
Computer Science Technical
Report TR-08-13
July 18, 2008

Emil M. Constantinescu
and Adrian Sandu

“Achieving Very High Order for Implicit
Explicit Time Stepping: Extrapolation

Methods”

Computer Science Department
Virginia Polytechnic Institute and State University

Blacksburg, VA 24060
Phone: (540)-231-2193
Fax: (540)-231-6075

Email: {emconsta, sandu}@cs.vt.edu
http://eprints.cs.vt.edu



ACHIEVING VERYHIGH ORDER FOR IMPLICIT EXPLICIT TIME STEPPING:
EXTRAPOLATIONMETHODS ∗

EMIL M. CONSTANTINESCU† AND ADRIAN SANDU†‡

Abstract. In this paper we construct extrapolated implicit-explicit time stepping methods that allow
to efficiently solve problems with both stiff and non-stiff components. The proposed methods can provide
very high order discretizations of ODEs, index-1 DAEs, and PDEs in the method of lines framework.
These methods are simple to construct, easy to implement and parallelize. We establish the existence of
perturbed asymptotic expansions of global errors, explain the convergence orders of these methods, and
explore their linear stability properties. Numerical results with stiff ODEs, DAEs, and PDEs illustrate the
theoretical findings and the potential of these methods to solve multiphysics multiscale problems.
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1. Introduction. Models described by processes that have multiple physics and
scale components are pervasive in numerical simulations. Typical applications in-
clude mechanical and chemical engineering, aeronautics, astrophysics, meteorology
and oceanography, financial modeling, environmental sciences, which are modeled
by Navier-Stokes [Bramkampa et al., 2004], convection-diffusion-reaction [Ascher
et al., 1995; Ruuth, 1995; Constantinescu et al., 2008], or Black-Scholes. The indi-
vidual physics or scale components typically have very different properties that are
reflected in their discretization; e.g., for advection-diffusion-reaction systems, the
discrete advection has a relatively slow dynamics, while the diffusion and chemistry
are typically fast evolving [Gebhardt et al., 2002; Ruuth, 1995; Verwer et al., 1996].
The dynamics of a process can be categorized in the relative fast and slow terms. The
informal expressions stiff and non-stiff are commonly associated with the fast and
slow evolution, respectively.
The discretization in time of slow processes with an explicit method is typically

more efficient, due to its low cost, than using an implicit scheme, whereas implicit
methods aremore appropriate for stiff processes due to their favorable stability prop-
erties [Hairer and Lubich, 1988; Hairer et al., 1988]. For multiscale processes, purely
explicit or implicit methods are not efficient because in general, explicit methods
require prohibitively small time steps and implicit methods are either too difficult to
implement or too expensive to compute [Hairer et al., 1993a; Lambert, 1991].
An approach to solve problems with both stiff and non-stiff components that

has gained widespread popularity is called implicit-explicit (IMEX) method. In the
IMEX approach one uses an implicit scheme for the stiff components and an explicit
integrator for the slow dynamics such that the combined method has the desired
stability and accuracy properties. IMEX linear multistep methods have been inves-
tigated in [Ascher et al., 1995; Frank et al., 1997; Hundsdorfer and Ruuth, 2007] and
IMEX Runge-Kutta schemes have been developed in [Ascher et al., 1997; Boscarino,
2007; Pareschi and Russo, 2000; Verwer and Sommeijer, 2004]. These methods are
generally limited to low consistency orders (typically, lower than five). High order
IMEX Runge-Kutta methods are difficult to construct due to a large number of order
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conditions and IMEX linear multistep methods have increasing stability restrictions
with increasing the order of accuracy.
In this study we propose a new family of IMEXmethods using extrapolation. In

the extrapolation approach several numerical approximationsusing the samemethod
but different fractions of the step size are used to eliminate truncation error terms.
The proposed methods have a very simple construction procedure, can attain very
high consistency orders, and are parallelizable.
We are concerned with solving the following problem

y′(x) = F(x, y) , F(x, y) = f (x, y) + g(x, y) , x > x0 , y(x0) = y0 , (1.1)

where f represents the non-stiff part and g the stiff component of the problem. We
seek to apply an explicit method to f and an implicit method to g. We consider
the extrapolation methods [Deuflhard, 1985; Hairer et al., 1993a,b] for the efficient
integration of (1.1) and extend the pioneering work of Deuflhard [1985]; Deuflhard
et al. [1987] on extrapolated linearly implicit andmid-point rule to extrapolated IMEX
methods.
The contributions of this paper are the following. We propose three novel

implicit-explicit methods. In contrast with IMEX Runge-Kutta and linear multistep
strategies, the proposed methods have a very simple construction, implementation,
can attain very high orders of accuracy, and are parallelizable. We investigate the
linear stability properties and show the existence of perturbed asymptotic expansions
of the global discretization errors. We illustrate these theoretical considerations on
ODEs, DAEs, and PDEs examples.
The rest of the paper is organized as follows. In Section 2 we review the extrapo-

lation methods along with their consistency and linear stability properties; in Section
3 we investigate the asymptotic error expansion for the extrapolated IMEX methods
applied to index-1 differential algebraic problems [Hairer et al., 1993b], and in Section
4 we illustrate the theoretical findings on two numerical examples. In Section 5 we
study the error expansion for the extrapolated IMEX schemes applied to stiff ODEs
and in Section 6 we show numerical evidence that supports the theory. In Section 7
we present a typical PDE example and give some implementation considerations in
Section 8. The conclusions follow in Section 9.

2. Extrapolation Methods. Consider a sequence n j of positive integers with
n j < n j+1, 1 ≤ j < M and define corresponding step sizes h1, h2, h3, . . . by h j = H/n j.
Further, define the numerical approximation of (1.1) at x0 + H using the step size h j
by

T j,1 := yh j (x0 +H) , 1 ≤ j ≤M . [Base method] (2.1)

Historically, the notation T comes from the trapezoidal rule, albeit now it is used in
place of a generic discretization method. Let us assume that the local error of the pth

order method employed to solve (2.1) has an asymptotic expansion of the form

y(x)− yh(x) = ep+1(x) h
p+1 + · · · + eN(x) h

N + Eh(x) h
N+1 , (2.2)

where ei(x) are errors that do not depend on h, and Eh is bounded for x0 ≤ x ≤ xend.
This is true for the methods discussed in this paper (see Theorem 2.1 and Section
2.1). By using M approximations to (2.1) with different h j’s one can eliminate the
error terms in the global error asymptotic expansion (2.2) by employing the same
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· · · · · · · · · · · ·

(a) Ti,k tableau (b) Classical orders
T 2.1

Tableaux with (a) the Ti,k solutions and (b) their corresponding classical orders for a p
th order base method.

procedure as in Richardson extrapolation (see [Hairer et al., 1993a, Chap. II.9]). High
order approximations of the numerical solution of (1.1) can be determined by solving
a linear system with M equations. Then the kth solution represents a numerical
method of order p + k − 1 [Hairer et al., 1993a, Chap. II, Thm. 9.1]. The most
economical solution to this set of linear equations is given by the Aitken-Neville
formula [Aitken, 1932; Neville, 1934; Gasca and Sauer, 2000]:

T j,k+1 = T j,k +
T j,k − T j−1,k(
n j/n j−1

)
− 1
, j ≤M , k < j. (2.3a)

If the numerical method (2.1) is symmetric, then the Aitken-Neville formula yields

T j,k+1 = T j,k +
T j,k − T j−1,k

(
n j/n j−1

)2
− 1
, j ≤M , k < j. (2.3b)

Scheme (2.1), (2.3) is called the extrapolation method. For illustration purposes, the
T j,k solutions can be represented in a tableau; e.g., see Table 2.1.a. As it can be seen
in Table 2.1.b, the method is represented by a sequence of lower order embedded
methods. This fact and the methods’s easy construction can be used for (macro-)
step size (H) control and variable order approaches. There are several choices for
the sequences n j; however, Deuflhard [1983] showed that the harmonic sequence
n j = 1, 2, 3, 4, . . . is the most economical one. This sequence will be used for the rest
of this study.

2.1. Base Methods . Typical base methods used to compute (2.1) include the
forward Euler method

yn+1 = yn + h
(
f (yn) + g(yn)

)
, [Explicit Euler]

and the linearly implicit Euler method (see Appendix A)

yn+1 = yn +
[
I − h ( f + g)′(yn)

]−1 (
h f (yn) + h g(yn)

)
. [Linearly implicit] (2.4a)

Method (2.4a) has been used in [Deuflhard, 1985; Deuflhard et al., 1987] as the base
method, for solving stiffODEs of type (1.1) with (2.1), (2.3). Symmetric base methods
have also been considered. This class includes implicit mid-point rule and GBS
[Deuflhard, 1985; Hairer et al., 1993a]. Explicit Euler and the symmetric methods are
not addressed further in this study.
In this paper we consider J = F′(y) ≈ J̃ = (g(y))′ and extend the analysis done by

Deuflhard et al. [1987] to problems that have components treated implicitly and ex-
plicitly such as in the generic representation given in (1.1). We propose the following
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base methods for the extrapolation algorithm (2.1), (2.3): theW-IMEX scheme

yn+1 = yn +
[
I − h g′(yn)

]−1 (
h f (yn) + h g(yn)

)
, [W-IMEX] (2.4b)

the Pure-IMEXmethod

yn+1 = yn + h f (yn) +
[
I − h g′(yn)

]−1 (
h g(yn)

)
, [Pure-IMEX] (2.4c)

and the Split-IMEX scheme

yn+1 = y∗ +
[
I − h g′(yn)

]−1 (
h g(y∗)

)
; y∗ = yn + h f (yn) . [Split-IMEX] (2.4d)

The W-IMEX scheme is essentially the same as the linearly implicit method except
for the Jacobian, which is approximated by using only the stiff part of the problem,
which is typically required for the stability of the numerical algorithm. This makes
the W-IMEX method computationally cheaper than the linearly implicit one. The
Pure-IMEX and Split-IMEX schemes use the same approximation of the Jacobian
(as in the W-IMEX); however, the explicit and implicit parts are treated separately,
making them truly IMEX schemes. The Split-IMEX scheme evolves the explicit part
first and then the implicit one.

2.2. Consistency of the ExtrapolationMethods. In Henrici’s notation [Henrici,
1962], one step methods are expressed as

yn+1 = yn + hΦ
(
xn, yn, h

)
. (2.5)

Methods (2.4) can be represented in Henrici’s notation in the following way

Φ
(
xn, yn, h

)
=

[
I − h ( f + g)′(yn)

]−1 (
h f (yn) + h g(yn)

)
, [implicit Euler]

Φ
(
xn, yn, h

)
=

[
I − h g′(yn)

]−1 (
h f (yn) + h g(yn)

)
, [W-IMEX]

Φ
(
xn, yn, h

)
= h f (yn) +

[
I − h g′(yn)

]−1 (
h g(yn)

)
, [Pure-IMEX]

Φ
(
xn, yn, h

)
= h f (yn) +

[
I − h g′

(
yn

)]−1
(
h g

(
yn + h f (yn)

))
. [Split-IMEX]

A method of order p applied to a differential equation with each term being suffi-
ciently differentiable possesses an expansion of the local error of the form

y(x + h) − y(x) − hΦ
(
x, y(x), h

)
= dp+1(x) h

p+1 + · · · + dp+N(x) h
N+1 + O

(
hN+2

)
. (2.6)

Following [Gragg and Stetter, 1964; Hairer et al., 1993a] we consider discretization
methods that have a global error function ep(x) that satisfies (see [Hairer et al., 1993a,
Chp. II, Thm. 3.6])

y(x) − yh(x) = ep(x) h
p + O(hp+1) . (2.7)

Methods (2.4) are of this type with p = 1. Then we have the following result due to
Gragg and Stetter [1964].
T 2.1 ([GraggandStetter, 1964]). Suppose that a givenmethodwith sufficiently

smooth increment function Φ satisfies the consistency condition Φ
(
x, y, 0

)
= f (x, y) and
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(a) Local orders (b) Global orders
T 2.2

The classical (a) local and (b) global orders for the extrapolation methods with first order base methods.

possesses an expansion (2.6) for the local error. Then the global error has an asymptotic
expansion of the form

y(x) − yh(x) = ep(x) h
p + · · · + eN(x) h

N + Eh(x) h
N+1 (2.8)

where e j(x), j = p, p + 1, . . .N, satisfies (2.7) with e j(x0) = 0 and Eh(x) is bounded for
x0 ≤ x ≤ xend and 0 ≤ h ≤ h0.
Proof. See Gragg [1965] and [Hairer et al., 1993b, Chp. II, Thm. 8.1].
Methods (2.4) possess the local error expansion (2.6) and global error expansion

(2.8), and therefore can be extrapolated using (2.1),(2.3a). It follows that the classical
orders of accuracy of the extrapolation methods (2.4) are the ones given in Table 2.2.
Next we discuss the linear stability properties of IMEXmethods (2.4b, 2.4c, 2.4d)

and of their extrapolations.

2.3. Linear Stability Analysis of the Extrapolated IMEX Methods. In this sec-
tion we investigate the linear stability properties of extrapolated (2.4) and follow the
analysis done by Frank et al. [1997]. Consider methods (2.4) applied to the following
linear scalar test problem

y(t)′ = λy(t) + µy(t) , (2.9)

where λ, µ ∈ C; e.g., λ, µ can be the eigenvalues of the non-stiff ( f ) and stiff (g) parts
in a PDE application, respectively.
The transfer or stability functions R(z,w) defined by

yn+1 = R(λh, µh)yn , (2.10)

for (2.4) are given by (see Appendix B)

yn+1 =

(
1

1 − (λh + µh)

)
yn; R(z,w) =

1

1 − (z + w)
[Linearly implicit] (2.11a)

yn+1 =

(
1 + λh

1 − µh

)
yn; R(z,w) =

1 + z

1 − w
[W-IMEX] (2.11b)

yn+1 =

(
1 + λh − λhµh

1 − µh

)
yn; R(z,w) =

1 + z − zw

1 − w
[Pure-IMEX] (2.11c)

yn+1 =

(
1 + λh(1 − µh(1− λh))

1 − µh − λhµh

)
yn; R(z,w) =

1 + z

1 − w
[Split-IMEX] (2.11d)

The stability region S is defined by

S = {z ∈ Sz,w ∈ Sw; ||R(z,w)|| ≤ 1, (Sz × Sw) ⊂ (C × C)} .
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A method with a transfer function R(. . . ) defined by (2.10) is stable if R(. . . ) ⊆ S.
In other words, for scalar problems, linear stability requires that |R(z,w)| ≤ 1. As
expected, the linearly implicit Eulermethod has the same transfer function as implicit
Euler. Incidentally, the W-IMEX method has the same transfer function as the Split-
IMEX scheme. The stability function of the extrapolatedmethods are calculated from
the extrapolation formula (2.3a) as [Hairer et al., 1993b, Chap. IV]:

R j,k+1(z,w) = R j,k(z,w) +
R j,k(z,w) − R j−1,k(z,w)

(n j/n j−k) − 1
,

where R(. . . ) is the one-step transfer function for a specific base method and the
subscripts denote the corresponding position in the extrapolation tableau.
In practice implicit methods that are A-stable or A(α)-stable [Hairer et al., 1993b]

are desirable for problems with stiff solution components. We take a practical ap-
proach and ask the following question: To ensureA(α)-stability of the stiff part, what
is the necessary restriction on the non-stiff part? We consider three stability regions
for the stiff part: A-stable and A(α)-stable, α = 30◦, 60◦. In Figure 2.1 we show the
stability regions for the implicit part (left column) and the corresponding stability
regions of the explicit part of extrapolated (2.4) methods for several (T jk) entries in
the extrapolation tableau (see Table 2.1.a).
We remark that the stability region of the implicit parts can easily accommodate

the typical stiff problems encountered in practice. Depending on the problem, the
implicit stability region can be relaxed by decreasing α and as a result the explicit
stability region grows, relaxing the step size restriction for the entire method. More-
over, the stability regions of the extrapolated explicit parts encompass a section of
the imaginary axis, which is a desirable property when solving certain PDEs via
the method of lines [Hundsdorfer and Verwer, 2003]. We also note that the explicit
stability regions grow as more T jk terms are computed.
In practice, the fast process represented by µ has large values on the negative real

axis whereas the slow process represented by λ sits close to the origin in the negative
real half plane. The stability regions presented in Figure 2.1 illustrate the relationship
between the IMEX solver and the physical process properties. Next we investigate
the accuracy of the extrapolated IMEX methods.

3. Global Error Expansion for Extrapolated IMEX Methods applied to DAEs.
Consider the following test problem

u′ = f (x, u) + g(x, u) (3.1)

with u = y + ε z .

The y component is associated with the slow evolving and z with the stiff part of
u. The stiffness is controlled by ε; i.e., the problem is stiffer as 0 ≤ ε ≪ 1 shrinks.
This problem can be reformulated to obtain two processes: f , the slow and g, the fast
process

{
y′ = f̂ (y, z) = f (y + ε z)
ε z′ = ĝ(y, z) = g(y + ε z)

with



y0 + ε z0 = u0

y + ε z = u
(y + ε z)′ = u′

. (3.2)

Then we have
(
y
ε z

)′
=

(
f (y, z)
0

)
+

(
0

g(y, z)

)
. (3.3)
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F. 2.1. Stability region of the implicit part for A-stability and A(α)-stability, α = 30◦, 60◦ and the corre-
sponding stability region of the explicit part for several extrapolated IMEX terms with base methods (2.4).
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This system can be analyzed in a singular perturbation problem (SPP) setting and
obtain the reduced differential algebraic (DAE) form by taking ε→ 0:

(
y
0

)′
=

(
f (y, z)
0

)
+

(
0

g(y, z)

)
, (3.4)

where g(0) = g(y0, z0) and we assume

gz is invertible , (3.5)

and hence (3.4) is an index-1 DAE.
In order to assess the accuracy of the extrapolated methods we first analyze

the discretization of the reduced system (3.4) with the proposed extrapolated IMEX
methods and then address the discretization of the full problem (3.3). We next discuss
the consistency properties of extrapolated (2.4). We start with W-IMEX and continue
with Pure-IMEX (sec. 3.2) and Split-IMEX (sec. 3.3).

3.1. W-IMEX. Applying the W-IMEX method (2.4b) with y the non-stiff and z
the stiff components to (3.3) yields

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
0

)
+ h

(
0

g
(
yi, zi

)
)
or

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
g
(
yi, zi

)
)
, (3.6)

Then the reduced form of (3.6) given by ε→ 0 is
(

I 0
−hgy(0) −hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
g
(
yi, zi

)
)
. (3.7)

In order to assess the accuracy of the W-IMEX scheme we first analyze the reduced
system (3.7) and then address the full problem (3.6) in Section 5.1. The following
theorems and their proofs follow the ones for the extrapolated linearly implicit Euler
method developed by Deuflhard et al. [1987] and briefly described in [Hairer et al.,
1993b, chap. VI.5]. We start with the reduced problem (DAE) and give the following
result.
T 3.1 (Global error expansionof the extrapolatedW-IMEXmethodapplied

to DAEs). Consider problem (3.4) with consistent initial values (y0, z0), and suppose that
(3.5) is satisfied. The global error of the IMEX scheme (3.7) then has an asymptotic h-
expansion of the form

yi − y(xi) =

M∑

j=1

h j
(
a( j)(xi) + α

( j)

i

)
+ O

(
hM+1

)

zi − z(xi) =

M∑

j=1

h j
(
b( j)(xi) + β

( j)

i

)
+ O

(
hM+1

) , (3.8)

where a( j)(x) and b( j)(x) are smooth functions and the perturbations satisfy

α(1)
i
= 0 , α(2)

i
= 0 , β(1)

i
= 0 , ∀i ≥ 0 , (3.9a)

α(3)
i
= 0 , α(4)

i
= 0 , β(2)

i
= 0 , ∀i ≥ 1 , (3.9b)

α
( j)

i
= 0 , ∀i ≥ j − 3 , j ≥ 5 , (3.9c)

β
( j)

i
= 0 , ∀i ≥ j − 2 , j ≥ 3 . (3.9d)

8



The error terms in (3.8) are uniformly bounded for xi = ih ≤ H, if H is sufficiently small.

Proof. Following Deuflhard et al. [1987], the proof consists of two parts: in the
first part (a) truncated expansions are constructed and in the second one (b) an error
bound is obtained from a stability estimate.

a). Consider the truncated expansions of the numerical solution

ŷi = y(xi) +

M∑

j=1

h j
(
a( j)(xi) + α

( j)

i

)

ẑi = z(xi) +

M∑

j=1

h j
(
b( j)(xi) + β

( j)

i

) (3.10)

such that the defect of ŷi, ẑi inserted in the method (3.7) is small (see [Hairer and
Lubich, 1984]):

(
I 0

−hgy(0) −hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= h

(
f (ŷi, ẑi)
g(ŷi, ẑi)

)
+ O

(
hM+2

)
. (3.11)

The initial values are the exact solution (ŷ0 = y0, ẑ0 = z0) and we also assume that the
perturbation terms (α, β) satisfy

a( j)(0) + α
( j)

0
= 0 , b( j)(0) + β

( j)

0
= 0 , (3.12a)

α
( j)

i
→ 0 , β

( j)

i
→ 0 , for i→∞ . (3.12b)

The Taylor expansions for f (ŷi, ẑi) and g(ŷi, ẑi) about (y(xi), z(xi)) give

f
(
ŷi, ẑi

)
= f

(
y(xi), z(xi)

)
+

+ fy (xi)
(
ha(1)(xi) + hα

(1)
i
+ . . .

)
+ fz (xi)

(
hb(1)(xi) + hβ

(1)
i
+ . . .

)
+

+ fyy (xi)
(
ha(1)(xi) + hα

(1)

i
+ . . .

)2
+ . . . ,

g
(
ŷi, ẑi

)
= g

(
y(xi), z(xi)

)
+

+ gy (xi)
(
ha(1)(xi) + hα

(1)
i
+ . . .

)
+ gz (xi)

(
hb(1)(xi) + hβ

(1)
i
+ . . .

)
+

+ gyy (xi)
(
ha(1)(xi) + hα

(1)

i
+ . . .

)2
+ . . . .

Similarly,

ŷi+1 − ŷi = y(xi+1) − y(xi)︸           ︷︷           ︸
hy′(xi)+

h2

2 y
′′(xi)+...

+ h
(
a(1)(xi+1) − a

(1)(xi)︸                ︷︷                ︸
h(a(1))

′
(xi)+...

+ α(1)
i+1
− α(1)

i

)
+ . . .

= hy′(xi) +
h2

2
y′′(xi) + · · · + h

2
(
a(1)

)′
(xi) + h

(
α(1)
i+1
− α(1)

i

)
+ . . .

ẑi+1 − ẑi = z(xi+1) − z(xi) + h
(
b(1)(xi+1) − b

(1)(xi) + β
(1)

i+1
− β(1)

i

)
+ . . .

= hz′(xi) +
h2

2
z′′(xi) + · · · + h

2
(
b(1)

)′
(xi) + h

(
β(1)
i+1
− β(1)

i

)
+ . . .

9



Replacing the above in (3.11) yields

(
I 0

−hgy(0) −hgz(0)

)
·

·



hy′(xi) +

h2

2 y
′′(xi) + · · · + h

2
(
a(1)

)′
(xi) + h

(
α(1)
i+1
− α(1)

i

)
+ h3

(
a(2)

)′
(xi) + h

2
(
α(2)
i+1
− α(2)

i

)
+ . . .

hz′(xi) +
h2

2 z
′′(xi) + · · · + h

2
(
b(1)

)′
(xi) + h

(
β(1)
i+1
− β(1)

i

)
+ . . .


 =

=



h f

(
y(xi), z(xi)

)
+ fy (xi)

(
h2a(1)(xi) + h

2α(1)
i
+ . . .

)

hg
(
y(xi), z(xi)

)
+ gy (xi)

(
h2a(1)(xi) + h

2α(1)
i
+ . . .

)

+

+



fz (xi)

(
h2b(1)(xi) + h

2β(1)
i
+ . . .

)
+ . . .

gz (xi)
(
h2b(1)(xi) + h

2β(1)
i
+ . . .

)
+ . . .


 + O

(
hM+2

)
. (3.13)

Equating coefficients of h1 in (3.13) gives

(
y′(xi) +

(
α(1)
i+1
− α(1)

i

)

0

)
=

(
f
(
y(xi), z(xi)

)
g
(
y(xi), z(xi)

)
)
.

Using the consistency requirement (3.12b) gives α(1)
i+1
= α(1)

i
which verifies (3.4) and

thus we have α(1)
i
= 0, ∀i ≥ 0. Next we consider the coefficients of h2 in (3.13):




1
2 y
′′(x) +

(
a(1)

)′
(x) +

(
α(2)
i+1
− α(2)

i

)

−gy(0) y
′(x) − gz(0) z

′(x) − gy(0)
(
α(1)
i+1
− α(1)

i

)
− gz(0)

(
β(1)
i+1
− β(1)

i

)

 =

=



fy (x)

(
a(1)(x) + α(1)

i

)
+ fz (x)

(
b(1)(x) + β(1)

i

)

gy (x)
(
a(1)(x) + α(1)

i

)
+ gz (x)

(
b(1)(x) + β(1)

i

)



or, by separating the smooth terms and the perturbations yields

1

2
y′′(x) +

(
a(1)

)′
(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) ,

− gy(0) y
′(x) − gz(0) z

′(x) = gy (x) a
(1)(x) + gz (x) b

(1)(x) ,
(
α(2)
i+1
− α(2)

i

)
= fy (x)α

(1)
i
+ fz (x) β

(1)
i
,

− gy(0)
(
α(1)
i+1
− α(1)

i

)
− gz(0)

(
β(1)
i+1
− β(1)

i

)
= gy (x)α

(1)
i
+ gz (x) β

(1)
i
.

These conditions can be simplified by using the consistency requirement α(1)
i
= 0,

∀i ≥ 0, and the fact that α and β do not depend on h (i.e., fz(x) → fz(0) and gz(x) →
gz(0): The terms of O(h) are considered in (3.14c) - (3.14d)), yields

1

2
y′′(x) +

(
a(1)

)′
(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (3.14a)

− gy(0) y
′(x) − gz(0) z

′(x) = gy (x) a
(1)(x) + gz (x) b

(1)(x) , (3.14b)
(
α(2)
i+1
− α(2)

i

)
= fz (0) β

(1)

i
+ γ(2)

i
h , (3.14c)

− gz(0)
(
β(1)
i+1
−�

�β(1)
i

)
=����
gz (0) β

(1)
i
+ η(2)

i
h . (3.14d)

The terms γ
( j)

i
and η

( j)

i
, ∀i, j are neglected for the rest of the proof. The system (3.14a)-

(3.14b) can be solved in the following way. Compute b(1)(x) in (3.14b) using (3.5) to
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give

b(1)(x) = −gz (x)
−1

[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x)
]
,

and replace it in (3.14a):

1

2
y′′(x) +

(
a(1)

)′
(x) = fy (x) a

(1)(x) − fz (x) gz (x)
−1

[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x)
]
,

which leads to the following ODE in a(1)

(
a(1)

)′
(x) +

(
fz (x) gz (x)

−1gy (x) − fy (x)
)
a(1)(x) = −

1

2
y′′(x) − fz (x) gz (x)

−1
[
gy(0) y

′(x) + gz(0) z
′(x)

]
.

Using (3.12a); i.e., a(1)(0)+α(1)
0
= 0, and the fact that α(1)

0
= 0 gives a(1)(0) = 0. Therefore

a(1)(x) and b(1)(x) are uniquely determined by (3.14a) and (3.14b). We continue with
(3.14c) and (3.14d) and use 0 = g(y, z) for x = 0:

dg

dx

(
y(x), z(x)

)
=
∂g

∂y

∂y

∂x
(x) +

∂g

∂z

∂z

∂x
(x) = gyy

′ + gzz
′ .

The above expression is true for x = 0 and hence the left hand side of (3.14b) vanishes:

gy (0) a
(1)(0) + gz (0) b

(1)(0) = 0⇒ gz (0) b
(1)(0) = 0⇒ b(1)(0) = 0 .

By (3.12a) we have that β(1)
0
= 0. In general, we have β(1)

i
= 0, ∀i ≥ 0 due to (3.14d)

and together with (3.14c) we obtain α(2)
i
= 0, ∀i ≥ 0.

To compare the coefficients of h3 it is useful to extend (3.11) with one more term:

(
I 0

−hgy(0) −hgz(0)

)
· (3.15)

·



h2

2 y
′′(xi) +

h3

6 y
′′′(xi) + h

2
(
a(1)

)′
(xi) + h

3
(
a(2)

)′
(xi) + h

2
(
α(2)
i+1
− α(2)

i

)
+ h4

(
a(3)

)′
(xi) + h

3
(
α(3)
i+1
− α(3)

i

)
. . .

· · · + h
2

2 z
′′(xi) +

h3

6 z
′′′(xi) + · · · + h

2
(
b(1)

)′
(xi) + h

(
β(1)
i+1
− β(1)

i

)
+ h3

(
b(2)

)′
(xi) + h

2
(
β(2)
i+1
− β(2)

i

)
+ . . .


 =

=



· · · + h fy (xi)

(
· · · + h2a(2)(xi) + h

2α(2)
i
+ . . .

)
+ h2 fyy (xi)

(
· · · + h2a(1)(xi) + h

2α(1)
i
+ . . .

)

· · · + hgy (xi)
(
· · · + h2a(2)(xi) + h

2α(2)
i
+ . . .

)
+ h2 gyy (xi)

(
· · · + h2a(1)(xi) + h

2α(1)
i
+ . . .

)

+

+



h fz (xi)

(
· · · + h2b(2)(xi) + h

2β(2)
i
+ . . .

)
+ h2 fzz (xi)

(
· · · + h2b(1)(xi) + h

2β(1)
i
+ . . .

)
+ . . .

hgz (xi)
(
· · · + h2b(2)(xi) + h

2β(2)
i
. . .

)
+ h2 gzz (xi)

(
· · · + h2b(1)(xi) + h

2β(1)
i
. . .

)
+ . . .


 ,

where some contributions of the derivatives fyy, fzz, and fyz are zero due to the fact

that their factors are (α(1)
i
, α(2)
i
, and β(1)

i
, ∀i ≥ 0) zero. Then the coefficients of h3 in

(3.15) give

(
a(2)

)′
(x) = fy(x) a

(2)(x) + fz(x) b
(2)(x) + r(2)(x) , (3.16a)

0 = gy(x) a
(2)(x) + gz(x) b

(2)(x) + s(2)(x) , (3.16b)

where r(2)(x) and s(2)(x) are known functions which depend on the derivatives of y(x),
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z(x), a(1)(x), b(1)(x), and can be shown to be

r(2)(x) = −
1

6
y′′′(x)+ (3.17a)

+
1

2
fyy(x)

(
a(1)

)2
(x) +

1

2
fzz(x)

(
b(1)

)2
(x) + fyz(x)a

(1)(x)b(1)(x) ,

s(2)(x) =
1

2
gy(0)y

′′(x) +
1

2
gz(0)z

′′(x) + gy(0)
(
a(1)

)′
(x) + gz(0)

(
b(1)

)′
(x)+ (3.17b)

+
1

2
gyy(x)

(
a(1)

)2
(x) +

1

2
gzz(x)

(
b(1)

)2
(x) + gyz(x)a

(1)(x)b(1)(x) .

The perturbations can be expressed as

α(3)
i+1
− α(3)

i
= fy(0)α

(2)
i
+ fz(0)β

(2)
i
,

−gy(0)
(
α(2)
i+1
− α(2)

i

)
− gz(0)

(
β(2)
i+1
− β(2)

i

)
= gy(0)α

(2)
i
+ gz(0)β

(2)
i
,

with additional cancellations of terms that have coefficients α(1)
i
= 0 and β(1)

i
= 0, ∀i,

and using α(2)
i
= 0, ∀i lead to

α(3)
i+1
− α(3)

i
= fz(0)β

(2)
i
, (3.18a)

0 = gz(0)β
(2)
i+1
. (3.18b)

Terms a(2)(x) and b(2)(x) are determined in the sameway as a(1)(x) and b(1)(x). Nowwe
have

b(2)(x) = −gz(x)
−1

[
gy(x) a

(2)(x) + s(2)(x)
]
, (3.19a)

which can be inserted in (3.16a) to give the following linear differential equation

(
a(2)

)′
(x) +

(
fz(x) gz(x)

−1gy(x) − fy(x)
)
a(2)(x) = − fz(x) gz(x)

−1gy(x) s
(2)(x) + r(2)(x) .

(3.19b)

Since α(2)
i
= 0, ∀iwe have a(2)(0) = 0 and thus expressions (3.19) determine a(2)(x) and

b(2)(x) uniquely. However, b(2)(0) , 0 in general and by (3.12a) we have that β(2)
0
, 0.

From (3.18b) we get β(2)
i
= 0, ∀i ≥ 1, and together with (3.18a) we obtain that α(3)

i
= 0,

∀i ≥ 1.
For the coefficients of h4 we obtain a similar result as in the previous step:

(
a(3)

)′
(x) = fy(x) a

(3)(x) + fz(x) b
(3)(x) + r(3)(x) , (3.20a)

0 = gy(x) a
(3)(x) + gz(x) b

(3)(x) + s(3)(x) , (3.20b)

α(4)
i+1
− α(4)

i
= fz(0)β

(3)
i
+ fy(0)α

(3)
i
, (3.20c)

0 = gz(0)β
(3)

i+1
+ gy(0)α

(3)

i+1
. (3.20d)

The expressions for r(3)(x) and s(3)(x) aremore complicated (depending on deriva-
tives of y(x), z(x), a(ℓ)(x), b(ℓ)(x), ℓ = 1 , 2) and their representation is not shown here.

Using (3.12b), the conclusions, however, are that β(3)
i
= 0, ∀i ≥ 1, and α(4)

i
= 0, ∀i ≥ 1.
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α
( j)

i
i = 0 1 2 3 4 5 6
y0 y1 y2 y3 y4 y5 y6

j = 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 • 0 0 0 0 0 0
4 • 0 0 0 0 0 0
5 • • 0 0 0 0 0
6 • • • 0 0 0 0
7 • • • • 0 0 0

β
( j)

i
i = 0 1 2 3 4 5 6
z0 z1 z2 z3 z4 z5 z6

-
j = 1 0 0 0 0 0 0 0
2 • 0 0 0 0 0 0
3 • 0 0 0 0 0 0
4 • • 0 0 0 0 0
5 • • • 0 0 0 0
6 • • • • 0 0 0

T 3.1
Non-zero α and β values represented with “•” marker.

Ageneral recurrence formula canbe constructed for the coefficients of h j+1,∀ j ≥ 4:

(
a( j)

)′
(x) = fy(x) a

( j)(x) + fz(x) b
( j)(x) + r( j)(x) , (3.21a)

0 = gy(x) a
( j)(x) + gz(x) b

( j)(x) + s( j)(x) , (3.21b)

α
( j+1)

i+1
− α

( j+1)

i
= fz(0)β

( j)

i
+ ̺
( j)

i
, (3.21c)

0 = gz(0)β
( j)

i+1
+ σ

( j)

i
, (3.21d)

where ̺
( j)

i
and σ

( j)

i
are linear combinations of expressions which contain as factors

α(ℓ)
i+1
, α(ℓ−1)
i+1
, β(ℓ−1)
i+1
, ℓ ≤ j. For instance, we have

̺(3)
i
= α(3)

i
fy(0) and σ

(3)
i
=�����
α(3)
i+1
gy(0) ,

̺(4)
i
= α(4)

i
fy(0) +

1

2
fzz(0)

(
β(2)
i

)2
and σ(4)

i
=�����
α(4)
i+1
gy(0) +

1

2
gzz(0)

(
β(2)
i

)2
,

̺(5)
i
= α(5)

i
fy(0) + fzz(0)β

(2)
i
β(3)
i
+ fyz(0)α

(3)
i
β(2)
i
and σ(5)

i
= α(5)

i+1
gy(0) + gzz(0)β

(2)
i
β(3)
i
,

̺(6)
i
= α(6)

i
fy(0) +

1

2
α(3)
i

2
fyy(0) +

(
α(4)
i
β(2)
i
+ α(3)

i
β(3)
i

)
fyz(0)+

+
1

2

(
β(3)
i

2
+ 2β(2)

i
β(4)
i

)
fzz(0) +

1

6
β(2)
i

3
fzzz(0) and

σ(6)
i
= α(6)

i+1
gy(0) +

1

2
α(3)
i

2
gyy(0) +

(
α(4)
i
β(2)
i
+ α(3)

i
β(3)
i

)
gyz(0)+

+
1

2

(
β(3)
i

2
+ 2β(2)

i
β(4)
i

)
gzz(0) +

1

6
β(2)
i

3
gzzz(0) .

To conclude, let us consider the ̺ and σ values for i and j in Table 3.2 based on the
values of α and β in Table 3.1. Here we show the non-zero coefficients of h j, 1 ≤ j ≤ 7.

Finally, we use induction on j with the hypothesis that ̺
( j)

i
= 0 and σ

( j)

i
= 0 for

i ≥ j − 3. Equation (3.21d) implies that β
( j)

i+1
= 0, i ≥ j − 3 and then relations (3.12b)

and (3.21c) give α
( j+1)

i+1
= 0, i ≥ j − 3. This concludes the proof for (3.9c) and (3.9d).

b). The second part of this proof consists in estimating a bound on the reminder
term; i.e., differences ∆yi = yi − ŷi and ∆zi = zi − ẑi. Subtracting (3.11) from (3.7) and
eliminating ∆yi and ∆zi yields
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̺
( j)

i
i = 0 1 2 3 4 5 6
y0 y1 y2 y3 y4 y5 y6

j = 1 0 0 0 0 0 0 0
2(h2) 0 0 0 0 0 0 0
3(h3) • 0 0 0 0 0 0
4(h4) • 0 0 0 0 0 0
5(h5) • • 0 0 0 0 0
6(h6) • • 0 0 0 0 0

σ
( j)

i
i = 0 1 2 3 4 5 6
z0 z1 z2 z3 z4 z5 z6

j = 1 0 0 0 0 0 0 0
2(h2) 0 0 0 0 0 0 0
3(h3) 0 0 0 0 0 0 0
4(h4) • 0 0 0 0 0 0
5(h5) • 0 0 0 0 0 0
6(h6) • 0 0 0 0 0 0

T 3.2
Non-zero ̺ and σ values represented with “•” marker.

(
I 0

−hgy(0) −hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
−

(
I 0

−hgy(0) −hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
=

= h

(
f
(
yi, zi

)
g
(
yi, zi

)
)
− h

(
f (ŷi, ẑi)
g(ŷi, ẑi)

)
+



O

(
hM+2

)

O
(
hM+2

)

 ,

(
I 0

−hgy(0) −hgz(0)

) (
∆yi+1
∆zi+1

)
−

(
I 0

−hgy(0) −hgz(0)

) (
∆yi
∆zi

)
=

= h

(
f
(
yi, zi

)
− f

(
ŷi, ẑi

)
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+2

)

 ,

(
I 0

−gy(0) −gz(0)

) (
∆yi+1
∆zi+1

)
=

(
I 0

−gy(0) −gz(0)

) (
∆yi
∆zi

)
+

+

(
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+1

)

 ,

(
∆yi+1
∆zi+1

)
=

(
∆yi
∆zi

)
+

(
I 0

−gy(0) −gz(0)

)−1 (
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+

+

(
I 0

−gy(0) −gz(0)

)−1 

O

(
hM+2

)

O
(
hM+1

)

 ,

(
∆yi+1
∆zi+1

)
=

(
∆yi
∆zi

)
+

(
I 0

O(1) −gz(0)
−1

) (
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+1

)

 .

The application of the Lipschitz condition on f (y, z) and g(y, z) gives
( ∥∥∥∆yi+1

∥∥∥
‖∆zi+1‖

)
≤

(
I 0
O(1) ζ

) ( ∥∥∥∆yi
∥∥∥

‖∆zi‖

)
+



O

(
hM+2

)

O
(
hM+1

)

 , (3.22)

where |ζ| < 1 if H is sufficiently small. Using Lemma C.1 (see Appendix C) gives∥∥∥∆yi
∥∥∥ + ‖∆zi‖ = O

(
hM+1

)
.

Nextwe continue to investigate the orders for the extrapolationwith basemethod
(3.7). The following (harmonic) sequence is considered n j = {1, 2, 3, . . . } and h j =
H/n j. We define the components

Y jk = yh j (x0 +H) , Z jk = zh j (x0 +H) , (3.23)
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α(1)
{1} ���a(2)(·) ���a(3)(·) ���a(4)(·) ���a(5)(·) ���a(6)(·) ���a(7)(·)

α(1)
{2}

α(2)
{1,2}

α(1)
{3}

α(2)
{2,3}

α(3)
{1,2,3}

α(1)
{4}

α(2)
{3,4}

α(3)
{2,3,4}

α(4)
{1,2,3,4}

α(1)
{5}

α(2)
{4,5}

α(3)
{3,4,5}

α(4)
{2,3,4,5}

α(5)
{1,2,3,4,5}

α(1)
{6}

α(2)
{5,6}

α(3)
{4,5,6}

α(4)
{3,4,5,6}

α(5)
{2,3,4,5,6}

α(6)
{1,2,3,4,5,6}

α(1)
{7}

α(2)
{6,7}

α(3)
{5,6,7}

α(4)
{4,5,6,7}

α(5)
{3,4,5,6,7}

α(6)
{2,3,4,5,6,7}

α(7)
{1,2,3,4,5,6,7}

Perturbation coefficients for y jk

β(1)
{1} ���b(2)(·) ���b(3)(·) ���b(4)(·) ���b(5)(·) ���b(6)(·) ���b(7)(·)

β(1)
{2}

β(2)
{1,2}

β(1)
{3}

β(2)
{2,3}

β(3)
{1,2,3}

β(1)
{4}

β(2)
{3,4}

β(3)
{2,3,4}

β(4)
{1,2,3,4}

β(1)
{5}

β(2)
{4,5}

β(3)
{3,4,5}

β(4)
{2,3,4,5}

β(5)
{1,2,3,4,5}

β(1)
{6}

β(2)
{5,6}

β(3)
{4,5,6}

β(4)
{3,4,5,6}

β(5)
{2,3,4,5,6}

β(6)
{1,2,3,4,5,6}

β(1)
{7}

β(2)
{6,7}

β(3)
{5,6,7}

β(4)
{4,5,6,7}

β(5)
{3,4,5,6,7}

β(6)
{2,3,4,5,6,7}

β(7)
{1,2,3,4,5,6,7}

Perturbation coefficients for z jk
T 3.3

Extrapolated perturbation error propagation. The entries represent the perturbations that affect the solutions
in the extrapolation tableau.

which represent the numerical solution of (3.4) after j steps with step size h j, extrap-

olated with (2.3a); i.e., on the kth column of the extrapolation tableau. We make the
following remarks that will aid the understanding of the next result.

1. Each extrapolation step (2.3a) cancels one smooth term ({a, b}( j)) from the
error expansion (3.8).

2. The perturbations α and β propagate through the extrapolation steps (2.3a)
in the form described by Table 3.3. Furthermore, we note that the accuracy
of the solution on the extrapolation tableau diagonal is affected by terms

{α, β}
( j)

1
.

3. Nonzero smooth terms a(0) and b(0) affect theperturbationsα0 and β0 through

(3.12a); e.g., b(2)(0) , 0⇒ β(2)
0
, 0.

We prove the following result which follows the theorems presented in [Hairer
et al., 1993b, chap. VI, Thm. 5.4] or in [Deuflhard et al., 1987].
T 3.2 (Accuracy for the extrapolated W-IMEX applied to DAEs). If we

consider the harmonic sequence {1, 2, 3, . . . }, then the extrapolated values Y jk and Z jk satisfy

Y jk − y(x0 + h) = O (H
r jk) , Z jk − z(x0 + h) = O (H

s jk) , (3.24)

where the differential-algebraic orders r jk and s jk are given in Table 3.4 up to j = 12, k = 12.
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1 2|2|2|2 ���a(2)(·) ���a(3)(·) ���a(4)(·) ���a(5)(·) ���a(6)(·) ���a(7)(·) ���a(8)(·) ���a(9)(·) ���a(10)(·) ���a(11)(·) ���a(12)(·)

2 2|2|2|2 3|3|2|3
3 2|2|2|2 3|3|2|3 4|3|3|3
4 2|2|2|2 3|3|2|3 4|3|3|3 5|4|3|4
5 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|3|4
6 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|4|5 6|5|3|4

7 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|4|5 6|5|3|4

8 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|5|6 7|6|4|5 6|5|3|4

9 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|5|6 7|6|4|4 6|5|3|4

10 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|6|7 8|7|5|6 7|6|4|5 6|5|3|4

11 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|7|7 8|8|6|7 8|7|5|6 7|6|4|5 6|5|3|4

12 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|7|7 8|8|7|8 9|8|6|7 8|7|5|6 7|6|4|5 6|5|3|4

1 2 3 4 5 6 7 8 9 10 11 12

Orders (r jk) for component y jk for Linearly implicit|W-IMEX|Pure-IMEX|Split-IMEX

1 2|2|1|2 ���b(2)(·) ���b(3)(·) ���b(4)(·) ���b(5)(·) ���b(6)(·) ���b(7)(·) ���b(8)(·) ���b(9)(·) ���b(10)(·) ���b(11)(·) ���b(12)(·)

2 2|2|1|2 2|2|2|2
3 2|2|1|2 2|2|2|2 3|3|2|3
4 2|2|1|2 2|2|2|2 3|3|3|3 4|4|2|3
5 2|2|1|2 2|2|2|2 3|3|3|3 4|4|3|4 4|4|2|3
6 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|3|4 4|4|2|3

7 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|4|5 5|5|3|4 4|4|2|3

8 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|4|5 5|5|3|4 4|4|2|3

9 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|5|6 6|6|4|5 5|5|3|4 4|4|2|3

10 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|6|6 7|7|5|6 6|6|4|5 5|5|3|4 4|4|2|3

11 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|6|6 7|7|6|7 7|7|5|6 6|6|4|5 5|5|3|4 4|4|2|3

12 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|6|6 7|7|7|7 8|8|6|7 7|7|5|6 6|6|4|5 5|5|3|4 4|4|2|3

1 2 3 4 5 6 7 8 9 10 11 12

Orders (s jk) for component z jk for Linearly implicit|W-IMEX|Pure-IMEX|Split-IMEX

T 3.4
Theoretical local extrapolation orders for linearly implicit, W-IMEX, Pure-IMEX, and Split-IMEX methods for index-1 DAEs. Bold face fonts represent the “best” or optimal choice

for a given number of steps.
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Proof. We use the expansion (3.8). It follows from (3.9a) (i.e., α(1)
i
= β(1)

i
= 0) and

from (3.12a) that a(x0) = 0 and b(x0) = 0. Since a
( j)(x) and b( j)(x) are smooth functions,

we obtain a(1)(x0+H) = O(H) and b
(1)(x0+H) = O(H) and thus the errors in Y j1 andZ j1

are ofO(H2), which gives the first column entries in Table 3.4 for theW-IMEX scheme.

In the same way we deduce that a(2)(x0+ h) = O(H); however, since β
(2)
0
, 0, by (3.12a)

we have that b(2)(0) , 0 (in general), and b(2)(x0 + h) = O(1). One extrapolation of the
numerical method eliminates the terms with j = 1 in (3.8). The error is thus O(H3)
for Y j2 and O(H

2) for Z j2. Equivalently, if we expand (3.8) to


y1 − y(x1) = h

1
(
a(1)(x1) + α

(1)
1

)
+ h2

(
a(2)(x1) + α

(2)
1

)
+ . . .

z1 − z(x1) = h
1
(
b(1)(x1) + β

(1)
1

)
+ h2

(
b(2)(x1) + β

(2)
1

)
+ . . .

,

which gives


y1 − y(x1) = h

1 (O(H) + 0) + · · · = O
(
H2

)

z1 − z(x1) = h
1 (O(H) + 0) + · · · = O

(
H2

) .

However, for j = 2 we have a(2)(x0 + h) = O(H) and b
(2)(x0 + h) = O(1), and thus


y1 − y(x1) = h

2 (O(H) + 0) + · · · = O
(
H3

)

z1 − z(x1) = h
2 (O(1) + 0) + · · · = O

(
H2

) .

If we continue, the smooth parts of (3.8) are eliminated one by one; however,
the perturbations are not, and the approximation orders are reduced as follows.
One order is “lost” on columns y j3 and z j2 due to O(1) smooth part expansion,
however, thereafter the orders are increasing by using the extrapolation formula
(2.3a) that cancels the smooth terms. The nonzero perturbation terms affect the
orders of the extrapolation method by propagating through (2.3a) as shown in Table

3.3. Specifically, for y jk components we have: α
(5)
1
, 0 which limits the order on the

diagonal for y j j, j ≥ 6 to 4. Using the same argument, it can be shown that the first
sub-diagonal y j j−1, j ≥ 8 is limited to 5 and the second one y j j−2, j ≥ 10 is limited to 6

due to α(6)
2
, 0 and α(7)

3
, 0, respectively, and so on. Similarly, for z jk components we

have z j j, j ≥ 5 to 3; z j j−1, j ≥ 7 to 4; and z j j−2, j ≥ 9 to 5, due to β
(4)
1
, 0, β(5)

2
, 0, and

β(6)
3
, 0, respectively. This process can be continued to find all the entries in Table 3.4.

Of particular interest is the location of the term in the extrapolation tableau that
yields the maximum order of accuracy for a given number of steps j; i.e., the column
that has the highest power ofH for a given row number. A quick inspection of Table
3.4 reveals that the best choice is T j, j for j ≤ 4; T j, ( j−1)/2+3 for j ≥ 5 and odd; and T j, j/2+2
for j ≥ 6 and even. Weusedbold face fonts to identify the locationof themost accurate
yielding extrapolation tableau term. In Table 3.4 we also show the theoretical orders
for the extrapolated linearly implicit Euler method (2.4a) as described in [Hairer
et al., 1993b; Deuflhard et al., 1987]. The “best” terms are selected by first identifying
the most accurate stiff components and then matching them with the best non-stiff
counterparts.
We next investigate the error expansion for the other two proposed extrapolated

methods.
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3.2. Pure-IMEXMethod. Applying the Pure-IMEXmethod (2.4c) to (3.3) yields

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
I 0

−hgy(0) εI − hgz(0)

)
f
(
yi, zi

)
+ hg

(
yi, zi

)
or

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
g
(
yi, zi

)
− hgy(0) f

(
yi, zi

)
)
, (3.25)

The reduced form given by ε→ 0 is

(
I 0

−hgy(0) −hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
g
(
yi, zi

)
− hgy(0) f

(
yi, zi

)
)
, (3.26)

or

(
I 0
0 −hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
g
(
yi, zi

)
)
. (3.27)

We next formulate a similar pair of theorems (error expansions and extrapolated
orders) for the extrapolated Pure-IMEXmethod.

T 3.3 (Global error expansion of the extrapolated Pure-IMEX method
applied to DAEs). Consider problem (3.4) with consistent initial values (y0, z0), and
suppose that (3.5) is satisfied. The global error of the Pure-IMEX scheme (3.26) then has an
asymptotic h-expansion of the form (3.8) with a( j)(x) and b( j)(x) are smooth functions and the
perturbations satisfy

α(1)
i
= 0 , ∀i ≥ 0 , (3.28a)

α(2)
i
= 0 , β(1)

i
= 0 , ∀i ≥ 1 , α(3)

i
= 0 , β(2)

i
= 0 , ∀i ≥ 2 , (3.28b)

α
( j)

i
= 0 , ∀i ≥ j − 1 , j ≥ 4 , (3.28c)

β
( j)

i
= 0 , ∀i ≥ j , j ≥ 3 . (3.28d)

The error terms in (3.8) are uniformly bounded for xi = ih ≤ H, if H is sufficiently small.

Proof. This proof follows the same ideas used in the proof of Theorem 3.1. We
begin with part (a) in which the truncated expansions are constructed. The second
part can be shown easily following the same steps as in the W-IMEX method. We
shall focus on the first part only.

We consider again the truncated expansions (3.10) with small defects

(
I 0

−hgy(0) −hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= h

(
f (ŷi, ẑi)

g(ŷi, ẑi) − hgy(0) f (ŷi, ẑi)

)
+ O

(
hM+1

)
.

(3.29)

The initial values are exact and the perturbation terms satisfy (3.12). Replacing the
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Taylor expansion for f (ŷi, ẑi) and g(ŷi, ẑi) about (y(xi), z(xi)) in (3.29) yields

(
I 0

−hgy(0) −hgz(0)

)
· (3.30)

·



hy′(xi) +

h2

2 y
′′(xi) + · · · + h

2
(
a(1)

)′
(xi) + h

(
α(1)
i+1
− α(1)

i

)
+ h3

(
a(2)

)′
(xi) + h

2
(
α(2)
i+1
− α(2)

i

)
+ . . .

hz′(xi) +
h2

2 z
′′(xi) + · · · + h

2
(
b(1)

)′
(xi) + h

(
β(1)
i+1
− β(1)

i

)
+ . . .


 =

=



h f

(
y(xi), z(xi)

)
+ fy (xi)

(
h2a(1)(xi) + h

2α(1)
i
+ . . .

)

hg
(
y(xi), z(xi)

)
+ gy (xi)

(
h2a(1)(xi) + h

2α(1)
i
+ . . .

)

+

+



fz (xi)

(
h2b(1)(xi) + h

2β(1)
i
+ . . .

)
+ . . .

gz (xi)
(
h2b(1)(xi) + h

2β(1)
i
+ . . .

)
+ . . .


 +

(
0

−h2gy(0) f
(
y(xi), z(xi)

)
)
+ O

(
hM+2

)
.

The coefficients of h1 in (3.30) give

(
y′(xi) +

(
α(1)
i+1
− α(1)

i

)

0

)
=

(
f
(
y(xi), z(xi)

)
g
(
y(xi), z(xi)

)
)
.

Using the consistency requirements (3.12b) gives (3.4) and hence α(1)
i
= 0, ∀i ≥ 0. The

coefficients of h2 give the following equations

1

2
y′′(x) +

(
a(1)

)′
(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (3.31a)

− gy(0) y
′(x) − gz(0) z

′(x) = gy (x) a
(1)(x) + gz (x) b

(1)(x) − f (x)gy(0) , (3.31b)
(
α(2)
i+1
− α(2)

i

)
= fz (0) β

(1)
i
, (3.31c)

− gz(0)
(
β(1)
i+1
−�

�β(1)
i

)
=����
gz (0) β

(1)
i
. (3.31d)

This system can be solved by using (3.5) and computing b(1)(x) in (3.31b) to give

b(1)(x) = −gz (x)
−1

[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x) − f (x)gy(0)
]
,

then we replace it into (3.31a) to yield

1

2
y′′(x) +

(
a(1)

)′
(x) =

= fy (x) a
(1)(x) − fz (x) gz (x)

−1
[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x) − f (x)gy(0)
]
,

(
a(1)

)′
(x) +

(
fz (x) gz (x)

−1gy (x) − fy (x)
)
a(1)(x) =

= −
1

2
y′′(x) − fz (x) gz (x)

−1
[
gy(0) y

′(x) + gz(0) z
′(x) − f (x)gy(0)

]
.

Using (3.12a) and α(1)
0
= 0 we have again that a(1)(0) = 0. Therefore a(1)(x) and b(1)(x)

are uniquely determined by (3.31a) and (3.31b). In contrast with theW-IMEXmethod
(3.14b), the left hand side of (3.31b) does not vanish anymore:

gy (0) a
(1)(0) + gz (0) b

(1)(0) = f (0)gy(0)⇒ gz (0) b
(1)(0) = f (0)gy(0)⇒ b

(1)(0) , 0 .

By (3.12a) we also have that β(1)
0
, 0. In general we have that β(1)

i
= 0, ∀i ≥ 1 due to

(3.31d) and together with (3.31c) and (3.12b) we obtain α(2)
i
= 0, ∀i ≥ 1.
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Next we investigate the coefficients of h3 which for the smooth part give

(
a(2)

)′
(x) = fy(x) a

(2)(x) + fz(x) b
(2)(x) + r(2)(x) , (3.32a)

0 = gy(x) a
(2)(x) + gz(x) b

(2)(x) + s(2)(x) , (3.32b)

where r(2)(x) and s(2)(x) are known functions which depend on derivatives of y(x),
z(x), a(1)(x), b(1)(x), and can be shown to be

r(2)(x) = −
1

6
y′′′(x)+ (3.33a)

+
1

2
fyy(x)

(
a(1)

)2
(x) +

1

2
fzz(x)

(
b(1)

)2
(x) + fyz(x)a

(1)(x)b(1)(x) ,

s(2)(x) =
1

2
gy(0)y

′′(x) +
1

2
gz(0)z

′′(x) + gy(0)
(
a(1)

)′
(x) + gz(0)

(
b(1)

)′
(x)+ (3.33b)

+
1

2
gyy(x)

(
a(1)

)2
(x) +

1

2
gzz(x)

(
b(1)

)2
(x) + gyz(x)a

(1)(x)b(1)(x) −
(
fy(x)a

(1)(x) + fz(x)b
(1)(x)

)
gy(0) .

The perturbations can be expressed as

α(3)
i+1
− α(3)

i
= fy(0)α

(2)

i
+������
fyz(0)α

(1)

i
β(1)
i
+ fz(0)β

(2)

i
+������1

2
(α(1)
i
)2 fyy(0) +

1

2
(β(1)
i
)2 fzz(0)−

−
(
����
fy(0)α

(1)
i
+ fz(0)β

(1)
i

)
gy(0) + β

(1)
i
b(1)(0) fzz(0) · · · ,

− gy(0)
(
α(2)
i+1
− α(2)

i

)
− gz(0)

(
β(2)
i+1
− β(2)

i

)
=����
gy(0)α

(2)

i
+������
gyz(0)α

(1)

i
β(1)
i
+ gz(0)β

(2)

i
+

+�������1

2
(α(1)
i
)2gyy(0) +

1

2
(β(1)
i
)2gzz(0) + β

(1)
i
b(1)(0)gzz(0) + · · · ,

where the vanishing terms have been canceled. It follows that

α(3)
i+1
− α(3)

i
= fy(0)α

(2)

i
+ β(1)

i
(. . . ) + fz(0)β

(2)

i
, (3.34a)

0 = gz(0)β
(2)
i+1
+ β(1)

i
(. . . ) + α(2)

i
(. . . ) . (3.34b)

From (3.34) we have that β(2)
i
= 0, ∀i ≥ 2 and α(3)

i
= 0, ∀i ≥ 2. This concludes the proof

for hypotheses (3.28a) and (3.28b). The general recurrence follows

(
a( j)

)′
(x) = fy(x) a

( j)(x) + fz(x) b
( j)(x) + r j(x) , (3.35a)

0 = gy(x) a
( j)(x) + gz(x) b

( j)(x) + s j(x) , (3.35b)

α
( j+1)

i+1
− α

( j+1)

i
= fz(0)β

( j)

i
+ ̺
( j)

i
, (3.35c)

0 = gz(0)β
( j)

i+1
+ σ

( j)

i
, (3.35d)

where the smooth terms are determined by (3.35a) and (3.35b). Hypotheses (3.28c)
and (3.28d) can be easily verified following the same type of induction on (3.35a) and
(3.35b) as in the proof of Theorem 3.1.
T3.4 (Accuracy for the extrapolatedPure-IMEXmethodapplied toDAEs).

If we consider the harmonic sequence {1, 2, 3, . . . }, then the extrapolated values Y jk and Z jk
satisfy

Y jk − y(x0 + h) = O (H
r jk) , Z jk − z(x0 + h) = O (H

s jk) , (3.36)
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where the differential-algebraic orders r jk and s jk are given in Table 3.4.

Proof. The orders in Table 3.4 for the Pure-IMEX method can be recovered by
using the same procedure as in the proof of Theorem 3.2 with the error expansion

given by Theorem 3.3. Themajor differences are given by the fact that now α(2)
0
is non-

zero and thus one classical order is “lost” on the second column of the y component.

Then α(3)
1
gives the third order on the diagonal. For the z component, β(1)

0
is nonzero

and hence the first column of the z component is 1. Furthermore, β(2)
1
does not vanish

and thus the diagonal Tkk is 2 for k ≥ 2. The rest follows from the propagation of
error terms as described by Table 3.3.

3.3. Split-IMEXMethod. The Split-IMEX method (2.4d) applied to (3.3) yields

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
I 0

−hgy(0) εI − hgz(0)

) (
f
(
yi, zi

)
0

)
+

+ h




0

g
(
yi + h f (yi, zi), zi

)

 or

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h




f
(
yi, zi

)

g
(
yi + h f (yi, zi), zi

)
− hgy(0) f

(
yi, zi

)

 ,

(3.37)

The DAE reduced form given by ε→ 0 is

(
I 0

−hgy(0) −hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h




f
(
yi, zi

)

g
(
yi + h f (yi, zi), zi

)
− hgy(0) f

(
yi, zi

)

 .

(3.38)

We continue with a similar pair of theorems (error expansions and extrapolated
orders) for the extrapolated Split-IMEX method.

T 3.5 (Global error expansion of the extrapolated Split-IMEX method
applied to DAEs). Consider problem (3.4) with consistent initial values (y0, z0), and
suppose that (3.5) is satisfied. The global error of the Split-IMEX scheme (3.38) then has an
asymptotic h-expansion of the form (3.8) with a( j)(x) and b( j)(x) are smooth functions and the
perturbations satisfy

α(1)
i
= 0 , α(2)

i
= 0 , β(1)

i
= 0 , ∀i ≥ 0 , (3.39a)

α(3)
i
= 0 , β(2)

i
= 0 , ∀i ≥ 1 , (3.39b)

α
( j)

i
= 0 , ∀i ≥ j − 2 , j ≥ 4 , (3.39c)

β
( j)

i
= 0 , ∀i ≥ j − 1 , j ≥ 3 . (3.39d)

The error terms in (3.8) are uniformly bounded for xi = ih ≤ H, if H is sufficiently small.

Proof. This proof follows the same ideas used in the proof of Theorem 3.1. We
begin with part (a) in which the truncated expansions are constructed. The second
part can be shown easily following the same steps as in the W-IMEX case.
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We consider again the truncated expansions (3.10) with defects

(
I 0

−hgy(0) −hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= (3.40)

= h




f (ŷi, ẑi)

g
(
ŷi + h f (ŷi, ẑi), ẑi

)
− hgy(0) f (ŷi, ẑi)


 + O

(
hM+1

)
.

The initial values are exact and the perturbation terms satisfy (3.12). Replacing the
Taylor expansion for f (ŷi, ẑi) and g(ŷi, ẑi) about (y(xi), z(xi)) in (3.40) yields

(
I 0

−hgy(0) −hgz(0)

)
· (3.41)

·



hy′(xi) +

h2

2 y
′′(xi) + h

2
(
a(1)

)′
(xi) + h

(
α(1)
i+1
− α(1)

i

)
+ h3

(
a(2)

)′
(xi) + h

2
(
α(2)
i+1
− α(2)

i

)
+ . . .

hz′(xi) +
h2

2 z
′′(xi) + · · · + h

2
(
b(1)

)′
(xi) + h

(
β(1)
i+1
− β(1)

i

)
+ . . .


 =

=



h f

(
y(xi), z(xi)

)
+ fy (xi)

(
h2a(1)(xi) + h

2α(1)
i
+ . . .

)

hg
(
y(xi), z(xi)

)
+ gy (xi)

(
h2a(1)(xi) + h

2α(1)
i
+ . . .

)

+

+



fz (xi)

(
h2b(1)(xi) + h

2β(1)
i
+ . . .

)
+ . . .

gz (xi)
(
h2b(1)(xi) + h

2β(1)
i
+ . . .

)
+ . . .


+

+

(
0 . . .

−h2gy(0) f
(
y(xi), z(xi)

)
+ h2gy(xi) f

(
y(xi), z(xi)

)
+ . . .

)
+ O

(
hM+2

)
.

The coefficients of h1 in (3.41) give

(
y′(xi) +

(
α(1)
i+1
− α(1)

i

)

0

)
=

(
f
(
y(xi), z(xi)

)
g
(
y(xi), z(xi)

)
)
.

Using the consistency requirements (3.12b) gives (3.4) and hence α(1)
i
= 0, ∀i ≥ 0. The

h2 terms give the following system:

1

2
y′′(x) +

(
a(1)

)′
(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (3.42a)

− gy(0) y
′(x) − gz(0) z

′(x) = gy (x) a
(1)(x) + gz (x) b

(1)(x) + f (x)gy(x) − f (x)gy(0) ,
(3.42b)

(
α(2)
i+1
− α(2)

i

)
= fz (0) β

(1)
i
, (3.42c)

− gz(0)
(
β(1)
i+1
−�

�β(1)
i

)
=����
gz (0) β

(1)
i
. (3.42d)

The differential equation (3.42a-3.42b) can be solved by using (3.5) and computing
b(1)(x) in (3.31b) to give

b(1)(x) = −gz (x)
−1

[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x) + f (x)gy(x) − f (x)gy(0)
]
,
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and then by replacing it into (3.14a) yields

1

2
y′′(x) +

(
a(1)

)′
(x) =

= fy (x) a
(1)(x) − fz (x) gz (x)

−1
[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x) + f (x)gy(x) − f (x)gy(0)
]
,

(
a(1)

)′
(x) +

(
fz (x) gz (x)

−1gy (x) − fy (x)
)
a(1)(x) =

= −
1

2
y′′(x) − fz (x) gz (x)

−1
[
gy(0) y

′(x) + gz(0) z
′(x) + f (x)gy(x) − f (x)gy(0)

]
.

Using (3.12a) and α(1)
0
= 0 we have again that a(1)(0) = 0. Therefore a(1)(x) and b(1)(x)

are uniquely determined by (3.42a) and (3.42b). The left hand side of (3.42b) at x = 0
gives:

gy (0) a
(1)(0) + gz (0) b

(1)(0) + f (0)gy(0) − f (0)gy(0) = 0⇒ gz (0) b
(1)(0) = 0⇒ b(1)(0) = 0 .

By (3.12a) and (3.42d) we also have that β(1)
0
= 0 and in general β(1)

i
= 0, ∀i ≥ 0 due to

(3.42d). Further, by using (3.42c) and (3.12b) we obtain α(2)
i
= 0, ∀i ≥ 0.

Next we investigate the coefficients of h3 which for the smooth part give

(
a(2)

)′
(x) = fy(x) a

(2)(x) + fz(x) b
(2)(x) + r(2)(x) , (3.43a)

0 = gy(x) a
(2)(x) + gz(x) b

(2)(x) + s(2)(x) , (3.43b)

where r(2)(x) and s(2)(x) are known functions which depend on derivatives of y(x),
z(x), a(1)(x), b(1)(x), and can be shown to be

r(2)(x) = −
1

6
y′′′(x)+ (3.44a)

+
1

2
fyy(x)

(
a(1)

)2
(x) +

1

2
fzz(x)

(
b(1)

)2
(x) + fyz(x)a

(1)(x)b(1)(x) ,

s(2)(x) =
1

2
gy(0)y

′′(x) +
1

2
gz(0)z

′′(x) + gy(0)
(
a(1)

)′
(x) + gz(0)

(
b(1)

)′
(x)+ (3.44b)

+
(
fy(x)a

(1)(x) + fz(x)b
(1)(x)

)
gy(x) +

1

2
gyy(x)

(
a(1)(x) + f (x)

)2
+

+
1

2
gzz(x)

(
b(1)

)2
(x) + gyz(x)

(
a(1)(x) + f (x)

)
b(1)(x) −

(
fy(x)a

(1)(x) + fz(x)b
(1)(x)

)
gy(0) .

The perturbations can be expressed as

α(3)
i+1
− α(3)

i
=����
fy(0)α

(2)
i
+������
fyz(0)α

(1)
i
β(1)
i
+ fz(0)β

(2)
i
+������1

2
(α(1)
i
)2 fyy(0) +������1

2
(β(1)
i
)2 fzz(0)−

−
(((((((((((((
fy(0)α

(1)
i
+ fz(0)β

(1)
i

)
gy(0) +�������

β(1)
i
b(1)(0) fzz(0) + · · · ,

(((((((((
−gy(0)

(
α(2)
i+1
− α(2)

i

)
− gz(0)

(
β(2)
i+1
− β(2)

i

)
=����
gy(0)α

(2)
i
+������
gyz(0)α

(1)
i
β(1)
i
+ gz(0)β

(2)
i
+

+�������1

2
(α(1)
i
)2gyy(0) +������1

2
(β(1)
i
)2gzz(0) +�������

β(1)
i
b(1)(0)gzz(0) + · · · ,

where the vanishing terms have been canceled. It follows that

α(3)
i+1
− α(3)

i
= fz(0)β

(2)
i
, (3.45a)

0 = gz(0)β
(2)

i+1
. (3.45b)
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From (3.45) we have that β(2)
i
= 0, ∀i ≥ 1 and α(3)

i
= 0, ∀i ≥ 1.

The coefficients in h4 reveal that the perturbations satisfy

α(4)
i+1
− α(4)

i
= fy(0)α

(3)
i
+ fz(0)β

(3)
i
, (3.46a)

0 = gz(0)β
(3)
i+1
+ gy(0)α

(3)
i+1
+ f (0)gyz(0)β

(2)
i
. (3.46b)

From (3.46) we have that β(3)
i
= 0, ∀i ≥ 2 and α(4)

i
= 0, ∀i ≥ 2. This concludes the proof

for hypotheses (3.39a) and (3.39b). The general recurrence formula follows as

(
a( j)

)′
(x) = fy(x) a

( j)(x) + fz(x) b
( j)(x) + r j(x) , (3.47a)

0 = gy(x) a
( j)(x) + gz(x) b

( j)(x) + s j(x) , (3.47b)

α
( j+1)

i+1
− α

( j+1)

i
= fz(0)β

( j)

i
+ ̺
( j)

i
, (3.47c)

0 = gz(0)β
( j)

i+1
+ σ

( j)

i
, (3.47d)

where the smooth terms are determined by (3.47a) and (3.47b). Hypotheses (3.39c)
and (3.39d) can be easily verified following the same type of induction on (3.47a) and
(3.47b) as in the proof of Theorem 3.1.
T 3.6 (Accuracy for the extrapolated Split-IMEXmethodapplied toDAEs).

If we consider the harmonic sequence {1, 2, 3, . . . }, then the extrapolated values Y jk and Z jk
satisfy

Y jk − y(x0 + h) = O (H
r jk) , Z jk − z(x0 + h) = O (H

s jk) , (3.48)

where the differential-algebraic orders r jk and s jk are given in Table 3.4.
Proof. The orders in Table 3.4 for the Split-IMEX method can be recovered by

using the same procedure as in the proof of Theorem 3.2 with the error expansion

given by Theorem 3.5. In contrast with the proof of Theorem 3.4, α(3)
0
is non-zero

and thus one classical order is “lost” on the third column of the y component. Then

α(4)
1
gives the fourth order on the diagonal. For the z component, β(2)

1
is nonzero and

hence the second column of the z component is 2. Furthermore, β(3)
1
does not vanish

and thus the diagonal Tkk is 3 for k ≥ 3. The rest follows from the propagation of
error terms as described by Table 3.3.
The previous theorem concludes the set of theoretical results for the proposed

three extrapolation IMEXmethods applied to DAEs. The results point to theW-IMEX
scheme as being the most accurate; however, from the implementation point of view,
the Split-IMEX scheme is superior. The Split-IMEX method gives a good balance
between accuracy and computational cost.

4. Numerical Results for Extrapolated IMEX Applied to DAEs. We illustrate
the theoretical findings using two DAE examples: the reduced van der Pol equation
and a trigonometric problem developed by us. The reduced van der Pol equation
comes from the stiff van der Pol ODE with ε → 0 which is a typical example for
numerical stiffness analysis. In this case the numerical results using Split-IMEX have
a slightly higher order than what the theory predicts. We explain this phenomenon
and use the trigonometric equation to illustrate that the numerical orders concurwith
the theoretical ones.
Schemes (2.4) are implemented in MatlabR© using variable precision arithmetic

with 64 digits of accuracy. For van der Pol a reference solution is computed with very
high accuracy.
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Methods (2.4) are implemented in the following way:

(
yi+1
zi+1

)
=

(
yi
zi

)
+ h

(
I − h fy(0) −h fz(0)
−hgy(0) −hgz(0)

)−1 (
f
(
yi, zi

)
g
(
yi, zi

)
) [

linearly
implicit

]
(4.1a)

(
yi+1
zi+1

)
=

(
yi
zi

)
+ hJ̃−1

(
f
(
yi, zi

)
g
(
yi, zi

)
)

[W-IMEX] (4.1b)

(
yi+1
zi+1

)
=

(
yi
zi

)
+ h

(
f
(
yi, zi

)
0

)
+ hJ̃−1

(
0

g
(
yi, zi

)
)

[Pure-IMEX] (4.1c)

(
yi+1
zi+1

)
=

(
yi+1
zi+1

)
+ hJ̃−1

(
0

g
(
yi, zi

)
) [

Split-
IMEX

]
(4.1d)

where

J̃ =

(
I 0

−hgy(0) −hgz(0)

)
,

(
yi+1
zi+1

)
=

(
yi
zi

)
+ h

(
f
(
yi, zi

)
0

)
.

The experiments consist in integrating the problem by taking successively smaller
steps H while using the same sequence n j.

4.1. Experiments with the Van Der Pol Equation. The reduced van der Pol
equation is given by

y′ = −z = f (y, z)

0 = y −
(
z3

3 − z
)
= g(y, z)

. (4.2)

We take y(0) = −2 and z(0) = −2.355301397608119909925287735864250951918 . . .
which satisfies g(y(0), z(0)) = 0. The values of H range from 10−1 to 10−4.5.
The orders based on the local errors are given in Table 4.1. The experimental

orders should be compared with the theoretical ones given in Table 3.4. We note that
the experimental orders verify the theoretical conclusions for the linearly implicit,
W-IMEX, and the Pure-IMEX method.
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2.0|2.0|2.0|2.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|3.0|4.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.1|5.0|3.0|5.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.1|5.0|4.0|5.0 6.1|5.1|3.0|5.1

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.1|5.0|5.0|5.0 6.2|6.0|4.0|6.0 5.9|5.0|3.0|5.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.2|5.0|5.0|5.0 6.2|6.0|5.0|6.0 8.4|5.8|4.0|5.8 5.9|5.0|3.0|5.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.2|5.0|5.0|5.0 6.2|6.0|6.0|6.0 7.3|7.0|5.0|7.0 7.0|6.0|4.0|6.0 (6)|4.9|2.9|4.9

1 2 3 4 5 6 7 8 9

Orders component y jk (linearly implicit|W-IMEX|Pure-IMEX|Split-IMEX)

2.0|2.0|1.0|2.0

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0 3.0|3.0|3.0|3.0 4.0|4.0|2.0|4.0

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0 3.0|3.0|3.0|3.0 4.0|4.0|3.0|4.0 4.1|4.1|2.0|4.1

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0 3.0|3.0|3.0|3.0 4.0|4.0|4.0|4.0 5.0|5.0|3.0|5.0 3.9|4.0|2.0|4.0

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0 3.0|3.0|3.0|3.0 4.0|4.0|4.0|4.0 5.0|5.0|4.0|5.0 4.6|4.8|3.0|4.8 3.9|4.0|2.0|4.0

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0 3.0|3.0|3.0|3.0 4.0|4.0|4.0|4.0 5.0|5.0|5.0|5.0 6.0|6.0|4.0|6.0 5.0|5.0|3.0|5.0 3.8|3.9|1.9|3.9

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0 3.0|3.0|3.0|3.0 4.0|4.0|4.0|4.0 5.0|5.0|5.0|5.0 6.0|6.0|5.0|6.0 6.2|6.1|4.0|6.1 4.9|5.0|3.0|5.0 (4)|(4)|(2)|(4)

1 2 3 4 5 6 7 8 9

Orders component z jk (linearly implicit|W-IMEX|Pure-IMEX|Split-IMEX)
T 4.1

Numerical local extrapolation orders for linearly implicit, W-IMEX, Pure-IMEX, and Split-IMEX methods for index-1 DAEs (based on L1 error norm). These results can be
compared with the theoretical ones presented in Table 3.4.
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The experimental orders for the Split-IMEX method are higher than the orders
predicted by the theory. We can explain this disagreement bypaying a closer attention
at equation (4.2) and note that gyz is zero. If we factor this in (3.46b) we find that

the perturbation factor β(3)
2
is zero and leads to α(4)

2
= 0. This effectively increases the

order by one on the diagonal terms corresponding to the y and z components.
Next we explore an example that has gyz non-zero in order to illustrate the

theoretical findings for the Split-IMEX method.

4.2. Experiments with a Trigonometric Equation. We next investigate the nu-
merical solution of the following DAE discretized using the Split-IMEX method

y′ =
y2

z

√
y2

z2
− 1

= f (y, z)

0 = z2 −
1

1 + y2
− y2

(
1

z2
− 1

)
= g(y, z)

. (4.3)

The exact solution is y(t) = sinh(t), z(t) = tanh(t). We start with t0 = 0.5 and note that
gyz is nonzero. The experimental orders for Split-IMEX are shown in Table 4.2. The
orders can be verified to be the same as the theoretical ones given in Table 3.4. We
note that the results are harvested automatically and some entries are not integers.
This happens due to some variation of the convergence slope which is either due to
linearly unstable results or round-off. The edited places are marked in parentheses.

5. Global Error Expansion for Extrapolated IMEX Methods Applied to stiff
ODEs. In this section we extend the theoretical results for the global error expansion
of extrapolated implicit-explicit methods applied to stiff ODEs. For this analysis
we consider the following singular perturbation system [Hairer and Lubich, 1988;
Auzinger et al., 1990]

y′ = f (y, z) , y(0) = y0
εz′ = g(y, z) , z(0) = z0 , 0 < ε≪ 1 ,

(5.1)

which is solved using the W-IMEX (3.6), Pure-IMEX (3.25), and Split-IMEX (3.37)
schemes. The favorable convergence results obtained for DAEs in the previous
sections do not extend directly to the stiff ODEs (ε , 0 , ε ≤ h). In this case,
the asymptotic expansions of the global error is more complicated, especially for
“small” values of H. Moreover, different convergence regimes can be identified for
the numerical approximations in the extrapolation tableau that depend on H/ε. We
study the asymptotic behavior of the global error for the proposed IMEX methods
and explore the reasons for the changes in their convergence slope.

5.1. W-IMEX. We start with the W-IMEX method and consider equations of the
following form (in line with (3.16))

a′ = fy(x)a + fz(x)b + c(x, ε) ,
εb′ = gy(x)a + gz(x)b + d(x, ε) .

(5.2)

Their solution describedbyLemmaC.2will be the basis for proving the next theorems
which are the second set of main results of this paper.
T 5.1 (Global error expansion for the extrapolatedW-IMEX applied to stiff

ODEs). Assume that the solution of (5.1) is smooth. Under the condition (given by (C.3))

∥∥∥(I − γgz(0)
)−1∥∥∥ ≤ 1

1 + γ
for γ ≥ 1 , (5.3)
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1 2.0

2 1.9 3.0

3 1.9 3.0 3.0

4 2.0 3.0 2.9 4.0

5 2.0 3.0 3.0 4.0 4.0

6 2.0 3.0 3.0 3.9 4.9 4.0

7 2.0 3.0 3.0 4.0 4.9 4.9 4.1

8 2.0 3.0 3.0 4.0 4.9 5.9 4.9 (4)

9 2.0 3.0 3.0 4.0 4.9 5.9 5.9 5.0 (4)

10 2.0 3.0 3.0 4.0 4.9 5.9 6.9 5.9 5.0 (4)

11 2.0 3.0 3.0 4.0 4.9 5.9 6.8 6.9 5.9 5.1 (4)

12 2.0 3.0 3.0 4.0 4.9 5.9 6.8 8.1 6.9 6.0 5.2 (4)

1 2 3 4 5 6 7 8 9 10 11 12

Orders component y jk

1 2.0

2 2.0 2.0

3 2.2 2.0 3.0

4 1.8 2.0 2.9 3.0

5 1.9 2.0 2.9 4.0 3.0

6 1.9 2.0 2.9 3.9 4.0 3.1

7 1.9 2.0 2.9 3.9 5.0 4.0 3.2

8 1.9 2.0 2.9 3.9 4.9 4.9 4.0 (3)

9 2.0 2.0 2.9 3.9 4.9 6.0 5.0 4.0 (3)

10 2.0 2.0 2.9 3.9 4.9 5.9 5.9 5.0 4.1 (3)

11 2.0 2.0 3.0 3.9 4.9 5.9 7.0 5.9 5.0 4.2 (3)

12 2.0 2.0 3.0 3.9 4.9 5.9 6.9 6.9 6.0 5.0 4.3 (3)

1 2 3 4 5 6 7 8 9 10 11 12

Orders component z jk
T 4.2

Numerical approximation of the extrapolated local orders for the trigonometric DAE using the Split-IMEX
scheme (based on L1 error norm).

the numerical solution of (3.6) possesses for ε ≤ h a perturbed asymptotic expansion of the
form

yi = y(xi) + ha
(1)(xi) + h

2a(2)(xi) + O(h
3)− (5.4a)

− ε fz(0)g
−1
z (0)

(
I −
h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

zi = z(xi) + hb
(1)(xi) + h

2b(2)(xi) + O(h
3)− (5.4b)

−

(
I −
h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,
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where xi = ih ≤ H with H sufficiently small independent of ε. The smooth functions
a(1)(0) = O(εh), a(2)(0) = O(h), b(1)(0) = O(ε), b(2)(0) = O(1).

Proof. The proof goes along the lines of Theorem 3.1 also [Hairer et al., 1993b,
chap. VI, Thm. 5.6] and [Hairer and Lubich, 1988]. See also a similar approach
for implicit Euler [Auzinger et al., 1990]. We start by considering the truncated
expansions

ŷi = y(xi) +

M∑

j=1

h j
(
a( j)(xi) + α

( j)

i

)

ẑi = z(xi) +

M∑

j=1

h j
(
b( j)(xi) + β

( j)

i

) , (5.5)

such that

(
I 0

−hgy(0) εI − hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= h

(
f
(
ŷi, ẑi

)
g
(
ŷi, ẑi

)
)
+ O

(
hM+2

)
, (5.6)

is satisfied.

a). The smooth functions a(x) and b(x) depend on ε, but are independent of h.

The perturbation terms α
( j)

i
and β

( j)

i
, ∀i ≥ 1 depend smoothly on ε and ε/h. We also

consider (3.12a) and (3.12b) satisfied.

M = 0. This case is easily verified.

M = 1. We insert (5.5) in (5.6) and compare the smooth coefficients of h2:

(
a(1)

)′
(x) +

1

2
y′′(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (5.7a)

1

2
ε z′′(x) − gy(0) y

′(x) − gz(0) z
′(x) + ε

(
b(1)

)′
(x) = gy (x) a

(1)(x) + gz (x) b
(1)(x) , (5.7b)

By Lemma C.2, the initial value b(1)(0) is uniquely determined by a(1)(0). Differentiat-
ing εz′(x) = g(y(x), z(x)) gives

εz′′(x) = gy(x) y
′(x) + gz(x) z

′(x) ,

and inserting it in (5.7b) at x = 0 yields

gy (0) a
(1)(0) + gz (0) b

(1)(0) = −
1

2

(
gy (0) y

′ (0) + gz (0) z
′(0)

)

︸                            ︷︷                            ︸
εz′′(0)

+ ε
(
b(1)

)′
(0) ,

gy (0) a
(1)(0) + gz (0) b

(1)(0) = O(ε) (5.8)

with known right-hand side. The perturbation terms up to O(h2) give

α(1)
i+1
− α(1)

i
= h fy(xi)α

(1)
i
+ h fz(xi)β

(1)
i
, (5.9a)

ε
(
β(1)
i+1
− β(1)

i

)
− hgy(0)

(
α(1)
i+1
− α(1)

i

)
− hgz(0)

(
β(1)
i+1
− β(1)

i

)
= hgy(xi)α

(1)
i
+ hgz(xi)β

(1)
i
.

(5.9b)
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Next we try to eliminate as many terms in (5.9) as possible by replacing fy(xi) with
fy(0), gy(xi) with gy(0), and so on. With xi = ih, the following substitution is of order
h: fy(xi) − fy(0) = O(h) due to i ≤ 1. Then we are left with

α(1)
i+1
− α(1)

i
= h fy(0)α

(1)
i
+ h fz(0)β

(1)
i
+ O(h2)

ε
(
β(1)
i+1
− β(1)

i

)
− hgy(0)

(
α(1)
i+1
− α(1)

i

)
− hgz(0)

(
β(1)
i+1
− β(1)

i

)
= hgy(0)α

(1)
i
+ hgz(0)β

(1)
i

.

After further cancellations we obtain
α(1)
i+1
− α(1)

i
= h fy(0)α

(1)

i
+ h fz(0)β

(1)

i
+ O(h2)

ε
(
β(1)
i+1
− β(1)

i

)
− hgy(0)α

(1)
i+1
− hgz(0)β

(1)
i+1
= O(h2)

. (5.10)

In (5.10), second expression, we note that β(1)
i+1
is multiplied by ε whereas α(1)

i+1
is not

and thus can be ignored (for ε≪ h). Then we get

α(1)
i+1
− α(1)

i
= h fz(0)β

(1)
i

(5.11a)

ε
(
β(1)
i+1
− β(1)

i

)
= hgz(0)β

(1)
i+1
, (5.11b)

We next analyze the solutions of (5.7), (5.11) when substituted in (5.6). From
(5.11b) we obtain

β(1)
i+1
=

(
I −
h

ε
gz(0)

)−1
β(1)
i
,

β(1)
1
=

(
I −
h

ε
gz(0)

)−1
β(1)
0
,

β(1)
2
=

(
I −
h

ε
gz(0)

)−1
β(1)
1
=

(
I −
h

ε
gz(0)

)−1 (
I −
h

ε
gz(0)

)−1
β(1)
0
=

(
I −
h

ε
gz(0)

)−2
β(1)
0
,

with

β(1)
i
=

(
I −
h

ε
gz(0)

)−i
β(1)
0
. (5.12)

Substituting (5.12) in (5.11a) and using (3.12b) gives

α(1)
i+1
− α(1)

i
= h fz(0)β

(1)
i
= h fz(0)

(
I −
h

ε
gz(0)

)−i
β(1)
0
,

α(1)
i
= α(1)

i+1
− h fz(0)

(
I −
h

ε
gz(0)

)−i
β(1)
0
, α(1)
i+1
= α(1)

i+2
− h fz(0)

(
I −
h

ε
gz(0)

)−(i+1)
β(1)
0

α(1)
i
= α(1)

i+2
− h fz(0)

(
I −
h

ε
gz(0)

)−(i+1)
β(1)
0
− h fz(0)

(
I −
h

ε
gz(0)

)−i
β(1)
0

α(1)
i
= α(1)

i+2
− h fz(0)



(
I −
h

ε
gz(0)

)−(i+1)
+

(
I −
h

ε
gz(0)

)−i β
(1)
0
,

α(1)
i
= α(1)∞ − h fz(0)

∞∑

k=1

(
I −
h

ε
gz(0)

)−k (
I −
h

ε
gz(0)

)−i+1
β(1)
0
,

α(1)
i
= −h fz(0)

(
−
h

ε
gz(0)

)−1 (
I −
h

ε
gz(0)

)−i+1
β(1)
0
= ε fz(0)g

−1
z (0)

(
I −
h

ε
gz(0)

)−i+1
β(1)
0
.

(5.13)

30



Expression (5.13) at i = 0 with ε ≤ h yields

α(1)
0
= ε fz(0)g

−1
z (0)

(
I −
h

ε
gz(0)

)
β(1)
0
= O(h) β(1)

0
= O(εh) . (5.14)

In the previous relation we used (5.8) and (3.12a) to bound β(1)
0
. The consistency

assumptions (3.12a); i.e., a( j)(0)+α
( j)

0
= 0 , b( j)(0)+β

( j)

0
= 0, with (5.8) and (5.14) and by

using Lemma C.2 guarantee that the coefficients a(1)(0), b(1)(0), α(1)
0
, β(1)
0
are uniquely

determined; moreover, we have a(1)(0) = O(εh) and b(1)(0) = O(ε) (α(1)
i
= O(εh),

β(1)
i
= O(ε) ). Now the relation (5.6) can be verified for M = 1, ε ≤ h as follows.

Replacing (5.5) in (5.6) gives

h
(
α(1)
i+1
− α(1)

i
+ y′

)
+ h2

(
1

2
y′′ +

(
a(1)

)′
(x)

)
=

= h
(
f (x)

)
+ h2

((
α(1)
i
+ a(1)(x)

)
fy(x) +

(
β(1)
i
+ b(1)(x)

)
fy(x)

)
+ O

(
h3

)
,

hε
(
β(1)
i+1
− β(1)

i
+ z′

)
+ h2

(
1

2
εz′′ + gy(0)

(
α(1)
i
− α(1)

i+1

)
+ gz(0)

(
β(1)
i
− β(1)

i+1

)
− z′gz(0) − y

′gy(0) + ε
(
b(1)

)′
(x)

)
=

= h
(
g(x)

)
+ h2

((
α(1)
i
+ a(1)(x)

)
gy(x) +

(
β(1)
i
+ b(1)(x)

)
gz(x)

)
+ O

(
h3

)
.

Smooth terms a(1)(x),
(
a(1)

)′
(x), b(1)(x),

(
b(1)

)′
(x) will cancel all O(1) terms according to

(5.7) except for the perturbation terms which require α(1)
i
= O(h2) and β(1)

i
= O(h). It

follows that relation (5.6) is satisfied for α(1)
i
= O(εh) and β(1)

i
= O(ε), ε ≤ h.

M = 2. We again insert (5.5) in (5.6) and compare the smooth coefficients of h3:

(
a(2)

)′
(x) +

1

6
y′′′(x) = (5.16a)

= a(2)(x) fy (x) +
1

2
a21(x) fyy (x) + a

(1)(x)b(1)(x) fyz (x) + fz (x) b
(2)(x) +

1

2
b21(x) fzz (x) ,

1

6
ε z′′′(x) −

1

2
gy(0) y

′′(x) −
1

2
gz(0) z

′′(x) − gy(0)
(
a(1)

)′
(x) − gz(0)

(
b(1)

)′
(x) + ε

(
b(2)

)′
(x) =

(5.16b)

= gy (x) a
(2)(x) + gz (x) b

(2)(x) +
1

2
gyy (x) a

2
1(x) + gyz (x) a

(1)(x)b(1)(x) +
1

2
gzz (x) (b

(1)(x))2 ,

which has the same form as (5.2): Equation (5.16a) gives

(
a(2)

)′
(x) = a(2)(x) fy (x) + fz (x) b

(2)(x) + c(x, ε) ,

c(x, ε) = −
1

6
y′′′(x) +

1

2
a21(x) fyy (x) + a

(1)(x)b(1)(x) fyz (x) +
1

2
b21(x) fzz (x) .

Using εz′(x) = g(y(x), z(x)) yields

εz′′′(x) = gy(x) y
′′(x) + gz(x) z

′′(x)+

+
(
gyz(x)z

′(x) + gyy(x)y
′(x)

)
y′(x) +

(
gzz(x)z

′(x) + gyz(x)y
′(x)

)
z′(x) ,
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and then inserting it in (5.16b) gives

ε
(
b(2)

)′
(x) = gy (x) a

(2)(x) + gz (x) b
(2)(x) + d(x, ε) ,

d(x, ε) = −
1

6

[(
gyz(x)z

′(x) + gyy(x)y
′(x)

)
y′(x) +

(
gzz(x)z

′(x) + gyz(x)y
′(x)

)
z′(x)

]

+
1

2
gy(0) y

′′(x) +
1

2
gz(0) z

′′(x) + gy(0)
(
a(1)

)′
(x) + gz(0)

(
b(1)

)′
(x)

−
1

6

(
gy(x) y

′′(x) + gz(x) z
′′(x)

)
+
1

2
gyy (x) a

2
1(x) + gyz (x) a

(1)(x)b(1)(x) +
1

2
gzz (x) (b

(1)(x))2

Further, by evaluating at x = 0 we obtain

ε
(
b(2)

)′
(0) = gy (0) a

(2)(0) + gz (0) b
(2)(0) + d(0, ε) ,

d(0, ε) = −
1

6

[(
gyz(0)z

′(0) + gyy(0)y
′(0)

)
y′(0) +

(
gzz(0)z

′(0) + gyz(0)y
′(0)

)
z′(0)

]
+

+
1

3
gy(0) y

′′(0) +
1

3
gz(0) z

′′(0) + gy(0)
(
a(1)

)′
(0) + gz(0)

(
b(1)

)′
(0)+

+
1

2
gyy (0) a

2
1(0) + gyz (0) a

(1)(0)b(1)(0) +
1

2
gzz (0) (b

(1)(0))2 .

It follows from Lemma C.2 and d(0, ε) = O(1) that

gy (0) a
(2)(0) + gz (0) b

(2)(0) = O(1) . (5.17)

Just as in theM = 1 case, for the perturbations we require

α(2)
i+1
− α(2)

i
= h fz(0)β

(2)
i

(5.18a)

ε
(
β(2)
i+1
− β(2)

i

)
= hgz(0)β

(2)
i+1
, (5.18b)

and

β(2)
i
=

(
I −
h

ε
gz(0)

)−i
β(2)
0
, (5.19a)

α(2)
i
= ε fz(0)g

−1
z (0)

(
I −
h

ε
gz(0)

)−i+1
β(2)
0
, (5.19b)

α(2)
0
= ε fz(0)g

−1
z (0)

(
I −
h

ε
gz(0)

)
β(2)
0
, (5.19c)

are obtained just as for (5.12), (5.13), and (5.14), respectively. The values a(1)(0), b(1)(0),

α(1)
0
, β(1)
0
are uniquely determined by (3.12a), (5.17) and (5.19c). We again remark

that by using Lemma C.2 together with (5.16) gives a(2)(0) = O(h) and b(1)(0) = O(1);

moreover, by using (3.12a) we obtain that α(2)
i
= O(h) for ε ≤ h. The verification of

(5.6) forM = 2 is very tedious, but it can be shown to be satisfied in general using the
following remarks. The coefficients of h1 can be ignored since they vanish for large

i’s. The assumption (5.3) gives β(1)
i
= O

(
ε2−i

)
and β(2)

i
= O

(
2−i

)
. These terms can also

be neglected; however, in practice, they can give additional convergence regimes that
quickly vanish. The convergence (H → 0, H/ε → ∞) will have different slopes that
are determined by the ratio of H and ε.
This analysis gets very complicated for M ≥ 3; however, we do not need to go

any further to understand the error behavior in practical applications.
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b). The second part of the proof consists in estimating a bound on the reminder
term just as we did for the proof of Theorem 3.1; i.e., differences ∆yi = yi − ŷi and
∆zi = zi − ẑi. Subtracting (5.6) from (3.6) and eliminating ∆yi and ∆zi gives

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
−

(
I 0

−hgy(0) εI − hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
=

= h

(
f
(
yi, zi

)
g
(
yi, zi

)
)
− h

(
f (ŷi, ẑi)
g(ŷi, ẑi)

)
+



O

(
hM+2

)

O
(
hM+2

)

 ,

(
I 0

−hgy(0) εI − hgz(0)

) (
∆yi+1
∆zi+1

)
−

(
I 0

−hgy(0) εI − hgz(0)

) (
∆yi
∆zi

)
=

= h

(
f
(
yi, zi

)
− f

(
ŷi, ẑi

)
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+2

)

 ,

(
I 0

−gy(0)
ε
h I − gz(0)

) (
∆yi+1
∆zi+1

)
=

(
I 0

−gy(0)
ε
h I − gz(0)

) (
∆yi
∆zi

)
+

+

(
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+1

)

 ,

(
∆yi+1
∆zi+1

)
=

(
∆yi
∆zi

)
+

(
I 0

−gy(0)
ε
h I − gz(0)

)−1 (
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+

+

(
I 0

−gy(0)
ε
h I − gz(0)

)−1 

O

(
hM+2

)

O
(
hM+1

)

 .

Finally, we obtain
(
∆yi+1
∆zi+1

)
=

(
∆yi
∆zi

)
+

+



I 0

O(1)
(
ε
h I − gz(0)

)−1


(
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+1

)

 .

Due to (5.3) and ε ≤ hwe have

∥∥∥∥∥I +
(
ε

h
I − gz(0)

)−1
gz(0)

∥∥∥∥∥ =
∥∥∥∥∥∥∥

(
I −
h

ε
gz(0)

)−1∥∥∥∥∥∥∥
≤
ε

ε + h
≤
1

2
. (5.20)

We therefore obtain (3.22) with |ζ| < 1 and H is sufficiently small. Using the same

procedure as in in the proof of Theorem 3.1 we obtain
∥∥∥∆yi

∥∥∥ + ‖∆zi‖ = O
(
hM+1

)
.

A close inspection of (5.4) reveals that the global error has different regimeswhen
ε ≤ h. We now focus on the global error expansion of the stiff component (5.4) which
gives the following leading term

Z j1 =

(
I −
h

ε
gz(0)

)−n j+1 (
hb(1)(0) + h2b(2)(0)

)
,

Z j1 = h
2

(
I −
h

ε
gz(0)

)−n j+1
b(2)(0) .
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We further consider gz(0) ∝ −1 and with H = h/n j we have

T j1 =

(
H

εn j

)2 (
1 +

H

εn j

)−n j+1
b(2)(0) and

Z j1 = ε
2T j1b

(2)(0) .

The error propagates through the extrapolation tableau through (2.3a). Similar to the
behavior of the global error for the linearly implicit method [Hairer et al., 1993b, pp.
438], the first sub-diagonal (T j j−1) with n1 = 1 gives

T j j−1 = const.
(
H

ε

)2−n2
+ O

((
H

ε

)2−n2)
,

where the constant is determined by (2.3a). This suggests a superposition of the the

convergence slopes predicted for DAEs and a factor O
(
ε2

)
.

5.2. Pure-IMEX Method. We now consider the Pure-IMEX method applied to
SPP (5.1) to give (3.25).

T 5.2 (Global error expansion for the extrapolated Pure-IMEX method
applied to stiff ODEs). Assume that the solution of (5.1) is smooth. Under the condition
(5.3) the numerical solution of (3.25) possesses for ε ≤ h a perturbed asymptotic expansion
of the form

yi = y(xi) + ha
(1)(xi) + h

2a(2)(xi) + O(h
3)− (5.21a)

− ε fz(0)g
−1
z (0)

(
I −
h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

zi = z(xi) + hb
(1)(xi) + h

2b(2)(xi) + O(h
3)− (5.21b)

−

(
I −
h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

where xi = ih ≤ H with H sufficiently small independent of ε. The smooth functions
a(1)(0) = O(h), a(2)(0) = O(h), b(1)(0) = O(1), b(2)(0) = O(1).

Proof. The proof goes along the same lines as for Theorem 5.1. We begin with the
same assumptions (5.2), (5.5), and (5.6) becomes

(
I 0

−hgy(0) εI − hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= h

(
f
(
ŷi, ẑi

)
g
(
ŷi, ẑi

)
− hgy(0) f

(
ŷi, ẑi

)
)
+



O

(
hM+1

)

O
(
hM+1

)

 .

(5.22)

ForM = 1 we obtain

(
a(1)

)′
(x) +

1

2
y′′(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (5.23a)

1

2
ε z′′(x) − gy(0) y

′(x) − gz(0) z
′(x) + ε

(
b(1)

)′
(x) = gy (x) a

(1)(x) + gz (x) b
(1)(x) − f (x)gy(0) ,

(5.23b)
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Equation (5.23b) leads to

gy (0) a
(1)(0) + gz (0) b

(1)(0) = −
1

2

(
gy (0) y

′ (0) + gz (0) z
′(0)

)

︸                            ︷︷                            ︸
εz′′(0)

+ f (0)gy(0)︸    ︷︷    ︸
O(1)

+ ε
(
b(1)

)′
(0) ,

gy (0) a
(1)(0) + gz (0) b

(1)(0) = O(1) (5.24)

with known right-hand side. The perturbation terms up to O(h2) give the same
expression as in the W-IMEX case (5.9) that yields (5.10) and eventually (5.11). The

values for α(1)
i
and β(1)

i
are given by (5.13) and (5.12), respectively. By using the

consistency assumptions (3.12a) and (5.12) we obtain

α(1)
0
= ε fz(0)g

−1
z (0)

(
I −
h

ε
gz(0)

)
β(1)
0
= O(h) β(1)

0
= O(h) , (5.25)

which yields a(1)(0) = O(h) and b(1)(0) = O(1) (α(1)
i
= O(h), β(1)

i
= O(1)). With these

assumptions (5.22) can be verified.
ForM = 2 we have the following expansions:

(
a(2)

)′
(x) +

1

6
y′′′(x) = (5.26a)

= a(2)(x) fy (x) +
1

2
a21(x) fyy (x) + a

(1)(x)b(1)(x) fyz (x) + fz (x) b
(2)(x) +

1

2
b21(x) fzz (x) ,

1

6
ε z′′′(x) −

1

2
gy(0) y

′′(x) −
1

2
gz(0) z

′′(x) − gy(0)
(
a(1)

)′
(x) − gz(0)

(
b(1)

)′
(x) + ε

(
b(2)

)′
(x) =

(5.26b)

= − fy(x)gy (0) a
(1)(x) − fz(x)gy (0) b

(1)(x)+

+ gy (x) a
(2)(x) + gz (x) b

(2)(x) +
1

2
gyy (x) a

2
1(x) + gyz (x) a

(1)(x)b(1)(x) +
1

2
gzz (x) (b

(1)(x))2 ,

which has the same form as (5.2). We obtain again (5.17) and (5.19). Finally, using
b(2)(0) = O(1) yields a(2)(0) = O(h) and b(1)(0) = O(1). The rest is similar to the proof
of Theorem 5.1 The convergence behavior of this method is very similar to the one
discussed for the W-IMEX scheme (Sec. 5.1); however, in this case the superposition
of the error has a factor of O (ε).

5.3. Split-IMEX Method. We consider the Split-IMEX method applied to SPP
(5.1) to give (3.37).
T 5.3 (Global error expansion for the extrapolated Split-IMEX method

applied to stiff ODEs). Assume that the solution of (5.1) is smooth. Under the condition
(5.3) the numerical solution of (3.37) possesses for ε ≤ h a perturbed asymptotic expansion
of the form

yi = y(xi) + ha
(1)(xi) + h

2a(2)(xi) + O(h
3)− (5.27a)

− ε fz(0)g
−1
z (0)

(
I −
h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

zi = z(xi) + hb
(1)(xi) + h

2b(2)(xi) + O(h
3)− (5.27b)

−

(
I −
h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,
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where xi = ih ≤ H with H sufficiently small independent of ε. The smooth functions
a(1)(0) = O(εh), a(2)(0) = O(h), b(1)(0) = O(ε), b(2)(0) = O(1).

Proof. The proof goes along the same lines as for Theorem 5.1. We begin with the
same assumptions (5.2), (5.5), and (5.6) becomes

(
I 0

−hgy(0) εI − hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= h




f
(
ŷi, ẑi

)

g
(
ŷi + h f

(
ŷi, ẑi

)
, ẑi

)
− hgy(0) f

(
ŷi, ẑi

)

 +



O

(
hM+2

)

O
(
hM+2

)

 .

(5.28)

ForM = 1 we obtain

(
a(1)

)′
(x) +

1

2
y′′(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (5.29a)

1

2
ε z′′(x) − gy(0) y

′(x) − gz(0) z
′(x) + ε

(
b(1)

)′
(x) = gy (x) a

(1)(x) + gz (x) b
(1)(x) + f (x)

(
gy(x) − gy(0)

)
,

(5.29b)

Equation (5.29b) leads to

gy (0) a
(1)(0) + gz (0) b

(1)(0) = −
1

2

(
gy (0) y

′ (0) + gz (0) z
′(0)

)

︸                            ︷︷                            ︸
εz′′(0)

+ ε
(
b(1)

)′
(0) ,

gy (0) a
(1)(0) + gz (0) b

(1)(0) = O(ε) (5.30)

with known right-hand side. We continue with an in-depth analysis for the rest of
the proof because some derivations are not obvious. The perturbation terms up to
O(h2) give the same expression as in the W-IMEX case (5.34) that yields (5.10) and
eventually (5.11):

α(1)
i+1
− α(1)

i︸     ︷︷     ︸
(5.11a)

=�����
h fy(xi)α

(1)
i
+ h fz(xi)β

(1)
i︸     ︷︷     ︸

(5.11a)

, (5.31a)

ε
(
β(1)
i+1
− β(1)

i

)

︸         ︷︷         ︸
(5.11b)

+ h



−
��������(
α(1)
i+1
− α(1)

i

)
gy(0) −



β(1)
i+1︸︷︷︸

(5.11b)

− �
�β(1)
i︸︷︷︸
O(h)



gz(0)



= (5.31b)

= h
(
�����
gy(xi)α

(1)
i
+����
gz(xi)β

(1)
i

)
+ h2

(
����
α(2)
i
gy(x) +�

�β(2)
i
gz(x)

)
.

The values for α(1)
i
and β(1)

i
are given by (5.13) and (5.12), respectively. By using the

consistency assumptions (3.12a) and (5.12) we obtain

α(1)
i
= −h fz(0)

(
−
h

ε
gz(0)

)−1 (
I −
h

ε
gz(0)

)−i+1
β(1)
0
= ε fz(0)g

−1
z (0)

(
I −
h

ε
gz(0)

)−i+1
β(1)
0
.

and

α(1)
0
= ε fz(0)g

−1
z (0)

(
I −
h

ε
gz(0)

)
β(1)
0
= O(h) β(1)

0
= O(εh) , (5.32)
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which yields a(1)(0) = O(εh) and b(1)(0) = O(ε) (α(1)
i
= O(εh), β(1)

i
= O(ε)). With these

assumptions (5.22) can be verified.
ForM = 2 we have the following expansions:

(
a(2)

)′
(x) +

1

6
y′′′(x) = (5.33a)

= a(2)(x) fy (x) +
1

2
a21(x) fyy (x) + a

(1)(x)b(1)(x) fyz (x) + fz (x) b
(2)(x) +

1

2
b21(x) fzz (x) ,

1

6
ε z′′′(x) −

1

2
gy(0) y

′′(x) −
1

2
gz(0) z

′′(x) − gy(0)
(
a(1)

)′
(x) − gz(0)

(
b(1)

)′
(x) + ε

(
b(2)

)′
(x) =

(5.33b)

= − fy(x)gy (0) a
(1)(x) − fz(x)gy (0) b

(1)(x) + a(1)(x) fy(x)gy(x) + b
(1)(x) fz(x)gy(x)+

+ gy (x) a
(2)(x) + gz (x) b

(2)(x) +
1

2
gyy (x)

(
a(1)(x) + f (x)

)2
+ gyz (x)

(
a(1)(x) + f (x)

)
b(1)(x) +

1

2
gzz (x)

(
b(1)(x)

)2
,

which have the same form as (5.2). We also have

α(1)
i+1
− α(1)

i︸     ︷︷     ︸
(5.31a)

+ h
(
α(2)
i+1
− α(2)

i

)
=�����
h fy(xi)α

(1)
i
+ h fz(xi)β

(1)
i︸     ︷︷     ︸

(5.31a)

+ (5.34a)

+ h2
(
����
fy(xi)α

(2)
i
+ fz(xi)β

(2)
i
+
1

2

(
α(1)
i

)2
fyy(xi) + α

(1)
i
β(1)
i
fyz(xi) +

1

2

(
β(1)
i

)2
fzz(xi)

)
,

ε
(
β(1)
i+1
− β(1)

i

)

︸         ︷︷         ︸
(5.31b)

+ h



ε
(
β(2)
i+1
− β(2)

i

)
−

��������(
α(1)
i+1
− α(1)

i

)
gy(0) −



β(1)
i+1︸︷︷︸

(5.31b)

− �
�β(1)
i︸︷︷︸
O(h)



gz(0)



− (5.34b)

− h2


�

�������(
α(2)
i+1
− α(2)

i

)
gy(0) +



β(2)
i+1
− �

�β(2)
i︸︷︷︸
O(h)



gz(0)



=

= h
(
�����
gy(xi)α

(1)
i
+����
gz(xi)β

(1)
i

)
+ h2

(
����
α(2)
i
gy(x) +�

�β(2)
i
gz(x)

)
+

+ h2



α(1)
i
fy(x)

(
gy(x) − gy(0)

)

︸            ︷︷            ︸
O(h)

+β(1)
i
fz(x)

(
gy(x) − gy(0)

)

︸            ︷︷            ︸
O(h)

+

+
1

2

(
α(1)
i

)2
gyy(xi) + α

(1)
i
β(1)
i
gyz(xi) +

1

2

(
β(1)
i

)2
gzz(x)

)
.

We obtain again (5.17) and (5.19). Finally, using b(2)(0) = O(1) yields a(2)(0) = O(h)
and b(1)(0) = O(1). The rest is similar to the proof of Theorem 5.1.

The convergence behavior of this method is asymptotically similar to the one
discussed for the W-IMEX scheme (Sec. 5.1).

6. Numerical Results for Extrapolated IMEXApplied to StiffODEs. We inves-
tigate the numerical properties of the proposed extrapolated IMEXmethods applied
to stiff ODEs. We consider two stiff ordinary differential equations: stiff van der
Pol and an example proposed by Hairer and Lubich [1988]. We also consider for
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comparison several IMEX Runge-Kutta schemes: [ARS(implicit stages, explicit (effec-
tive) stages, classical order)] (Ascher-Ruuth-Spiteri) developed by Ascher et al. [1997];
[PR(implicit stages, explicit (effective) stages, classical order)] (Pareschi and Russo) in-
troduced by Pareschi and Russo [2000]; and the [ARK order(embedded order)stages]
(Additive Runge-Kutta) methods developed by Kennedy and Carpenter [2003]. All
IMEX Runge-Kutta methods require solving a (non)linear system of equations. The
implicit part of the ARK methods is of ESDIRK type; i.e., explicit first stage with the
same value on the diagonal of the Butcher tableau, which improves the computation
efficiency.
The implementation is done in MatlabR© using high (64 digits) precision arith-

metic. The experiments consist in integrating the problem by taking successively
smaller steps H and computing the L1 error norm for each step size. We compare
the results of the proposed IMEX methods and the above mentioned IMEX Runge-
Kutta schemes with a third order reference solution computed with the stiff solver
RODAS 3 [Sandu et al., 1997] and a step size of 10−9. The nonlinear solver used in
the computation of the reference solution and in the IMEX Runge-Kutta methods
is implemented with classical Newton iterations. The process is stopped when the
difference between sequential iterates is below 10−25.

6.1. Van der Pol. We consider the van der Pol equation (see [Hairer et al., 1993b;
Boscarino, 2007])

y′ = z

ε z′ =
(
1 − y2

)
z − y

=

(
z
0

)

︸︷︷︸
= f (y,z)

+

(
0(

1 − y2
)
z − y

)

︸                ︷︷                ︸
=g(y,z)

(6.1)

with [Boscarino, 2007]

y(0) = 2 , z(0) = −
2

3
+
10

81
ε −
292

2187
ε2 −

1814

19683
ε3 + O

(
ε4

)
, ε = 10−5 . (6.2)

The stiff part is represented by z or g(y, z). In Figure 6.1 we show the error for the
stiff solution component (z) of the van der Pol equation using extrapolated linearly
implicit and IMEX methods (2.4) for the optimal convergence rates with 3, 6, 9, and
12 extrapolation steps; i.e., optimal k for each method’s T3 k, T6 k, T9 k, T12 k extrapo-
lation terms. The specific terms are selected from Table 3.4 for each method. The
convergence rates correspond to the theoretical expectations, the error decreasesuntil
it reaches O(ε) for Pure-IMEX and O(ε2) for the others.
We compare the IMEX extrapolation methods with several IMEX Runge-Kutta

methods. In Figure 6.2 we show the L1 error norm of the local errors of the stiff
component for second and third order PR methods, two third order ARS methods,
and third to fifth order ARK methods. The order reduction phenomenon can be
clearly seen. The convergence behavior is explained in detail in [Boscarino, 2007].
The computational cost of the IMEX extrapolation methods increases linearly

with each additional extrapolation step. For T jk one needs j( j + 1)/2 right-hand-
side evaluations. In contrast, for an si-implicit, se-explicit-stage IMEX Runge-Kutta
scheme, one needs ≈ [(se − si) + si × # of Newton iterations] function evaluations. In
this paper we do not focus on the actual computational cost which can change with
the implementation and application, and hence we shall not present any numerical
results regarding the cost.
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F. 6.1. Local error vs. step size for the stiff solution component of the van der Pol equation using extrapolated
linearly implicit and IMEX methods for the optimal convergence rates with 3, 6, 9, and 12 extrapolation steps; i.e.,
the optimal k for each method’s T3 k, T6 k, T9 k, T12 k.
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F. 6.3. Local error vs. step size for the stiff solution component of equation 6.3 investigated in [Hairer and
Lubich, 1988] using extrapolated linearly implicit and IMEX methods for the optimal convergence rates with 3, 6,
9, and 12 extrapolation steps.

6.2. Example from [Hairer andLubich, 1988]. In this sectionwepresent a second
stiff differential equation example presented in [Hairer and Lubich, 1988]:

y′ = −y
ε z′ = −

(
1 + y

)
z + y2

=

(
−y
0

)

︸  ︷︷  ︸
= f (y,z)

+

(
0

−
(
1 + y

)
z + y2

)

︸                  ︷︷                  ︸
=g(y,z)

(6.3)

y(0) = 0.3 , z(0) = 0.06923086345026332 , ε = 10−6 .

In Figure 6.3 we show the same results for the stiff solution components obtained
after one step (H)with the extrapolated linearly implicit andproposed IMEXmethods
using the same setting as in the previous section (6.1).
In Figure 6.4 we present the stiff component local errors using several IMEX

Runge-Kutta methods. The conclusions mirror the ones presented in Section 6.1.

7. Numerical Results for PDEs. We next investigate the discretization accuracy
of the advection-reaction (time dependent) PDE using the W-IMEX, Pure-IMEX,
and Split-IMEX schemes. In this section we use x as the spatial variable and t as
the temporal variable. The implementation is carried out in MatlabR© with double
precision.
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F. 6.4. Local error vs. step size for the stiff solution component of equation 6.3 proposed in [Hairer and
Lubich, 1988] using several IMEX Runge-Kutta methods and T6,5 Split-IMEX for comparison.

The estimated numerical order of convergence is computed by using the L1 error
norm given by L1(= ∆x/m

∑m
i=1 |Erri|), wherem is the number of variables, at the final

time using different step sizes (H).
We also discuss the order reduction phenomenon due to stiff boundary or source

terms [Sanz-Serna et al., 1987; Sanz-Serna and Verwer, 1989; Carpenter et al., 1995]
and explore numerically the behavior of the proposed IMEX methods is such cases.

7.1. Advection-Reaction Equation. We start with the advection-reaction PDE
and use the setting described in Hundsdorfer and Ruuth [2007]:

yt + α1 yx = −k1y + k2z + s1
zt + α2 zx = k1y − k2z + s2

,
0 < x < 1
0 < t ≤ 1

,
α1 = 1 , k1 = 106 , s1 = 0
α2 = 0 , k2 = 2k1 , s2 = 1

, (7.1)

with

y(x, 0) = 1 + s2x , z(x, 0) =
k1
k2
y(x, 0)+

1

k2
s2 y(0, t) = 1 − sin(12t)4 .

This example has two physics components: advection and reaction. We treat
the advection term explicitly and the reaction term implicitly due to its numerical
stiffness.
For the spatial discretization we use the fourth order central finite difference

scheme for the interior points and third order biased schemes at the domain bound-
aries. We consider a uniform grid: xi = i∆x, i = 1 . . .m with ∆x = 1/m. The solution
components for m = 400 at t = 1 and the inflow boundary condition are displayed
in Figure 7.1. The inflow boundary profile is propagated inside the domain through
the first component of (7.1).
The experimental orders are shown in Table 7.1. They are in accordance with

the theoretical predictions with some components having slightly more optimistic
results, which is expected due to the linearity of this example. The W-IMEX and
the Split-IMEX schemes give the best results, while the Pure-IMEX scheme is slightly
inferior. It is noteworthy that the experimental orders increase with the addition
of more terms in the extrapolation tableau. Although not seen here, with a more
complex example we conjecture that the W-IMEX method will have a higher order
of convergence than the Split-IMEX.
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(1)|1.0|(1)

(1)|1.0|(1) 2.0|1.0|2.0

1.0|1.0|1.0 2.0|1.0|2.0 3.0|1.9|3.0

1.2|1.0|1.2 2.0|1.0|2.0 3.0|2.0|3.0 (4)|(2)|(4)

1.0|1.0|1.0 2.0|1.0|2.0 3.0|2.0|3.0 4.0|(3)|4.0 5.0|(2)|5.0

1.0|1.0|1.0 2.0|1.0|2.0 3.0|2.0|3.0 4.0|(3)|4.0 (5)|3.0|(5) (6)|2.3|(6)

1.0|1.0|1.0 (2)|1.0|(2) 3.0|2.0|3.0 4.0|3.1|4.0 (5)|(4)|(5) (6)|(3)|(6) (6)|(2)|(6)
T 7.1

Numerical orders for the advection-reaction PDEwith extrapolatedW-IMEX|Pure-IMEX|Split-IMEX schemes
(tFinal = 1, m = 400)
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(a) Solution at t = 1 (b) Inflow function

F. 7.1. Illustration of (a) the advection-reaction solution and (b) the boundary inflow term (y(0, t)).

7.2. Boundary/Source Order Reduction. Extrapolation methods with explicit
methods such as the treatment of f in the proposed IMEX schemes can be represented
as explicit Runge-Kutta methods, which have the stage order equal to one. These
methods suffer from order reduction. In order to illustrate the boundary/source
order reduction phenomenon, we consider a classic test initial value problem with a
nonlinear source proposed in [Sanz-Serna et al., 1987]:

∂y

∂t
= −
∂y

∂x
+ b(x, t) ,

0 ≤ x ≤ 1
0 ≤ t ≤ 1

,
y(0, t) = b(0, t)
y(0, t) = y0(x)

, (7.2)

with the initial condition y0(x) = 1 + x and (left) boundary and source term defined
by b(x, t) = (t − x)/(1 + t)2. The exact solution, y(x, t) = (1 + x)/(1 + t), and the forcing
are illustrated in Figure 7.2. Because the solution is linear in space, the first order
upwind can be used in the space discretization without introducing discretization
errors.
Order reduction due to stiff boundary or source terms is discussed in [Brenner

et al., 1982]. Sanz-Serna et al. [1987] show that Runge-Kutta methods with p ≥ 3
suffer from order reduction. This theoretical result is also verified in our numerical
experiments. The discretization error is computed in the L∞ norm. Special bound-
ary/source treatment to avoid boundary/source order reduction have been discussed
in [Abarbanel et al., 1996; Carpenter et al., 1993; Pathria, 1997; Calvo and Palencia,
2002; Carpenter et al., 1995; Sanz-Serna and Verwer, 1989; Sanz-Serna et al., 1987].
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F. 7.2. The exact solution (top) and the forcing (bottom) used to illustrate the order reduction phenomenon.

Forward Euler Extrapolation Linear Implicit Euler Extrapolation
1.003
1.001 2.153
1.001 2.002 3.155
1.001 2.001 2.862 4.325
1.001 2.001 2.794 4.010 5.244

0.976
0.986 1.62
0.990 1.69 2.354
0.992 1.71 2.449 2.851
0.994 1.73 2.494 2.954 3.569

T 7.2
Illustration of the classical order retention

Case 1: Classical order retention. Here we consider a fixed spatial resolution:
∆x = 1/100. The numerical orders are displayed in Table 7.2.
Case 2: Order reduction. Herewe refine in space and timemaintaining aCFL of 0.5

[Laney, 1998]. In this case we notice order reduction to second order. The numerical
orders are displayed in Table 7.3.

7.2.1. Avoiding Order Reduction. On way to avoid order reduction is by inte-
grating the Dirichlet boundary condition along with the solution [Carpenter et al.,
1995]. For example (7.2) we have

∂y

∂t
= −

[
0
F(y)

]
+

[
b′(0, t)
b(x, t)

]
, F(y) ≈

∂y

∂x
, y(x, t) =

[
b(0, t)
y(x, t)

]
, (7.3)

with the same initial condition.
The numerical orders are estimated just as before for the two settings:
Case 1: Classical order retention. Here we consider a fixed spatial resolution:

∆x = 1/100. The numerical orders are displayed in Table 7.4.
Case 2: Order reduction. Herewe refine both in space and timemaintaining a CFL

of 0.5. In this case we notice order reduction to third order. The numerical orders are
displayed in Table 7.5.
The equivalence between the extrapolation methods and explicit or implicit

Runge-Kuttamethods has the potential to allow the strategy to avoid order reduction
applied to Runge-Kutta to be applied just as well to the extrapolation methods and
IMEX extrapolation methods.
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Forward Euler Extrapolation Linear Implicit Euler Extrapolation
0.999
0.998 1.900
0.997 1.899 2.032
0.997 1.898 2.032 2.006
0.997 1.898 2.031 2.033 2.019

0.913
0.917 1.010
0.918 1.010 1.014
0.919 1.010 1.014 1.015
0.919 1.010 1.014 1.015 1.006

T 7.3
Illustration of the order reduction phenomenon.

Forward Euler Extrapolation Linear Implicit Euler Extrapolation
1.003
1.001 2.002
1.001 2.001 3.003
1.001 2.001 3.003 4.174
1.001 2.001 3.003 3.877 4.360

1.000
1.000 2.001
0.999 2.002 2.461
0.999 2.002 2.530 3.150
0.999 2.002 2.560 3.248 3.699

T 7.4
Extended system - classical order retention

8. Implementation Considerations. In this section we present a few imple-
mentation considerations for the extrapolation methods, IMEX extrapolation, and
extrapolation methods applied to stiff systems.
Construction of extrapolationmethods. The extrapolationmethods can be described

as a set of increasingly accurate composite schemes. Lower order embedded approx-
imations are computed sequentially, which provides necessary information for a step
size (H) control strategy [Hairer et al., 1993b]. Because each computational step
in the extrapolation procedure is a consistent approximation of the solution, these
methods do not have predetermined number of extrapolation steps (rows in extrap-
olation tableau), and hence one can consider an adaptive order approach based on
error approximations given by the embedded lower order methods. Very high order
approximations are easily obtained with no limitation on the theoretical achievable
convergence order.
Cost, memory, and parallelization. In the classical setting (ε ≈ h), the extrapolation

methods are less efficient than the popular Runge-Kutta or linear multistep schemes
for the same classical order of accuracy. It is not clear, however, whether the pro-
posed IMEXmethods are less efficient because that they do not necessitate nonlinear
solver iterations. Moreover, the extrapolationmethods can be parallelizedvery easily
[Rauber andRünger, 1997]. Each entry on the first extrapolation tableau column (T j,1)
can be computed independently. Moreover, the computational cost is predetermined

Cost for T jk ∝
j( j + 1)

2
× function evaluations ,

and thus each entry can be optimally scheduled on multiprocessor/multicore archi-
tectures. This could lead to more efficient overall implementations with the total
computational cost ∝ j. In contrast, the IMEX Runge-Kutta methods have a compu-
tational cost proportional to the number of implicit stages multiplied by the number
of iterations required by the nonlinear solver.
The memory requirements for full extrapolation tableaux are proportional to

j( j+ 1)/2, however, as we discuss below, for stiff problems, a large number of tableau
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Forward Euler Extrapolation Linear Implicit Euler Extrapolation
0.999
0.998 2.000
0.997 1.999 2.893
0.997 1.999 2.893 3.025
0.997 1.99 2.893 3.022 2.993

0.988
0.987 1.915
0.987 1.915 2.006
0.987 1.915 2.007 2.008
0.987 1.915 2.007 2.008 2.009

T 7.5
Extended system - order reduction

entries need not be computed, and thus the number of registers required in practice
can be reduced.

Extrapolation methods for stiff systems. For stiff problems, the diagonal entries in
the extrapolation tableau are typically not the best approximations for a givennumber
of extrapolation steps. The theoretical results indicate that the errors propagate in the
diagonal direction. In order to avoid errors represented as perturbations (in the SPP
context) coming from previous extrapolation steps, and further savings are possible
by not computing diagonal and sub-diagonal extrapolation terms. The optimal
entries in the extrapolation tableau are emphasized in Table 3.4 given one of the three
proposed IMEX methods or the linearly implicit one. This is equivalent to starting
the extrapolation procedure with a shifted harmonic sequence n j = ℓ, ℓ + 1, . . . ,
j = 1, 2, . . . , and ℓ ≥ 1 can be chosen to include the optimal values (see Table 3.4).
If a sufficiently large number of extrapolation steps is computed then the diagonal
and an easy to estimate number of sub-diagonal entries need not be computed, and
hence alleviating computational and memory requirements.

9. Discussion. In this paper we construct extrapolated implicit-explicit dis-
cretization methods that allow to efficiently solve problems that have both stiff and
non-stiff components. These methods are well suited for the time integration of
multiphysics multiscale partial differential equations. We propose three new extrap-
olation methods: W-IMEX, Pure-IMEX, and Split-IMEX. These methods have very
low implementation costs and can reach easily very high orders of accuracy.
The W-IMEX method resembles the linearly implicit scheme in implementation

and performance, however, the W-IMEX scheme does not require the evaluation of
the entire Jacobian, which makes it computationally cheaper.
The closely relatedPure-IMEXandSplit-IMEXmethods are truly implicit-explicit

methods. The Split-IMEX method has the explicit part sequentially decoupled from
the implicit one and has more favorable properties than the Pure-IMEXmethod.
The methods under investigation can attain a very high discretization order for

ODEs, index-1 DAEs, and PDEs in the the method of lines framework. In this study
we have not extensively assessed the efficiencies of these methods, however, the
numerical tests indicate that they comparewell with existing IMEXRunge-Kutta and
linear multistep methods.
The proposed IMEX extrapolationmethods parallelize verywell and are apt to be

implemented on the emergingmulticore computational architectures. They have low
order embedded approximations by construction, which facilitates implementations
of error control mechanisms. Moreover, they do not require a predetermined number
of steps, making them very robust by allowing variable order strategies.
Numerical results with stiff ODEs, DAEs, and PDEs illustrate our theoretical

findings. In our numerical experiments, the Split-IMEX scheme performed best in
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terms of efficiency and accuracy.
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Appendix A. Linearly Implicit Euler Method.

In this section we review the linearly implicit method. Consider the implicit
Euler method applied to problem (1.1) under smoothness assumptions:

yi+1 = yi + hF
(
xi+1, yi+1

)
,

= yi + h
(
J
(
yi+1 − yi

)
+ F

(
xi+1, yi

))
+ O(h2)

= yi + h
(
J
(
yi+1 − yi

)
+ F

(
xi, yi

)
+ O(h)

)
+ O(h2) ,

where J is an approximation to ∂F∂y (xi, yi). Then the linearly implicit Euler method is

given by

(I − hJ)
(
yi+1 − yi

)
= hF

(
xi, yi

)
.

This method has been used in [Deuflhard, 1985; Deuflhard et al., 1987] as the “base
method,” for solving stiffODEs of type (1.1)with (2.1), (2.3). In this studywe consider
J = F′(y) = ( f (y) + g(y))′.

Appendix B. Transfer Functions. The stability functions for methods (2.4) ap-
plied to (2.9) are computed in the following way. For linear implicit Euler (2.4a) we
have

yn+1 = yn + (1 − h (λ + µ))−1
(
hλyn + hµyn

)
,

yn+1 =
(
1 + (1 − h (λ + µ))−1 h

(
λ + µ

))
yn =

(
1 +

hλ + hµ

1 − h (λ + µ)

)
yn ,

R(z,w) = 1 +
z + w

1 − (z + w)
=

1

1 − (z + w)
.

The stability function for the W-IMEX scheme (2.4b) is given by

yn+1 = yn +
[
I − h g′(yn)

]−1 (
h f (yn) + h g(yn)

)
,

yn+1 =
(
1 +

(
1 − hµ

)−1 (
hλ + hµ

))
yn =

(
1 +
hλ + hµ

1 − hµ

)
yn , (B.1)

R(z,w) = 1 +
z + w

1 − w
=
1 + z

1 − w
. (B.2)
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For the Pure-IMEXmethod (2.4c) we have

yn+1 = yn + h f (yn) +
[
I − h g′(yn)

]−1 (
h g(yn)

)
,

yn+1 =
(
1 + hλ +

(
1 − hµ

)−1 (
hµ

))
yn =

(
1 + hλ +

hµ

1 − hµ

)
yn ,

R(z,w) = 1 + z +
w

1 − w
=
1 − w + z − zw + w

1 − w
=
1 + z − zw

1 − w
. (B.3)

For the Split-IMEX (2.4d) method we obtain

yn+1 = y∗ +
[
I − h g′(yn)

]−1 (
h g(y∗)

)
; y∗ = yn + h f (yn) = yn + hλ yn

yn+1 = yn + hλ yn +
h g(yn + hλ yn)

1 − h g′(yn)
= yn + hλ yn +

hµ(yn + hλ yn)

1 − hµ

yn+1 =

(
1 + hλ +

hµ(1+ hλ)

1 − hµ

)
yn ,

R(z,w) = 1 + z +
w(1 + z)

1 − w
=
1 + z

1 − w
.

Appendix C. Technical Lemmas. The following Lemma is adapted from [Hairer
et al., 1993b, Lemma 3.9, chap. VI] and [Deuflhard et al., 1987, Lemma 2].
L C.1 (Bounded series). Let {un} and {vn} be two sequences of non-negative

numbers satisfying component-wise
(
un+1
vn+1

)
≤

(
I 0
O(1) α + O(ε)

) (
un
vn

)
+M

(
h
1

)
(C.1)

with 0 ≤ α < 1 and M ≥ 0. Then the following estimates hold for ε ≤ ch, h ≤ h0 and
nh ≤ Const

un ≤ C (u0 +M)
vn ≤ C (u0 + (ε + αn)v0 +M)

(C.2)

Proof. The matrix in (C.1) is transformed to diagonal form and iterate to obtain

(
un
vn

)
≤ T−1

(
I 0
0 λn

)
T

(
u0
v0

)
+M

n∑

j=1

T−1
(
I 0
0 λn− j

)
T

(
h
1

)
,

where λ = α + O(ε) are the eigenvalues and the transformation matrix T (composed
of eigenvectors) satisfies

T =

(
1 0
O(1) 1

)
.

The statement follows from the fact that (α + O(ε))n = O (αn) + O (ε) for ε ≤ ch and
nh ≤ Const.
We continue with the following Lemma that is first used in the proof of Theorem

5.1.
L C.2 ([Hairer et al., 1993b, chap. IV, Lem. 5.5]). Suppose that the logarithmic

norm of gz(x) satisfies

µ
(
gz(x)

)
≤ −1 for 0 ≤ x ≤ x . (C.3)
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For a given value

a(0) = a(0) + εa(1) + · · · + εNa(N) + O
(
εN+1

)

there exists a unique
(
up to O

(
εN+1

))

b(0) = b(0) + εb(1) + · · · + εNb(N) + O
(
εN+1

)

such that the solutions a(x), b(x) of (5.2) and their first N derivatives are bounded indepen-
dently of ε.

Proof. The proof is discussed in [Hairer et al., 1993b] and it relies on introducing
the following finite expansions

â(x) =

N∑

i=0

εia(i)(x) , b̂(x) =

N∑

i=0

εib(i)(x)(x)

in (5.2) and compare the powers of ε. This leads to a differential-algebraic system,
from which we obtain that a(0)(0) determines b(0)(0), b(0)(1) determines a(0)(1), and so
on. Specifically, we have

(
a(0)

)′
(x) + ε

(
a(1)

)′
(x) + ε2

((
a(2)

)′
(x)

)2
= fy(x)

(
a(0)(x) + εa(1)(x) + ε2

(
a(2)(x)

)2)
+

+ fz(x)
(
b(0)(x) + εb(1)(x) + ε2

(
b(2)(x)

)2)
+ c(x, ε)+ O

(
ε3

)
,

ε
((
b(0)

)′
(x) + ε

(
b(1)

)′
(x) + ε2

((
b(2)

)′
(x)

)2)
= gy(x)

(
a(0)(x) + εa(1)(x) + ε2

(
a(2)(x)

)2)
+

+ gz(x)
(
b(0)(x) + εb(1)(x) + ε2

(
b(2)(x)

)2)
+ d(x, ε)+ O

(
ε3

)
.

By comparing the coefficients of ε0 we obtain the following DAE:
(
a(0)

)′
(x) = fy(x)a

(0)(x) + fz(x)b
(0)(x) + c(x, 0) ,

0 = gy(x)a
(0)(x) + gz(x)b

(0)(x) + d(x, 0) ,

which leads to

b(0)(x) = −g−1z (x)
(
gy(x)a

(0)(x) + d(x, 0)
)
,

(
a(0)

)′
(x) = fy(x)a

(0)(x) − fz(x)
[
g−1z (x)

(
gy(x)a

(0)(x) + d(x, 0)
)]
+ c(x, 0) .

The coefficients of ε1 give
(
a(1)

)′
(x) = fy(x)a

(1)(x) + fz(x)b
(1)(x) + c(x, 1) ,

(
b(0)

)′
(x) = gy(x)a

(1)(x) + gz(x)b
(1)(x) + d(x, 1) ,

which leads to

b(1)(x) = −g−1z (x)
(
gy(x)a

(1)(x) −
(
b(0)

)′
(x) + d(x, 1)

)
,

(
a(1)

)′
(x) = fy(x)a

(1)(x) − fz(x)
[
g−1z (x)

(
gy(x)a

(1)(x) −
(
b(0)

)′
(x) + d(x, 0)

)]
+ c(x, 1) .

These relations confirm that a(0)(0) determines b(0)(1), and a(1)(0) determine b(1)(0), and
so on.
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