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Abstract. Farming is using more terrestrial ground with in-
creases in population and the expanding use of agriculture
for non-nutritional purposes such as biofuel production. This
agricultural expansion exerts an increasing impact on the ter-
restrial carbon cycle. In order to understand the impact of5

such processes, the Community Land Model (CLM) has been
augmented with a CLM-Crop extension that simulates the
development of three crop types: maize, soybean, and spring
wheat. The CLM-Crop model is a complex system that relies
on a suite of parametric inputs that govern plant growth under10

a given atmospheric forcing and available resources. CLM-
Crop development used measurements of gross primary pro-
ductivity and net ecosystem exchange from AmeriFlux sites
to choose parameter values that optimize crop productivity in
the model. In this paper we calibrate these values in order to15

provide a faithful projection in terms of both plant develop-
ment and net carbon exchange, using a Markov chain Monte
Carlo technique.

1 The CLM-Crop Model20

Development of Earth system models (ESMs) is a chal-
lenging process, involving complex models, large input
datasets, and significant computational requirements. As
models evolve through the introduction of new processes and
through improvement of traditional algorithms, the ability of25

the models to accurately simulate feedbacks between cou-
pled systems improves, although results may not have the
desired impact on all areas. For example, Lawrence et al.
(2012) estimate that changes to the hydrology parameteriza-
tion may be responsible for the warm bias in high-latitude30
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soils in the Community Land Model (CLM) version 3.5 to
become cold biased in CLM4.0. Although testing of ESMs is
extensive, ensuring after new developments are merged that
the model can still perform with limited (if any) degradation,
on rare occasions model behavior can be negatively affected.35

The strong nonlinearity of such models also makes param-
eter fitting a difficult task; and as global models are devel-
oped by several different user groups simultaneously, com-
binations of multiple alterations make identifying the spe-
cific cause that leads to a new model output challenging. The40

CLM has been augmented with a CLM-Crop extension that
simulates the development of three crop types: maize, soy-
bean, and spring wheat. The CLM-Crop model is a complex
system that relies on a suite of parametric inputs that govern
plant growth under a given atmospheric forcing and avail-45

able resources. CLM-Crop development used measurements
of gross primary productivity (GPP) and net ecosystem ex-
change (NEE) from AmeriFlux sites to choose parameter val-
ues that optimize crop productivity in the model.

Global climate models (GCMs) have historically been50

tuned or calibrated to meet certain requirements, such as bal-
ancing the top of the atmosphere radiation budget (Bender,
2008; Hourdin et al., 2012; Mauritsen et al., 2012). Various
techniques have been applied to models to adjust parame-
ters, including data assimilation (Pauwels et al., 2007), ap-55

plying an ensemble Kalman filter (EnKF) (Hargreaves et al.,
2004; Annan et al., 2005; Evensen, 2009), and using a sam-
pling algorithm such as multiple very fast simulated anneal-
ing (MVFSA) (Yang et al., 2012), which can be used to cal-
ibrate one or many parameters at a time in coupled or un-60

coupled modes. Most calibration strategies can be traced
back to a Bayesian approach that in most cases is simpli-
fied (MVFSA) or augmented with assumptions that make the
problem tractable (EnKF). Tuning parameters that are not di-
rectly observed casts the problem into an inverse problem65

(Tarantola, 2005), which is in general a challenging problem
when the data are sparse, the models are complex, and the
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state space is large. This is the case for ESMs as well as for
the CLM-Crop model.

Our goal is to calibrate some of the CLM-Crop parame-70

ters in order to improve model projection of plant develop-
ment and carbon fluxes. To this end, we propose a new cal-
ibration procedure based on a Bayesian approach, which is
implemented through a parallel Markov chain Monte Carlo
(MCMC) technique (Chib and Greenberg, 1995; Solonen75

et al., 2012; Craiu et al., 2009). MCMC is used to generate
samples (of parameter values, in our case) drawn from a (pos-
terior) distribution that represents updated parameter values
based on observational information. We present the results
from a twin experiment (self-validation) and calibration re-80

sults and validation using real observations from AmeriFlux
towers for two sites in the midwestern United States, rotat-
ing corn and soybean. The improved model will enhance our
understanding of how climate will affect crop production and
resulting carbon fluxes, and additionally, how cultivation will85

impact climate.

1.1 Description of the CLM-Crop Model

CLM-Crop was designed and tested in the CLM3.5 model
version (Drewniak et al., 2012). The crop model was created
to represent crop vegetation similarly to natural vegetation90

for three crop types: maize, soybean, and spring wheat. The
model simulates GPP and yield driven by climate, in order
to evaluate the impact of climate on cultivation and the im-
pact of agriculture on climate. Crops are modeled within a
grid cell sharing natural vegetation; however, they are inde-95

pendent (i.e., they do not share the same soil column). This
approach allows management practices, such as fertilizer, to
be administered without disturbing the life cycle of natural
vegetation.

Although the design of the crop model fits within the100

framework of natural vegetation, crops have a significantly
different growing scheme, separated into four phases: plant-
ing, emergence, grain fill, and harvest. Each phase of growth
changes how carbon and nitrogen are allocated to the vari-
ous plant parts: leaves, stems, fine roots, and organs. During105

planting, carbon and nitrogen are allocated to the leaf, repre-
sentative of seed. This establishes a leaf area index (LAI) for
photosynthesis, which begins during the emergence phase.
The emergence phase allocates carbon and nitrogen to leaves,
stems, and roots using functions from the Agro-IBIS model110

(Kucharik and Brye, 2003). During the grain fill stage, de-
creased carbon is allocated to leaves, stems, and roots in or-
der to fulfill organ requirements. When maturity is reached,
harvest occurs: all organs and 60-70% of the leaves and
stems are harvested; and the remaining leaves, stems, and115

roots are turned into the litter pool.
The allocation of carbon to each plant part is driven largely

by the carbon-nitrogen (CN) ratio parameter assigned to each
plant segment. CLM first calculates the potential photosyn-
thesis for each crop type based on the incoming solar radia-120

tion and the LAI. The total nitrogen needed to maintain the
CN ratio of each plant part is calculated as plant demand.
If soil nitrogen is sufficient to meet plant demand, potential
photosynthesis is met; however, if soil nitrogen is inadequate,
the total amount of carbon that can be assimilated is down-125

scaled.
During the grain fill stage, a nitrogen retranslocation

scheme is used to fulfill nitrogen demands by mobilizing ni-
trogen in the leaves and stems for use in organ development.
This scheme uses alternate CN ratios for the leaf and stem to
determine how much nitrogen is transferred from the leaves
and stems into a retranslocation storage pool. The total nitro-
gen transferred at the beginning of the grain fill stage from
the leaf and stem is represented by

retransnleaf =
Cleaf

leafcn
− Cleaf

fleafcn
, (1)

retransnstem =
Cstem

stemcn
− Cstem

fstemcn
. (2)

Cleaf and Cstem are the total carbon in the leaf and stem,
respectively; leafcn and stemcn are the pregrain fill CN ratios
for the leaf and stem; and fleafcn and fstemcn are the post-
grain fill CN ratios for the leaf and stem.130

In addition to the above, CLM-Crop has a fertilizer ap-
plication, dynamic roots, and soybean nitrogen fixation, de-
scribed by Drewniak et al. (2012). Planting date and time
to maturity are based on the Crop Calendar Dataset (Sacks
et al., 2010).135

CLM-Crop was calibrated against AmeriFlux data for the
Mead, NE, and Bondville, IL, sites’ plant carbon measure-
ments, for both maize and soybean, using optimization tech-
niques to fit parameters. When available, parameter values
were taken from the literature or other models. Remain-140

ing parameters were derived through a series of sensitivity
simulations designed to match modeled carbon output with
AmeriFlux observations of leaf, stem, and organ carbon at
the Bondville, IL, site and total plant carbon at the Mead,
NE, (rainfed) site.145

When CLM-Crop was ported into the CLM4 framework,
the parameter values were no longer optimized as a result of
various changes in model processes that affected how crops
fit into the model framework. Therefore, we needed to retune
the model parameters that represented crops with a more so-150

phisticated approach described later in this paper.

1.2 Parameters Affecting the Crops

Over 100 parameters are defined in CLM4 to represent crops.
Many of these parameters are similar to those that govern
natural vegetation, but some are specific to crops. These pa-155

rameters define a variety of processes, including photosyn-
thesis, vegetation structure, respiration, soil structure, carbon
nitrogen dynamics, litter, mortality, phenology, and more. To
add further complication, parameters are assigned in various
parts of the model; some parameters are defined in an exter-160
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nal physiology file, some are defined in surface datasets, and
others are hardcoded in the various subroutines of CLM4.

Performing a full model calibration for all parameters
would be a monumental task, so we began our calibration
process by narrowing down the parameters that are used only165

in crop functions or might have a large influence on crop be-
havior. Of this list, parameter values can be fixed across all
vegetation types (or crop types), vary with crop type, or vary
spatially and by crop type. We chose to limit the parameters
to those that are either constant or vary with crop type.170

Although from the literature we have minimum and max-
imum estimates for some variables, some parameters do not
have observed ranges, as they were optimized for use in CLM
based on performance. Therefore, determining a full range
of acceptable values was difficult for several parameters, and175

in some cases not possible. Of the full list of parameters
in need of calibration, we began our approach with the six
parameters listed in Table 1 that have a large influence on
crop productivity and have the greatest uncertainty because
the values are based on optimization from a previous model180

version. These six parameters are the carbon nitrogen ratios
for the various plant parts (leaf, stem, root, and organ). Since
the leaf and stem account for nitrogen relocation during grain
fill, they are represented by two separate CN ratios, to sepa-
rate pre- and postgrain fill stages of plant development. They185

influence how carbon and nitrogen are allocated, thereby im-
pacting growth, nutrient demand, photosynthesis, and so on,
and are included as part of the physiology data file.

1.3 Description of the Observational Data Set

We used observations from the Bondville, IL AmeriFlux190

tower located in the midwestern United States using an an-
nual no-till corn-soybean rotation; a full site description is
given by Meyers and Hollinger (2004). The site has been col-
lecting measurements since 1996 of wind, temperature, hu-
midity, pressure, radiation, heat flux, soil temperature, CO2195

flux, and soil moisture. Soybeans were planted in 2002 and
2004 and corn was planted in 2001, 2003, and 2005. We
used daily averaged eddy covariance measurements of NEE
and derived GPP in our model calibration procedure, which
are categorized as Level 4 data published on the AmeriFlux200

site, gap filled by using the procedure outlined by Hollinger
et al. (2005). In addition, biomass information (which we
convert to carbon) and LAI have been collected for years
2001-2005 for the various plant segments, including leaf,
stem, and organ, which are reported in the AmeriFlux web-205

site (http://public.ornl.gov/ameriflux).
The time-dependent observations are denoted by y =

{GPP, NEE, ORGANC, LEAFC, STEMC, LAI}. Because
of uncertainties in irrigation, fertilization use, and planting
date we focused on the peak observed values as well as the
growth slope. To remove the atmospheric induced noise in
the NEE and GPP measurements we filtered the time series
by applying a moving average operator with a width of 30

days. These operations are denoted by the map

Hy(y) = {max(y),slope(y)}, (3)

Y =Hy(y), where y represents the filtered y and the slope is
calculated in the beginning of the plant emergence phase.

1.4 Initial Conditions and Spinup

CLM requires a spinup to obtain balanced soil carbon and210

nitrogen pools, which are responsible for driving decompo-
sition and turnover. CLM is spun up by using the method
provided by Thornton and Rosenbloom (2005), with crops
simulated as grass, such that final soil carbon pools are re-
flective of natural vegetation. After the initial spinup is com-215

plete, grid cells growing crops are converted from grass to
represent the appropriate amount of land surface occupied
by agriculture. The model is run an additional 200 years to
rebalance the soil pools.

The meteorological forcing data used for the spinup is220

from the Bondville, IL flux tower site. The model is run
in point mode, meaning only one grid cell is simulated, at
a resolution of 0.5 degrees x 0.5 degrees. Since we do not
have the meteorological data necessary to cover the entire
spinup period, we cycle continuously through the period of225

data from 1996 to 2007 available for this site.

2 Calibration Strategy

We represent the CLM-Crop model by f(x;θ), where θ are
the time-independent parameters that we wish to calibrate
and x are the internal states of the model. We consider differ-230

ent sets of calibration parameters according to their perceived
level of uncertainty and importance in the crop development
processes. The first set consists of plant specific physiolog-
ical parameters: leafcn, fleafcn, fstemcn, organcn, frootcn,
and livewdcn (see Table 1 and Sect. 1.2 for details).235

The model calibration strategy aims to merge model pre-
dictions that depend on parameters θ with observational
datasets. Here we denote the model output by F (θ) =
H(f(x;θ)), where H is a function that maps the model out-
put to observation space Y obtained similarly with the pro-240

cedure described in Sect. 1.3.
We assume that the relationship between observation data

and the true process follows a relationship of type

Y =F (θ∗)+ε,

where θ∗ are the perfectly calibrated parameters and ε rep-
resents the observational errors. This holds under the as-
sumption that the model is a perfect representation of reality
(Kennedy and O’Hagan, 2001). The problem statement can245

be extended to account for imperfect models, but then the
statistical description of ε tends to become much more com-
plicated. Therefore, for this study we start by considering a
perfect model assumption.

http://public.ornl.gov/ameriflux
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Following a Bayesian approach, we assume a prior distri-
bution on the calibration parameters:

log(π(θ)) =−1

2
(θ−θ)TΣ−1θ (θ−θ)−Kθ , (4)

where θ are the default parameters, Kθ = 1
2 log(det(Σθ))+

nθ
2 log(2π), and nθ = dim(θ). We define the likelihood as

log(π(y|θ)) =−1

2
(F (θ)−H(y))TΣ−1obs(F (θ)−H(y))−Ky ,

where Σobs = Cov(ε) and Ky is defined similarly with Kθ.
The calibration result in the posterior distribution

π(θ|y)∝π(y|θ)π(θ). (5)

We use the Metropolis Hastings algorithm to estimate the250

posterior distribution (Chib and Greenberg, 1995). To accel-
erate and diagnose the convergence, we implemented a par-
allel version of the algorithm that consists in running several
Markov chains in parallel while adjusting a Gaussian pro-
posal distribution according to their spread (Solonen et al.,255

2012; Craiu et al., 2009). This algorithm and convergence
diagnostics are briefly described in Appendix A.

3 Results

In this section we present our calibration results for parame-
ters described in Sect. 1.2 by using observations detailed in260

Sect. 1.3. In this study we focus only on the CN parame-
ters affecting the soy crop and restrict our calibration to year
2004. With these calibrated parameters we perform a vali-
dation experiment by using the data from year 2002. More-
over, we perform a twin experiment that consists in gener-265

ating artificial data by using some control parameter values,
then perturbing those parameters and applying the calibration
strategy to recover the control values.

3.1 Validation of the Method

We begin with a twin experiment with the aim of validating270

the parallel MCMC strategy applied in this study. We gener-
ate artificial observations by using the default parameter val-
ues and then perturb the parameters. We apply the calibration
strategy using the perturbed parameters as initial guesses and
the artificial observations; our aim is to recover the default275

parameters. In Fig. 1a we show the box plot summary of the
calibrated parameters. We note an almost perfect fit between
the calibrated parameters and their default values, indicating
that the method used in this study is appropriate.

3.2 Calibration Using Real Data280

In our next experiment we calibrate the six parameters listed
in Table 1. The observational operator Eq. (3) is defined by
taking the annual maximum of LEAFC, TLAI, ORGANC,

STEMC, GPP, and -NEE; and the slope of LEAFC, STEMC,
GPP, and NEE from planting to the peak value. We applied285

the MCMC calibration strategy described in Appendix A. A
simulated year takes about 2 minutes in real time on our com-
puters, and we are able to run 8 instances in parallel on the
same computational node (one per computational core). We
computed 13,401 samples per chain for 8 parallel chains and290

discarded the first 6,000 samples for burn-in. The final con-
vergence diagnostic, MPSRF (see Appendix A), was 1.009,
where 1 is the optimal value, and below 1.2 is considered a
good value in practice (Gilks et al., 1996).

Our newly calibrated parameter values are shown as a box295

plot summary of the parameter probability density function
in Fig. 1b compared with initial values. Our first estimate
of parameter values was overestimated for leafcn, fleafcn,
fstemcn, and organcn but is underestimated for frootcn and
livewdcn. With the exception of leafcn and livewdcn, how-300

ever, all initial parameter values fall within the range of prob-
ability of the calibrated parameters. This result gives us con-
fidence that (at least some of) the initial values were within an
acceptable range. We also note that the parameters that are
not within the calibrated range (leafcn and livewdcn) have305

not been observed and were based solely on optimization
with the CLM3.5 crop model.

We then used the median value of the posterior parameter
distribution as the final calibrated parameter values, to run
the simulation for year 2004. In Fig. 2, we plot the observa-310

tions, the model output using the default parameters, and the
calibrated output. We note that the performance metric used
for this calibration was the peak value and the initial slope
in the growth season. Based on this measure, the calibrated
output shows a much better fit than the default values show.315

3.3 Validation of Real Data Results

To validate the generalization potential of our calibration we
perform a one-way validation. We use the calibrated plant
parameters result of soybean data of 2004 (Sect. 3.2) to pre-
dict the observables obtained in 2002. In Fig. 3 we plot the320

model time series with observations and the control output of
2002. Here we note good performance in the success metric
established for this study. There is, however, a temporal shift
in the time series of 2002 that can be attributed to a mismatch
in the planting dates. As noted in Sect. 1.1, the planting date325

in CLM-Crop is fixed based on data from Sacks et al. (2010)
and therefore not subject to change based on seasonal con-
ditions such as temperature and precipitation. Although this
is being modified in future versions of the model, the yearly
planting date at global scale is not available, so our analysis330

focuses on the slope of the growth and the peak of the GPP
and carbon, which indeed show much improvement from the
default parameter values. The uncertainty levels represented
by the size of the boxes in Fig. 1 indicate the 50% spread
of the parameter values around the median. We note that the335
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distribution seems to be relatively symmetric, and in general,
the relative uncertainty seems to be about the same.

4 Discussion

In this paper, we sought to improve CLM-Crop model per-
formance by parameter calibration of a subset of model pa-340

rameters governing the carbon and nitrogen allocation to the
plant components. By using an MCMC approach, we were
able to improve the model-simulated GPP, NEE, and carbon
biomass to leaf, stem, and organ with the new parameter val-
ues. In addition, we demonstrated that the calibrated param-345

eters are applicable across alternative years and not solely
representative of one year.

This simulation does have a few limitations stemming
from a lack of observation data. Currently our results are
suitable at one site across multiple years; testing at multiple350

sites would give a better indication of how well the model
can perform globally, or even across a region. However,
the limited data over agricultural sites constrains our abil-
ity to determine parameter values that are relevant at a global
scale. Also, our use of fixed planting dates does not allow the355

model to modify when planting occurs as a farmer would in
situ. Thus, the model can over- or underestimate the plant-
ing date, which, if significant, could influence the growth cy-
cle and resulting carbon fluxes. In addition, CLM-Crop does
not have crop rotation, which is common across agricultural360

landscapes, including in the observation dataset. Crop rota-
tion can modify below-ground carbon and nitrogen cycling
that would have an impact on crop productivity through nu-
trient availability. While we would like to include this fea-
ture, CLM does not currently have the capability to support365

this function.
Our approach has focused on one crop type, soybean, with

the intent of determining the effectiveness of the MCMC
method in performing parameter calibration. We consider the
results promising and, as part of future work, hope to expand370

this research to additional years, crop types, and other param-
eters. Many other variables are of interest, including specific
leaf area, fertilization rate, timing of the growth stages, respi-
ration rates, and a few other parameters related to photosyn-
thesis. As the model continues to evolve with the addition of375

new or improved processes, we also may need to revisit the
parameter choices and evaluate their appropriateness.

The introduction of new datasets documenting agriculture
productivity or carbon mass will also allow us to determine
the applicability of our new parameter values across regions.380

In general, the calibration results depend on an accurate spec-
ification of the observational errors. In this study we did
not have access to any information regarding the measure-
ment process and, therefore, assumed a certain observational
noise. These calibration results can be sharpened by anno-385

tating the observational data with levels of confidence. The
calibration strategy presented in this study has the potential

to improve model performance by helping modelers define
parameters that are not often measured or documented.

Appendix A Metropolis Hastings Algorithm and Con-390

vergence Diagnostics

The general idea of the Metropolis Hastings algorithm is to
generate a series of samples that are linked in a Markov chain
(where each sample is correlated only with the directly pre-
ceding sample). At sufficiently long times, the distribution395

of the generated samples matches the distribution. The algo-
rithm essentially works as follows (this is actually a descrip-
tion of the Metropolis algorithm, a special case of Metropolis
Hastings).

Suppose that the target density is π(x). Pick an arbitrary400

probability density Q(x′|xt) (the proposal density or jump-
ing distribution), which suggests a new sample value given a
sample value. Suppose that this proposal density is symmet-
ric. Start with some arbitrary point as the first sample. Then
proceed as follows:405

– Generate a proposed new sample value from the jump-
ing distribution Q(x′|xt).

– Calculate the acceptance ratio α= π(x′)
π(xt)

– If α> 1, accept by setting xt+1 =x′.

– Else, pick a uniformly distributed random number u be-410

tween 0 and 1, and if u < α set xt+1 = x′ , else set
xt+1 =xt.

The convergence test is coded according to Brooks and
Gelman (1998).

Suppose that the sample point (1D case) is de-415

noted as si,j ,i = 1,··· ,n,j = 1,··· ,m. Denote that s̄ =∑n
i=1

∑m
j=1si,j and s̄j = 1

m(n−1)
∑n
i=1si,j . The estimate

of variance within-chain is W =
∑n
i=1

∑m
j=1(sij − s̄j)2.

Then the estimate of variance between chains is given by
B
n = 1

m−1
∑m
j=1(s̄j − s̄)2 and the the posterior variance-420

covariance matrix by V = n−1
n W + B

n . The multivariate
scale reduction factor PSRF (or MPSRF) – the convergence
indicator – is R= V

W .
For the multidimensional case, the estimate of variance

within-chain is W =
∑n
i=1

∑m
j=1(sij− s̄j)(sij− s̄j)T . The425

estimate of variance between chains is calculated as B
n =

1
m−1

∑m
j=1(s̄j − s̄)(s̄j − s̄)T and the estimate of the poste-

rior variance-covariance matrix is V = n−1
n W +

(
1+ 1

m

)
B
n .

Finally, the multivariate scale reduction factor PSRF (or MP-
SRF) is R= maxa

aTV a
aTWa

, that is, R= n−1
n + m+1

m λ1, where430

λ1 is the largest eigenvalue of the symmetric, positive defi-
nite matrix W−1Bn .

In this study we used a parallel MCMC implementation
(Solonen et al., 2012; Craiu et al., 2009). In particular, the al-
gorithm is the same for each chain, but the proposal distribu-435

tion Q is determined from the history of the parallel chains.
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Table 1. Parameters chosen for calibration
Parameter Name Parameter Description
leafcn Leaf CN ratio; pregrain fill
fleafcn Leaf CN ratio; postgrain fill
livewdcn Stem CN ratio; pregrain fill
fstemcn Stem CN ratio; postgrain fill
frootcn Fine root CN ratio
organcn Organ CN ratio
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(a) Twin experiment calibration (b) Real data calibration

Fig. 1. Calibrated C/N parameters for 2004 for (a) the twin experiment using artificial observations and (b) the real data calibration. The
solid black line indicates the default values, and the thin red line indicates the median value for the parameter posterior distribution. The
median value was used as the final calibrated parameter value.
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Fig. 2. Calibration results: the observations, the control output, and the calibrated output of 2004.
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Fig. 3. Validation results: The observations, the control output, and the calibrated output of 2002


