; however, this
strategy is known to be often uncalibrated and underdispersive. In the context of im-
proving numerical forecasts, statistical methods have been proposed to provide proba-
bilistic forecasts; such methods postprocess the single or ensemble forecasts and tend
to address the issue of bias and dispersion. These methods, known as model output
statistics (MOS) and ensemble model output statistics, are used to identify shortcom-
ings of the raw ensemble from past measurement-forecast pairs. In [21], a finite mixture
model, called Bayesian model averaging, is introduced for producing probabilistic fore-
casts based on ensemble forecasts. In [13], a regression model between the measurements
and the members of the ensemble forecast is proposed as a postprocessing statistical tool.
The assessment of multivariate predictive distribution has been discussed in [15], where
tools to assess calibration and sharpness of the predictive distributions are investigated.

In this paper, we propose a bivariate space-time Gaussian process to improve fore-
casts from an NWP model. The forecasts of wind speed are combined with historical
measurements data and provide scenarios of prediction. A particularly important aspect
of our model is that it accounts for the space-time dependence between the two datasets.
To the best of our knowledge, this dependence is not accounted for by the MOS methods
proposed in the literature for wind speed. Moreover, in this work we consider a frame-
work where future information from the NWP is used, whereas MOS methods commonly



PREDICTIVE SCENARIOS OF WIND SPEED 3

work with contemporaneous information in space and time. The model is specified in a
hierarchical way in order to avoid the characterization of the full space-time bivariate
covariance. This specification, initially proposed in [22, 23] in a spatial context, is here
extended to a space-time modeling.

The paper is organized as follows. In Section 2 we introduce the modeling context
and the model. In Section 3 we describe the two sources of data that are used and
combined. In Section 4 the model is validated on different months of the year, and the
quality of space-time prediction at one out-of-sample station is assessed. We highlight the
improvements in terms of the forecasting accuracy of the proposed model with respect
to the NWP forecasts. We conclude in Section 5 by presenting general improvements
made by the model with respect to the NWP data, and we highlight some perspectives
to improve the shortcomings of the models.

2. Statistical model for NWP model outputs. In this section we introduce a
Gaussian modeling framework that embeds the space-time dependence between mea-
sured observations and NWP model forecasts. In [22, 23], a model is presented that
conveniently combines spatial data; here we extend at model to a space-time context.

2.1. Modeling objectives. The modeling context is the following. Let us assume that
both measured observations YObs and NWP forecasts YNWP are available from time t1
to time tk. In the following, the term “observations” refers to the observational measure-
ments. Observations are available at J0 locations S = {s1, ..., sJ0} ,and NWP forecasts
are available over a grid that covers these stations. The NWP model is run every day for
a period of h hours; time can be written in terms of blocks of length h. Henceforth, we
consider a time window of h = 24 hours. We denote by bi the ith time block of length
h, bi = {tki , ..., tki+h−1}.

The objective here is to predict the measurements YObs between time tkK and tkK+h−1

at stations S = {s1, ..., sJ0} and possibly at locations {sJ0+1, ..., sJ} where no historical
measurements are recorded, from NWP forecasts that are available between tkK and
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tkK+h−1. This can be summarized by

yaObs(b1; s1, ..., sJ0)
yaObs(b2; s1, ..., sJ0)

...
yaObs(bK ; s1, ..., sJ0)

yuObs(tkK ; s1, ..., sJ0 , sJ0+1, ..., sJ)
...

yuObs(tkK+h−1; s1, ..., sJ0 , sJ0+1, ..., sJ)


and(2.1)



yaNWP(b1; s1, ..., sJ0)
yaNWP(b2; s1, ..., sJ0)

...
yaNWP(bK ; s1, ..., sJ0)

yaNWP(tkK ; s1, ..., sJ0 , sJ0+1, ..., sJ)
...

yaNWP(tkK+h−1; s1, ..., sJ0 , sJ0+1, ..., sJ)


,

where the superscript “a” stands for available and “u” for unavailable quantities.
In this context the model is trained on the following available pairs:(

(yaObs(b1; S), yaNWP(b1; S)), (yaObs(b2; S), yaNWP(b2; S)), ...,

(yaObs(bK ; S), yaNWP(bK ; S))
)
,

and the prediction is made from yaNWP(bK+1; S, sJ0+1, ..., sJ) to estimate yuObs(bK+1; S,
sJ0+1, ..., sJ), where bK+1 = {tkK , ..., tkK+h−1}. Each day of h = 24 hours, the Weather
and Research (WRF) model is run independently from the previous day because WRF
is initialized from a reanalysis or assimilated dataset. In a probabilistic sense, we aim to
compute

p (yuObs(bK+1)|yaNWP(bK+1), yaObs(b1:K), yoNWP(b1:K)) =∫
p (yuObs(bK+1), θ|yaNWP(bK+1), yaObs(b1), ...,(2.2)

yaObs(bK), yaNWP(b1), ..., yaNWP(bK)) dθ ,

where θ is a random set of model parameters, blocks b1:K are available, and bK+1 is a
predicted block; and the spatial components are suppressed for brevity. Note that bK+1

is not necessarily a block coming right after bK , but rather a day that is not observed. To
simplify the computation of (2.2), we now make several assumptions. First, we assume
(i) that we have approximate independence of yuObs(bK+1) on yaObs(b1:K), yaNWP(b1:K)
conditional on yaNWP(bK+1). In hierarchical models such as ours, which has NWP pre-
dictions as its first layer and the observation sites as the second layer, one commonly
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assumes that random variables on the second layer are independent conditional on the
realizations of the ones in the first layer; see [9]. This assumption is correct if the ad-
ditional randomness occurs from the noise of different, unrelated sensors. In our case,
since we are considering the error of NWP models, the difference between prediction
and observations most likely is due to features not modeled by NWP. They may be the
use of lower resolution or models that have been obtained by some level of space-time
homogenization of the physics of the model considered. In this case, the difference is the
modeling of subscale noise, which can be assumed to have short temporal correlation
scales; see [18]. Moreover, our use of 24-hour temporal blocks as opposed to every time
index would strengthen the validity of approximate conditional independence on NWP
simulations of wind realizations at observation sites. The independence of yuObs(bK+1)
on yaNWP(b1:K) conditional on yaNWP(bK+1) may also be a good approximation given the
short temporal correlation scales of subscale noise discussed above.

As a result, assumption i implies that the integrand in (2.2) can be approximated as

p (yuObs(bK+1), θ|yaNWP(bK+1), yaObs(b1:K), yaNWP(b1:K))

= p (yuObs(bK+1)|θ, yaNWP(bK+1), yaObs(b1:K), yaNWP(b1:K))

p (θ|yaObs(b1:K), yaNWP(b1:K))

≈ p (yuObs(bK+1)|θ, yaNWP(bK+1)) p (θ|yaObs(b1:K), yaNWP(b1:K)) .(2.3)

In this study, we assume (ii) that θ∗ can be obtained by maximizing the likelihood

θ∗ = argmaxθ L (θ; yaObs(b1:K), yaNWP(b1:K))(2.4)

= argmaxθ p (θ|yaObs(b1:K), yaNWP(b1:K)) .

With assumptions (i-ii) and thus using (2.3) in (2.2) we obtain that∫
p (yuObs(bK+1), θ|yaNWP(bK+1), yaObs(b1), ..., yaObs(bK),

yaNWP(b1), ..., yaNWP(bK)) dθ ≈ p (yuObs(bK+1)|θ∗, yaNWP(bK+1)) .(2.5)

In what follows we consider multivariate normal distributions for (2.5). In our ap-
proach we have found a productive approach is to model statistically the output of
NWP itself. In other words, one can consider NWP is a noisy realization of a latent
underlying process NWPV (which models the evolution of spatially averaged quanti-
ties). With NWP conditional on this NWPV we then assume it to be independent for
two different temporal blocks, that is all temporal correlation between successive blocks
is due to NWPV itself. The same reasoning now applies by replacing NWPV in our
earlier discussion. Note that we never forecast the NWP output using the statistical
model we develop; we forecast only its relationship to the observations. Thus, we do not
need to model explicitly the temporal correlation between different blocks of NWP as
long as a sample is produced by the WRF model by a (for the purpose of this paper)
black-box mechanism that emulates the correct interblock correlation by its relationship
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to NWPV . Moreover, if such an assumption does not hold completely, it can lead only
to more conservative forecasts. Another way our approach can be thought of is as a
regression approach with noisy NWP predictors and the observational unit being one
temporal block over the entire geographical area. As a result, the likelihood in (2.4)
factorizes in product form for different temporal blocks.

To summarize our approach, for a given statistical model, we first estimate θ∗ from
the available data (model and observations) using (2.4). Then, using (2.5), we obtain
a predictive distribution by conditioning only on the NWP predictions for the same
temporal block and plugging-in the maximum likelihood estimate θ∗

p (yuObs(bK+1)|yaNWP(bK+1), yaObs(b1:K), yaNWP(b1:K))

≈ p (yuObs(bK+1)|θ∗, yaNWP(bK+1)) .(2.6)

These choices are motivated by computational tractability, by the fact that we assume
that the information missed by NWP is subscale-type information, which, as mentioned
above, is assumed to have short time correlations conditional on NWP realizations, and
by the fact that we do not forecast NWP itself, but rather the relationship between
NWP and observations. In Section 2.2 we review a hierarchical approach for Gaussian
processes, and in Section 2.3 we present the model used for the mean and covariance
functions that introduce the parametrization θ.

2.2. Hierarchical bivariate model. Gaussian processes are chosen for their conve-
nience in expressing conditional distributions. As in other studies, we use the wind
speed data directly without any transformation [14, 11, 23]. Moreover, we have not ob-
served a significant departure from normality within the data sets used for this study.
Square-root or Box-Cox transformations can be used to preprocess the data, but we do
not expect that will influence the modeling choices. We write the joint distribution of
the process (YObs, YNWP) as(

YObs

YNWP

)
∼ N

((
µObs

µNWP

)
,

(
ΣObs ΣObs,NWP

ΣT
Obs,NWP ΣNWP

))
.(2.7)

The positive-definiteness of block matrices is generally difficult to ensure when specifying
the three blocks in (2.7) independently. Therefore, to avoid the specification of the full
covariance in (2.7), we follow the hierarchical conditional modeling proposed by [22, 23],
and we model (YObs|YNWP) and (YNWP), where (YObs|YNWP) stands for the conditional
distribution of YObs given YNWP. When (YObs, YNWP) is a Gaussian process, (YObs|YNWP)
and (YNWP) follow a Gaussian distribution; then only first -and second-order structures
are to be specified. Consequently the model is described by the following distributions:

(YObs|YNWP) ∼ N
(
µObs|NWP ,ΣObs|NWP

)
.(2.8)

A linear dependence between YObs and YNWP agrees reasonably with the data analysis,
so we choose the following dependence:

µObs|NWP = E(YObs|YNWP) = µ+ ΛYNWP(2.9)
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and

YNWP ∼ N
(
µNWP ,ΣNWP

)
.(2.10)

From these equations, we express the full joint distribution given by (2.7) as(
YObs

YNWP

)
∼ N

((
µ+ ΛµNWP

µNWP

)
,

(
ΣObs|NWP + ΛΣNWPΛT ΛΣNWP

(ΛΣNWP )T ΣNWP

))
.(2.11)

2.3. Statistical model. To provide time prediction and to ensure model parsimony,
we propose a parameterization in space and time of the involved quantities such that
the first- and second-order structures of the conditional and the marginal distributions
defined by (2.8) and (2.10) are specified following an exploratory analysis of the datasets.

2.3.1. Marginal mean structure of (YNWP). The empirical mean function of YNWP

exhibits spatial patterns associated with the geographical coordinates but also with
several parameters of the NWP model because of the large water mass of the lake
(especially the land use, which is a categorical variable that represents the type of land
used in the parameterization of the NWP model). Time-periodic effects are present in
the first-order structure of YNWP and are accounted for through harmonics of different
frequencies. In Figure 7, these spatial and temporal patterns are plotted. We write

E(YNWP(t, s)) =

(
β0 + β1 cos

(
2πt

24

)
+ β2 sin

(
2πt

24

)
+ β3 cos

(
2πt

12

)
+(2.12)

β4 sin

(
2πt

12

)
+ β5 cos

(
2πt

8

)
+ β6 sin

(
2πt

8

))
(
α

(LU(s))
0 + α1(s)

)
,

where t is measured in hours, LU(s) is an integer that represents the land use associated
with station s used in the model; (αl0)l=1,...,n, with n the number of possible land uses
and (α1(j))j=1,...,J0 and (βk)k=0,...,6 are real numbers.

2.3.2. Marginal covariance structure of (YNWP). The block structure of the space-
time covariance of the data suggests expressing wind speed at each station as a linear
transformation of an unobserved common signal with added noise; see the top panels
of Figure 4. Intuitively we can think of this common signal as an average flow over the
studied region. The wind speed at each site is a linear transformation of this average flow.
The temporal dynamics of the unobserved signal is modeled with a squared exponential
covariance. The following structure is used:

Y(bi, sj) = LsjY0(bi) + εsj(bi),

where bi is a temporal window of h = 24 lags, sj the spatial location and Lsj is an
h × h-matrix. The various εsj are assumed independent from each other and from Y0.
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This model is inspired in part by an earlier study [7] where the L operators were used to
represent a known functional relation. In our case, Lsj is a parameterized matrix that
is inferred from the data.

The overall covariance of Y has the following structure:

cov(Y(., si),Y(., sj)) = (LsiK0LT
sj

) + δi−jKsi ,(2.13)

where δ stands for the Kronecker symbol and for j ∈ {1, ..., J0}. The h×h-matrices Ksj

are written as

Ksj [l, k] = asj exp(−bsj(|tk − tl|)2) + δk−lcsj

and

K0[l, k] = a0 exp(−b0(|tk − tl|)2) + δk−lc0.

Following the data analysis, the h × h-matrices Lsj are parametrized as tridiagonal
matrices. Given the study of the variance in Figure 1, the diagonal and off-diagonal
quantities are modeled with a quadratic dependence in time and spatially dependent
coefficients. The diagonal, subdiagonal and superdiagonal of the matrix Lsj are written
respectively as

Lsj [i, i] = (1 + a1Lat(sj) + a2Long(sj)) +

(1 + a3Lat(sj) + a4Long(sj))× i+
(1 + a5Lat(sj) + a6Long(sj))× i2 ,

Lsj [i, i− 1] = (1 + a7Lat(sj) + a8Long(sj))+

(1 + a9Lat(sj) + a10Long(sj))× i+
(1 + a11Lat(sj) + a12Long(sj))× i2,

Lsj [i, i+ 1] = (1 + a13Lat(sj) + a14Long(sj))+

(1 + a15Lat(sj) + a16Long(sj))× i+
(1 + a17Lat(sj) + a18Long(sj))× i2,

for i ∈ {1, ..., h}. We work in relatively small areas and use distances in latitude and
longitude here and for the rest of this work.

2.3.3. Conditional mean structure of (YObs|YNWP). Scatterplots of observations and
model outputs suggest that a linear dependence between the variables is reasonable.
In [22], several configurations of the transition matrix Λ are proposed depending on
its use. For instance, a transition matrix from atmospheric pressure to wind speed is
derived from geostrophic equations in [23]. The observations exhibit daily and half-daily
periodicity (with various intensities depending on the month of the year) and spatial
patterns; see Figure 3. However, the relation between the two datasets does not exhibit
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Fig 1: Variance of NWP outputs at every hour and each station of the subregion C2

significant time-dependence that requires a time-varying dependence. We use spatial and
temporal neighbors to explain the observed wind speed. The land use (LU) is included
in the transition matrix, since it defines different behaviors in the NWP model data. We
choose the following transition between the two datasets:

E(YObs(t, s)|YNWP) = µ(t, s) + (ΛYNWP)(t, s) , with

µ(t, s) =
(
β0 + β1 cos

(2πt

24

)
+ β2 sin

(2πt

24

)
+ β3 cos

(2πt

12

)
+ β4 sin

(2πt

12

))
(

1 + β5Lat(s) + β6Long(s)
)
,

(ΛYNWP)(t, s) =
h∑
i=1

α(LU(s))(|t− ti|)
3∑

k=1

fk(∆Lat,∆Long)(s, sk)YNWP(ti, sk) ,

t1 ≤ t ≤ th ,

where

- α(.)(.) are temporal weights, parameterized according to α(l)(∆t) = θ
(l)
0 exp(−θ(l)

1 |∆t|)+
θ

(l)
2 , for the time difference ∆t in {0, .., h−1} ; the integer l ∈ {1, .., n} is the land-

use value of the closest grid point of s; α(l)(0) = 1 for identifiability purposes;
- f· are linear functions of the differences in latitude and in longitude ∆Lat(si, sj) =

|Lat(si)− Lat(sj)| and ∆Long(si, sj) = |Long(si)− Long(sj)|; and
- s1, s2, s3 are nearest spatial neighbor grid points of s selected according to the radial

distance, but other distances are possible. Moreover, for simplicity we consider here
nearest neighbors, but other choices of predictors can be made, such as upwind
stations.

2.3.4. Conditional covariance structure of (YObs|YNWP). Analysis of the empirical
conditional covariance suggests the use of the parametric shape proposed in (2.13), with
a different set of parameters.

2.4. Estimation of the parameters. Maximum likelihood is chosen for estimating
the parameters. The likelihood of the model for the observed dataset yObs(t1, ..., tT ;
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s1, ..., sJ0), yNWP(t1, ..., tT ; s1, ..., sJ0) is written as

L(θ; yObs(t1, ..., tT ; s1, ..., sJ0), yNWP(t1, ..., tT ; s1, ..., sJ0))

= pθ(yObs(t1, ..., tT ; s1, ..., sJ0), yNWP(t1, ..., tT ; s1, ..., sJ0))

= pθ(yNWP(t1, ..., tT ; s1, ..., sJ0))

pθ(yObs(t1, ..., tT ; s1, ..., sJ0)|yNWP(t1, ..., tT ; s1, ..., sJ0)).

This is the particular instantiation of (2.4).
Each day, the WRF model is run independently from the previous day therefore we

consider statistical independence between each day, which leads to the following product:

pθ(yNWP(t1, ..., tT ; s1, ..., sJ0)) =

K∏
i=1

pθ(yNWP(tki ; S), ..., yNWP(tki+23; S))

=
K∏
i=1

pθ(yNWP(bi; S)),

where S = {s1, ..., sJ0} and {b1, ..., bK} = {t1, ..., t24, t25, ..., tT } with bi = {tki , ..., tki+23}.
For each i ∈ {1, ...,K} we have

pθ(yNWP(bi; S)) =

1√
(2π)J0 det(ΣNWP )

exp
(
− 1

2
(yNWP(bi; S)− µNWP )TΣ−1

NWP (yNWP(bi; S)− µNWP )
)
,

where µNWP and ΣNWP are the parametric mean and covariance, respectively expressed
in (2.12) and (2.13). The log-likelihood associated with the marginal of YNWP is then
expressed as

log(pθ(yNWP(t1, ..., tT ; s1, ..., sJ0)))

= −1

2

K∑
i=1

(
log((2π)J0) + log(det(ΣNWP ))

+ (yNWP(bi; S)− µNWP )TΣ−1
NWP (yNWP(bi; S)− µNWP )

)
.

Similarly the conditional distribution is written as

log(pθ(yObs(t1, ..., tT ; s1, ..., sJ0)|yNWP(t1, ..., tT ; s1, ..., sJ0)))

= −1

2

K∑
i=1

(
log((2π)J0) + log(det(ΣObs|NWP ))

+ (yObs(bi; S)− µ− ΛyNWP(bi; S))TΣ−1
Obs|NWP (yObs(bi; S)− µ− ΛyNWP(bi; S))

)
.

In practice, a preliminary least-squares estimation of the parameters is realized between
the empirical and parametric first- and second-order structures of YObs and YNWP. These
estimates are used as initial conditions of the maximum likelihood procedure.
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2.5. Kriging. Predictions of YObs from YNWP are obtained from the kriging equations
[28], with the mean and covariance defined by (2.11). For t0 in {tk+1, ..., tk+h} and s0 in
{1, ..., J0, J0 + 1, ..., J} defined in (2.1), we have

(YObs(t0; s0)|YNWP(tk+1, ..., tk+h; 1, ..., J0, J0 + 1, ..., J)) ∼ N
(
µ̂Obs(t0; s0), Σ̂Obs(t0; s0)

)(2.14)

with

µ̂Obs(t0; s0) = (µ+ ΛµNWP )(t0; s0)+(2.15a)

cT0 Σ−1
NWP ((bK ; 1, ..., J); (bK ; 1, ..., J))((YNWP − µNWP )(bK ; 1, ..., J)) ,

Σ̂Obs(t0; s0) = ΣObs((t0; s0); (t0; s0)) + cT0 Σ−1
NWP ((bK ; 1, ..., J); (bK ; 1, ..., J))c0 ,

(2.15b)

c0 = ΣObs,NWP ((t0; s0); (bK ; 1, ..., J)).

The distribution (2.14) is used to generate the scenarios of prediction of wind speed
in Section 4. This is in fact the predictive distribution presented in (2.6).

3. Wind data. In order to improve forecasts from the considered numerical model,
two sources of data are combined: ground measurements and WRF model outputs. The
measurement data are recorded across an irregular network, and at each observational
station, we pick the closest gridded point of NWP outputs. As a result, the two datasets
have the same number of spatial locations; however, the proposed model is not restricted
to this spatial layout and can handle datasets with different numbers of stations. In the
following, the time series of the two datasets are filtered in time by a moving average
process over a window of one hour to remove small-scale effects and focus on a larger
temporal scale; they are picked every hour.

3.1. Direct observations. Observational data are extracted from the Automated Sur-
face Observing System (ASOS) network, available at ftp://ftp.ncdc.noaa.gov/pub/
data/asos-onemin. The network of collecting stations covers the U.S. territory. The
studied data are 1-minute data selected from the states of Wisconsin, Illinois, Indiana,
and Michigan; see Figure 2. The measured wind speed is discretized in integer knots
(one knot is about 0.5 m/s). We do not apply any additional treatment to account for
this discretization since the data are filtered over a window of 1 hour, see [25] for a dis-
cussion of the discretization of wind speed. The orography of this region is simple and
flat; however, the presence of Lake Michigan has a strong impact on the wind conditions.
Several months are investigated and reveal different behaviors; in particular, periodici-
ties differ from winter to spring and summer months. In the following, for homogeneity
purposes the dataset is subdivided in 3 spatial clusters, depicted in Figure 2. A spatial
clustering is performed on wind speed in order to distinguish among different average
regional weather conditions. This is a proxy for different NWP forecast behaviors. These
three clusters are treated independently hereafter.

ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin
ftp://ftp.ncdc.noaa.gov/pub/data/asos-onemin
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Fig 2: Map of the considered area. Clusters are respectively denoted as C1 for points
represented by •; stations of C2 are represented by N and stations of C3 by �.

3.2. Numerical weather prediction data. State-of-the-art NWP forecasts are gener-
ated by using WRF v3.6 [24] which is a state-of-the-art numerical weather prediction
system designed to serve both operational forecasting and atmospheric research needs.
WRF has a comprehensive description of the atmospheric physics that includes cloud
parameterization, land-surface models, atmosphere-ocean coupling, and broad radiation
models. The terrain resolution can go up to 30 seconds of a degree (less than 1 km2).
The NWP forecasts are initialized by using the North American Regional Reanalysis
fields dataset that covers the North American continent (160W-20W; 10N-80N) with
a resolution of 10 minutes of a degree, 29 pressure levels (1000-100 hPa, excluding the
surface), every three hours from the year 1979 until the present. Simulations are started
every day during January, May and August 2012 and cover the continental United States
on a grid of 25x25 km with a time resolution of 10 minutes.

4. Results. In this section, we first analyze the estimated parameters and then
explore qualitatively and quantitatively the ability of the model to provide accurate
forecasts. Three months of the year (January, May, and August) are considered and
are studied independently in order to investigate the model performance under differ-
ent conditions. For each month, the model is trained on two-thirds of the month and
validated on the remaining third. The training periods are rolled over all the possible
permutations.

4.1. Analysis of the estimated parameters. In this section, we investigate the maxi-
mum likelihood estimation of the mean and covariance of the process. First, the empirical
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Fig 3: Empirical and fitted parametric mean of wind speed at each hour of a day and at
each station in the subregion C2 in January. Vertical lines separate each station. Within
each of these windows, each hour of the day is considered. Top panel: mean of YNWP;
bottom panel: mean of YObs.

mean and covariance are compared with the fitted parametric ones proposed in Section
2. The mean of the process (YObs, YNWP) is depicted in Figure 3; for each station, the
mean at each hour of the day is plotted. The structure of the estimated mean of the
two processes is accurately reproduced in terms of temporal and spatial patterns. In
Figure 4, the empirical and fitted space-time correlation are plotted. A great part of
the structure is captured by the proposed parametric shapes; however the global shapes
tend to be smoothed by the parametric models. The nonseparability between space and
time that is visible on the empirical off-diagonal blocks is not entirely captured by the
parametric model on the top panels. The analysis of the matrices Ls that are involved
in the covariance model (2.13) reveals different configurations given the subregion and
the period of the year. These can be expected since these operators can be interpreted
as a linear projector of a process that is common to all the stations. Average air flows
differ according to the season and the location; the dependence from a common process
that would contain this information is likely to differ in space and in time across the
year.

The matrix Λ, which appears in both the mean and covariance components, is impor-
tant since it links the NWP forecasts to the objective predictive quantities. The analysis
of Λ reveals that the intensity of temporal dependence varies with the land use; however,
the temporal persistence is curtailed to a few hours across the different land-uses.
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Gaussian samples. Vertical lines separate the different sets of parameters. From left to
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In the second step, the uncertainty associated with the estimation of the parameters is
accounted for. Following [27], samples from a normal distribution are generated, with the
mean given by the maximum likelihood estimated parameters and the covariance given
by the inverse of the hessian of the log-likelihood. In Figure 5, the maximum likelihood
estimation of the parameters and the associated samples are plotted. The parameters
that present the most estimation variance are several parameters ai that appear in the
matrices L in Section 2.3.2. In the parameters of µObs|NWP , parameters with a high
estimation variance are the ones associated with µ defined in Section 2.3.3. In these
cases, a lack of data in the estimation of these specific parameters may cause this high
estimation variance. Notice that the improvement in the predictive variance is less than
5% when the uncertainty is accounted for in the generation of the predictive scenarios
in comparison with the predictive variance when the uncertainty on the parameters is
not accounted for.

4.2. Assessment of the quality of the predictive model. In this part, samples are
generated from the predictive distribution defined by Equation (2.14); they are called
scenarios or samples in the following. The mean of these samples can be used as a
pointwise prediction, but the objective here is to embed the uncertainty associated with
the prediction by working with samples from the predictive distribution.

4.2.1. Qualitative exploration of the predictions. First, as a visual assessment of the
prediction, we investigate observed time series and generated predictive scenarios for a
part of the months of January and August; see Figure 6. Measured wind speed, which
is to be predicted, is plotted as a reference in order to evaluate the accuracy of the
prediction. NWP wind forecasts are also plotted because they are predictors and a target
to be improved with respect to the measurements. For both months under display, the
global trend of the measured time series is well captured by the predictive mean and by
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Fig 6: Time series of wind speed at the station with the median RMSE. January 2012
(top) and August 2012 (bottom) for six days. Left panels: 50 predictive samples are
plotted; right panel: 3 samples are plotted.

the scenarios. The predictive samples cover the measurements that are to be predicted
(see left panels); and the predictive mean realizes, most of the time, an improvement
with respect to the NWP forecasts. Moreover, each sample has a temporal dynamics
consistent with the observed temporal behavior (right panels). The improvement of the
proposed prediction is more visible in August (bottom panels), this is likely because of
the periodic components that are stronger in this period of the year and that are well
captured by the model; see also Figure 3. Furthermore, the spread of the scenarios is
more important in January than in August, likely because of the fact that wind speed
has more variability in winter as illustrated in the observed variances in Table 1, which
makes it less predictable. We note that the scenarios are not spreading at the end of each
prediction window as observed in the literature. The reason is that the NWP predictors
are available over the entire prediction window and such spread increase is not obvious
in the model–measurement discrepancy.

In Figure 7, mean wind speed at each hour of the day is depicted for the measurements,
NWP forecasts, and forecasts from the model at a station that has the median RMSE
in subregion C2. The temporal evolution of the mean differs from the measurements to
the NWP data; however, the proposed model is able to compensate for this discrepancy
well, which is also visible in time series of Figure 6. In Figure 8 we show the mean wind
speed at each station in August. The mean is estimated for the measurements, the NWP
forecasts, and the predictions from our model. The NWP forecasts show a higher mean
than the measurements, especially around the lake, likely due to the parameterization
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Fig 7: Mean wind speed at each hour of the day in January (left) and August (right).
The quantities are plotted for the station with the median RMSE in subregion C2.
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Fig 8: Mean wind speed at each station of the studied area in August.

of the NWP model. The proposed predictive model is able to correct this overestimation
and provide a mean consistent with the measured one. Moreover, we note that the spatial
structure of measurement is well captured by our forecasts.

The variance of the processes is shown in Figure 9. The proposed model also corrects
in space and time the variances that are not well captured by the NWP model. Stations
identified as 7 and 9 are near the lake, and the variance present in the NWP forecast
is consistent with the mean overprediction. In general, the space-time correlation of
the NWP forecasts and the model predictions are relatively consistent with the space-
time correlations of measurements, which is reflected in part in the performance metrics
considered below.

The spectral content of the scenarios and of the observations is estimated and de-
picted in Figure 10; the average spectrum of the estimated spectrum on each sample
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Fig 9: Variance of the three processes (measurements, NWP outputs and prediction from
the proposed model) at each station and each hour of the day in August in subregion
C2

is also plotted. The estimated spectra of the scenarios cover most of the spectrum of
the observations. The overall shape of the estimated spectrum and of the average spec-
trum indicates a robust agreement, especially in August where small frequencies are
accurately captured. In this and other spectral estimates, the spectral content at high
frequency is sometimes slightly overpredicted, we believe this because the forecasts do
not attempt to correct for discontinuities at the boundaries between temporal blocks.
Nevertheless, the features of the spectrum of the measurements appear well captured by
our model. Therefore, our model appears to be appropriate as a realistic wind scenario
generator.

4.2.2. Quantitative assessment of the quality of the predictions. As our second step,
we assess quantitatively the overall improvement of the model in comparison with the
WRF model outputs; see Table 1. We study general metrics since there are no specific
user-applications here; however, we expect similar performances when using specific
metrics. The root mean square error (RMSE) is computed for the predictive mean of
the proposed distribution and for the NWP forecasts. We consider also the energy score
(ES), which represents a multivariate generalization of the continuous ranked probability
score (CRPS) (see [15, 19]). This metric is an omnibus metric that enables comparison of
ensemble forecasts and scenarios with pointwise prediction; it is computed on predictive
samples and on NWP forecasts. The energy score is a proper scoring rule, the lower the
energy score, the better the proposed forecast.

In subregion C2, the model shows the greatest improvement in terms of RMSE and
energy score, likely because of the presence of Lake Michigan. Indeed, the NWP embeds
this presence through the lake mask and land use, but this may be overestimated in
comparison with the behaviors of the observations. The improvement of RMSE is more
significant in May and August, likely because of the periodic components that are well
captured by the model. The energy score clearly favors the proposed model in comparison
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Fig 10: Estimated spectrum in January (left) and August (right) for the station with
the median RMSE in subregion C2.

to the WRF outputs. The mean of the observations is well captured by the prediction
made with the model. The variance is sometimes overestimated depending the subregion
and the period of the year, but most of the variances are well reproduced.

5. Conclusions. We have introduced a statistical space-time modeling framework
for the prediction of atmospheric wind speed based on deterministic numerical weather
predictions and historical measurements. We have used a Gaussian multivariate space-
time process that combines multiple sources of past physical model outputs and mea-
surements along with model predictions to forecast wind speed at observation sites. We
applied this strategy on ground-wind-speed forecasts for a region near the U.S. Great
Lakes. The results show that the prediction is improved in the mean-squared sense as
well as in probabilistic scores. Moreover, the samples are shown to produce realistic wind
scenarios based on the sample spectrum. Using the proposed model, one can enable to
correct the first- and second-order space-time structure of the numerical forecasts in
order to match the structure of the measurements.
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Model RMSE ES M/S Mean(YObs) Var(YObs)

NWP (Jan. 2012, C1) 1.85 48 M 4.6 5.31

Model (Jan. 2012, C1) 1.65 (10.9%) 30 S 4.58 5.48

NWP (May 2012, C1) 2.97 77 M 2.87 2.78

Model (May 2012, C1) 1.9 (36%) 35 S 3.14 5.8

NWP (Aug. 2012, C1) 1.73 44 M 2.49 2

Model (Aug. 2012, C1) 1.13 (34.9%) 21 S 2.55 2.39

NWP (Jan. 2012, C2) 2.55 66 M 4.32 5.05

Model (Jan. 2012, C2) 1.81 (29%) 33 S 4.55 6.37

NWP (May 2012, C2) 3.29 85 M 3.56 4.47

Model (May 2012, C2) 1.86 (43.4%) 35 S 3.71 3.83

NWP (Aug. 2012, C2) 1.9 48 M 2.29 2.48

Model (Aug. 2012, C2) 1.31 (40.4%) 21 S 2.39 2.68

NWP (Jan. 2012, C3) 2.05 53 M 4.29 5.04

Model (Jan. 2012, C3) 1.82 (20%) 35 S 4.32 9.48

NWP (May 2012, C3) 2.34 61 M 3.48 3.36

Model (May 2012, C3) 1.85 (21%) 34 S 3.39 6.44

NWP (Aug. 2012, C3) 1.72 44 M 2.3 2.22

Model (Aug. 2012, C3) 1.22 (28.9%) 22 S 2.31 2.15
Table 1

Statistics and metrics for the station, representing the median RMSE in each cluster denoted as Ci, for
i = 1, 2, 3. ES is the energy score and M/S is measurements or samples. They are evaluated on the

concerned month for time prediction. Associated with the model RMSE is the percentage of
improvement of the model with respect to the NWP data.
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