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Abstract. Weighted nonlinear compact schemes are ideal for simulating compressible, turbulent
flows because of their nonoscillatory nature and high spectral resolution. However, they require
the solution to banded systems of equations at each time-integration step or stage. We focus on
tridiagonal compact schemes in this paper. We propose an efficient implementation of such schemes
on massively parallel computing platforms through an iterative substructuring algorithm to solve
the tridiagonal system of equations. The key features of our implementation are that it does not
introduce any parallelization-based approximations or errors and it involves minimal neighbor-to-
neighbor communications. We demonstrate the performance and scalability of our approach on the
IBM Blue Gene/Q platform and show that the compact schemes are efficient and have performance
comparable to that of standard noncompact finite-difference methods on large numbers of processors
(∼ 500, 000) and small subdomain sizes (4 points per dimension per processor).
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1. Introduction. Weighted, nonlinear compact schemes use the adaptive stencil
selection of the weighted, essentially nonoscillatory (WENO) [27, 44] schemes to yield
essentially nonoscillatory solutions with high spectral resolution; they are thus ideal
for simulating compressible, turbulent flows. Notable efforts include weighted compact
nonlinear schemes (WCNS) [11, 12, 50, 48], hybrid compact-ENO/WENO schemes [4,
3, 36, 40], weighted compact schemes (WCS) [28, 31, 49], compact-reconstruction
WENO (CRWENO) schemes [17, 20, 16, 18], and finite-volume compact-WENO
(FVCW) schemes [23]. These schemes show a significant improvement in the resolu-
tion of moderate- and small-length scales compared with the resolution of the standard
WENO schemes of the same (or higher) order and were applied to the simulation of
compressible, turbulent flows. The WCNS schemes [12, 50, 48] result in a system of
equations with a linear left-hand side that can be prefactored. This is a substantial
advantage; however, the spectral resolution of these schemes is only marginally higher
than that of the WENO scheme. The hybrid compact-WENO, WCS, CRWENO, and
FVCW schemes have a significantly higher spectral resolution, as demonstrated by
both linear and nonlinear spectral analyses [36, 18]. They result in solution-dependent
systems of equations at each time-integration step or stage. Tests have shown that on
a single processor the additional cost of solving the tridiagonal system of equations
is justified by the lower absolute errors and higher resolution of small-length scales
and discontinuities [17, 16]; moreover, the CRWENO schemes are less expensive than
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the WENO schemes when comparing solutions of comparable accuracy or resolution.
A quantitative analysis of the numerical cost of hybrid compact-WENO has not yet
been presented in the literature; however, the conclusions regarding the CRWENO
scheme are also expected to hold true for the hybrid schemes, since the computational
complexity is similar.

An efficient, parallel solver for banded systems is thus a crucial issue in the im-
plementation of nonlinear compact schemes on distributed-memory platforms. Past
attempts have followed three approaches. One approach is to decouple the global
system of equations into separate systems inside each subdomain by applying the
noncompact WENO scheme [7] or biased compact schemes [29] at the interior (par-
allel subdomain) boundaries. This decoupling causes the global numerical properties
to be a function of the number of processors. Specifically, the spectral properties
of the compact scheme get compromised [7] as the number of processors increases
for a given problem size, and numerical errors are observed [29]. A second approach
is a parallel implementation of the tridiagonal solver, such as the pipelined Thomas
algorithm [39] in which the idle time of the processors during the forward and back-
ward solves is used to carry out nonlocal data-independent computations or local
data-dependent Runge-Kutta step completion calculations. This algorithm requires
a complicated static schedule of communications and computations, however, result-
ing in a trade-off between communication and computation efficiencies. A reduced
parallel diagonally dominant [46] algorithm solves a perturbed linear system, intro-
ducing an error because of an assumption of diagonal dominance that is bounded.
A third approach, involving data transposition [10, 21], collects the entire system of
equations on one processor and solves it sequentially. This requires the transposition
of “pencils” of data between processors. The approach is communication intensive;
indeed, a large fraction of the total execution time is spent in the data transposition
operations. Because of these drawbacks, massively parallel simulations of turbulent
flows, such as [5], have been limited to using standard (noncompact) finite-difference
methods with limited spectral resolution. We note that several implementations of a
parallel tridiagonal solver [45, 26, 34, 47, 8, 13, 37, 38, 35, 15] have been proposed,
although they have not been applied specifically to compact finite-difference schemes.

This paper presents a parallel implementation of nonlinear, tridiagonal compact
schemes with the following aims that address the drawbacks of past approaches: the
overall algorithm does not suffer from parallelization-related approximations or er-
rors that are larger than the discretization errors, the implementation does not re-
quire complicated scheduling, and the overall scheme is computationally more efficient
(compared with a standard finite-difference scheme) at subdomain sizes (points per
processor) of practical relevance. This implementation will make the compact schemes
viable for simulations such as that presented in [5]. The tridiagonal system is solved
on multiple processors by using a substructuring approach [47, 13, 38, 35, 15], and an
iterative method is used for the reduced system [38]. Arguably, this approach may
not perform well in general, since several iterations may be required for an accurate
solution [38]. We show here, however, that the reduced systems resulting from a com-
pact finite-difference discretization are characterized by strong diagonal dominance,
and thus one can obtain solutions of sufficient accuracy with few iterations. We stress
here that “sufficient accuracy” implies that the error in the solution of the reduced
system is insignificant compared with the discretization errors; in other words, mul-
tiprocessor and serial solutions are identical. We also show that one can specify a
priori the number of Jacobi iterations for a given problem based on the number of
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Fig. 2.1. Discretized one-dimensional domain.

grid points and number of processors and can avoid a norm-based exit criterion. We
demonstrate the performance and scalability of our parallel compact scheme based
on the iterative substructuring approach. Results are presented with the fifth-order
CRWENO scheme [17]; however, this approach is also applicable to other nonlinear
compact (hybrid compact-WENO, WCS, and FVCW) schemes that result in tridiag-
onal systems of equations.

The paper is organized as follows. Section 2 describes the numerical method
and the CRWENO scheme, as well as the numerical properties that motivate its use.
Section 3 describes our parallel implementation of these algorithms and presents a
scalability analysis of the proposed method for some representative, manufactured
problems. Large processor-count simulations of physically relevant problems are re-
ported in Section 4. Conclusions are drawn in Section 5.

2. Numerical Method. A hyperbolic partial differential equation (PDE) can
be expressed as

∂u

∂t
+

∂f (u)

∂x
= 0, x ∈ Ω, (2.1)

u (x, t) = uΓ (t) , x ∈ Γ, (2.2)

u (x, 0) = u0 (x) , x ∈ Ω, (2.3)

where x is the position vector in space, t is time, u is the conserved solution, and f (u)
is the hyperbolic flux function. The domain is given by Ω with the boundary as Γ.
The boundary conditions and the initial solution are specified by uΓ (t) and u0 (x),
respectively. A conservative, finite-difference discretization of (2.1) in space results in
an ordinary differential equation (ODE) in time. Figure 2.1 shows an example of a
one-dimensional domain of unit length discretized by a grid with (N +1) points. The
corresponding semi-discrete ODE for this domain is given by

duj

dt
+

1

∆x

(

hj+1/2 − hj−1/2

)

= 0, (2.4)

where uj = u(xj); xj = j∆x is the cell-centered solution and hj±1/2 is the numerical
flux at the interface. The numerical flux function h(x) is required to satisfy exactly

∂f

∂x

∣

∣

∣

∣

x=xj

=
1

∆x
[h(xj+1/2, t)− h(xj−1/2, t)], (2.5)

where f(u) is the flux function and can thus be defined implicitly as

f(x) =
1

∆x

∫ x+∆x/2

x−∆x/2

h(ξ)dξ. (2.6)
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Equation (2.4) is numerically integrated in time by the classical fourth-order, four-
stage or the strong stability-preserving three-stage, third-order Runge-Kutta schemes
[22]. The reconstruction of the numerical flux at the interface (f̂j+1/2 ≈ hj+1/2)
from the cell-centered flux (fj = f(uj)) with the fifth-order WENO and CRWENO
schemes is summarized in the following paragraphs. The left-biased reconstruction for
a scalar quantity is described, and the corresponding expressions for the right-biased
reconstruction are trivially obtained. Vector quantities are reconstructed by applying
the scalar reconstruction method to each component.

2.1. WENO Schemes. The WENO schemes [32, 27] use adaptive stenciling to
achieve high-order accuracy when the solution is smooth, and they yield nonoscillatory
solutions across discontinuities. At a given interface, there are r candidate stencils
of rth-order accuracy, with optimal coefficients such that the weighted sum results
in a (2r − 1)th-order interpolation. The optimal weights are scaled by the local
smoothness of the solution to obtain the nonlinear WENO weights. The final scheme
is the weighted sum of the rth-order stencils with the nonlinear weights. The fifth-
order WENO scheme is constructed by three third-order schemes:

f̂1
j+1/2 =

1

3
fj−2 −

7

6
fj−1 +

11

6
fj , c1 =

1

10
, (2.7)

f̂2
j+1/2 = −1

6
fj−1 +

5

6
fj +

1

3
fj+1, c2 =

6

10
, (2.8)

f̂3
j+1/2 =

1

3
fj +

5

6
fj+1 −

1

6
fj+2, c3 =

3

10
. (2.9)

By multiplying each of (2.7)–(2.9) with their optimal coefficient ck, k = 1, 2, 3, and
then adding the three, we obtain a linear, fifth-order interpolation scheme:

f̂j+1/2 =
1

30
fj−2 −

13

60
fj−1 +

47

60
fj +

27

60
fj+1 −

1

20
fj+2. (2.10)

The nonlinear weights are computed from the optimal coefficients and local solution
smoothness as [27]

ωk =
αk

∑

k αk
; αk =

ck
(ǫ+ βk)

p ; k = 1, 2, 3, (2.11)

where ǫ = 10−6 is a small number to prevent division by zero. The smoothness
indicators (βk) for the stencils are given by

β1 =
13

12
(fj−2 − 2fj−1 + fj)

2 +
1

4
(fj−2 − 4fj−1 + 3fj)

2, (2.12)

β2 =
13

12
(fj−1 − 2fj + fj+1)

2 +
1

4
(fj−1 − fj+1)

2, (2.13)

and β3 =
13

12
(fj − 2fj+1 + fj+2)

2 +
1

4
(3fj − 4fj+1 + fj+2)

2. (2.14)

A mapping function was proposed for these weights [24] to address the drawbacks
of this definition of the weights, and this approach is adopted here. By multiplying
(2.7)–(2.9) by the nonlinear weights (instead of the optimal coefficients ck) and then
adding the three, we obtain the fifth-order WENO (WENO5) scheme:

f̂j+1/2 =
ω1

3
fj−2 −

1

6
(7ω1 + ω2)fj−1 +

1

6
(11ω1 + 5ω2 + 2ω3)fj

+
1

6
(2ω2 + 5ω3)fj+1 −

ω3

6
fj+2. (2.15)
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When the solution is smooth, ωk → ck, and (2.15) reduces to (2.10). An elaborate
description of the WENO5 scheme, including discussion of the value of ǫ, is available
in [27, 24].

2.2. CRWENO Schemes. Compact schemes use an implicitly-defined function
to compute the flux at the interfaces; the numerical flux at an interface depends on the
numerical flux at neighboring interfaces (as well as the known flux at the cell centers).
Therefore, they require the solution to a system of equations. This dependence results
in higher spectral resolution and lower absolute errors compared with standard finite-
difference schemes of the same order of convergence. The CRWENO scheme applies
solution-dependent weights to compact candidate stencils. A fifth-order CRWENO
scheme [17, 16] is constructed by considering three third-order compact interpolation
schemes:

2

3
f̂j−1/2 +

1

3
f̂j+1/2 =

1

6
(fj−1 + 5fj) ; c1 =

2

10
, (2.16)

1

3
f̂j−1/2 +

2

3
f̂j+1/2 =

1

6
(5fj + fj+1) ; c2 =

5

10
, (2.17)

2

3
f̂j+1/2 +

1

3
f̂j+3/2 =

1

6
(fj + 5fj+1) ; c3 =

3

10
. (2.18)

By multiplying (2.16)–(2.18) with their optimal coefficients (ck, k = 1, 2, 3) and then
adding the three, we obtain a linear, fifth-order compact scheme:

3

10
f̂j−1/2 +

6

10
f̂j+1/2 +

1

10
f̂j+3/2 =

1

30
fj−1 +

19

30
fj +

1

3
fj+1. (2.19)

The optimal coefficients ck are replaced with the nonlinear weights ωk, and we get
the fifth-order CRWENO scheme (CRWENO5):

(

2

3
ω1 +

1

3
ω2

)

f̂j−1/2 +

[

1

3
ω1 +

2

3
(ω2 + ω3)

]

f̂j+1/2 +
1

3
ω3f̂j+3/2

=
ω1

6
fj−1 +

5(ω1 + ω2) + ω3

6
fj +

ω2 + 5ω3

6
fj+1. (2.20)

The weights ωk are computed by (2.11) and (2.12)–(2.14). When the solution is
smooth, ωk → ck, and (2.20) reduces to (2.19). The present implementation of
the CRWENO schemes uses the nonlinear weights defined for the WENO scheme,
an approach justified previously [17, 18]. A detailed description of the CRWENO5
scheme is available in [17], and an analysis of its sensitivity to ǫ and the behavior of
the nonlinear weights is presented in [18].

The primary difference between the WENO scheme (an example of a standard
finite-difference scheme) and the CRWENO scheme (an example of a compact scheme)
is as follows. The WENO scheme, given by (2.15), expresses the unknown interface

flux f̂j+1/2 as an explicit function of the known flux at the cell centers fj . It is
thus straightforward to compute the numerical flux at the interfaces. The CRWENO
scheme, given by (2.20), defines the unknown interface flux as an implicit function –

the flux at an interface f̂j+1/2 depends on the flux at neighboring interfaces (f̂j−1/2,

f̂j+3/2). Thus, it requires the solution to a tridiagonal system of equations. Moreover,
the weights ωk are solution-dependent and the system of equations has to be solved
along each grid line at every time-integration step or stage.
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2.3. Boundary Treatment. The physical domain is extended by using “ghost”
points, and the dependent variables at the ghost points are set such that the interface
flux is consistent with the physical boundary conditions. The CRWENO5 scheme
[17, 18] uses the WENO5 scheme at the boundary interfaces, and a numerical analysis
of the overall discretization [16] showed that this boundary treatment was numerically
stable. The overall scheme needs three ghost points at physical boundaries, and
the resulting tridiagonal system of equations along a grid line has the first and last
diagonal elements (corresponding to the physical boundary interfaces) as one and
off-diagonal elements as zero.

2.4. Numerical Properties. The numerical properties of the CRWENO5 scheme
are summarized in this section to explain the motivation behind its use. More de-
tailed discussions were previously presented [17, 16, 18] that demonstrate the superior
numerical properties of the CRWENO5 scheme compared with the WENO5 scheme.
A Taylor series analysis of (2.19) (the linear fifth-order compact scheme underlying
the CRWENO5 scheme) shows

3

10
fx,j−1 +

6

10
fx,j +

1

10
fx,j+1 =

1

∆x

(−1

30
fj−2 −

18

30
fj−1 +

9

30
fj +

10

30
fj+1

)

⇒ fx,j = f∆,j +
1

600

∂6f

∂x6

∣

∣

∣

∣

j

∆x5 +
1

2100

∂7f

∂x7

∣

∣

∣

∣

j

∆x6 +O(∆x7), (2.21)

where the term f∆ denotes the finite-difference approximation to the first derivative.
The corresponding expression for (2.10) (the underlying linear interpolation for the
WENO5 scheme) is

fx,j =
1

∆x

(−1

30
fj−3 +

1

4
fj−2 − fj−1 +

1

3
fj +

1

2
fj+1 −

1

20
fj+2

)

+
1

60

∂6f

∂x6

∣

∣

∣

∣

j

∆x5 +
1

140

∂7f

∂x7

∣

∣

∣

∣

j

∆x6 +O(∆x7). (2.22)

The leading-order dissipation and dispersion error terms show that the compact inter-
polation scheme yields solutions with 1/10 the dissipation error and 1/15 the disper-
sion error of the solutions obtained by the noncompact scheme, for the same order of
convergence. Consequently, the fifth-order WENO scheme requires 101/5 ≈ 1.5 times
more grid points per dimension to yield a smooth solution with accuracy comparable
to that of the fifth-order CRWENO scheme.

The primary motivation for the use of compact schemes is their high spectral
resolution; they are thus well suited for applications with a large range of length
scales. Detailed linear and nonlinear spectral analyses of the CRWENO5 scheme
were presented in [17, 18] and are briefly discussed here. Figure 2.2 shows the dis-
persion and dissipation properties of the CRWENO5, WENO5, and their underlying
fifth-order linear schemes, (2.10) and (2.19) (henceforth referred to as the “NonCom-
pact5” and “Compact5” schemes, respectively). The nonlinear spectral properties of
the WENO5 and CRWENO5 schemes are obtained by a statistical analysis [14, 18] of
the schemes. The linear fifth-order compact and the CRWENO5 schemes have signif-
icantly higher spectral resolution than do the corresponding standard fifth-order and
WENO5 schemes, respectively. The compact schemes also exhibit lower dissipation
for the low and moderate wavenumbers that are accurately modeled, while they show
higher dissipation for very high wavenumbers that are incorrectly aliased to lower
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(a) Dispersion (b) Dissipation

Fig. 2.2. Spectral properties of the linear and nonlinear schemes: “Compact5” refers to (2.19);
“NonCompact5” refers to (2.10); CRWENO5 and WENO5 refer to (2.20) and (2.15), respectively.

wavenumbers. Higher dissipation at very small length scales is advantageous because
it diffuses the small length-scale errors.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

Im
ag

in
ar

y

Real

 

 

RK3
RK4
NonCompact5
Compact5

Fig. 2.3. Eigenvalues of the standard and
compact fifth-order finite-difference schemes, and
the stability regions of three- and four-stage
Runge-Kutta time-integration schemes.

2.5. Time Integration and Lin-
ear Stability. The classical fourth-
order, four-stage and the strong stability-
preserving third-order three-stage Runge-
Kutta schemes are used to integrate
(2.4) in time for the numerical examples
presented in this paper. We thus briefly
analyze and compare the linear stability
restrictions on the time-step size for the
WENO5 and CRWENO5 schemes. Fig-
ure 2.3 shows the stability regions of the
three-stage, third-order (“RK3”) and
the four-stage, fourth-order (“RK4”)
Runge-Kutta schemes. The eigenval-
ues of the fifth-order standard (2.10)
(“NonCompact5”) and the fifth-order
compact (2.19) (“Compact5”) finite-
difference schemes are also shown. The
CRWENO scheme suffers from a smaller
time-step limit than does the WENO
scheme. This situation is verified
through numerical experiments on the linear advection equation on a periodic do-
main. The WENO scheme yields stable solutions until CFL numbers of ∼ 1.4 and
∼ 1.5 for the third- and fourth-order Runge-Kutta schemes, respectively; the corre-
sponding CFL limits for the CRWENO scheme are ∼ 0.9 and ∼ 1.0. Thus, from a
linear stability perspective, the WENO scheme may use time-step sizes that are ∼ 1.5
larger than those used by the CRWENO scheme, for the third- and fourth-order
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Table 2.1

Factors relating the grid size, CFL, and time-step size of a WENO5 solution to those of a
CRWENO5 solution for a fair comparison with explicit time-integration. (D is the number of
spatial dimensions.)

Type of Problem Grid Size CFL Time-Step Size
Smooth ∼ 1.5D ∼ 1.5 ∼ 1
Nonsmooth ∼ 1.25D 1 ∼ 1.5 ∼ 1.25

Runge-Kutta schemes.

2.6. Comparisons between the WENO5 and CRWENO5 Schemes. Ta-
ble 2.1 summarizes the implications of the numerical properties and linear stability
limits discussed in Sections 2.4 and 2.5, comparing the computational costs of the
WENO5 and CRWENO5 schemes. Numerical analysis of the linear schemes shows
that the WENO5 scheme yields comparable solutions on grids that have ∼ 1.5 times
more points in each dimension than does the grid used with the CRWENO5 scheme for
a smooth, well-resolved solution. Numerical experiments in Sections 3.3 and 4 show
this factor to be ∼ 1.25 for solutions with unresolved length scales where the non-
linear weights are not optimal. It is thus appropriate to compare the computational
cost of the CRWENO5 scheme on a given grid with that of the WENO5 scheme on a
grid that has ∼ 1.25 or ∼ 1.5 times as many points along each dimension, depending
on the problem type. Solutions obtained with explicit time-integration schemes often
use the maximum time-step size allowed by the linear stability limit. The WENO5
scheme has a stability limit that is ∼ 1.5 times higher than that of the CRWENO5
scheme, and the wall times for the WENO5 and CRWENO5 schemes are measured
with the WENO5 solution obtained at a CFL number that is ∼ 1.5 times higher.
Thus, for a smooth, well-resolved problem, we use the same time-step size such that
the CFL number of the WENO5 scheme is ∼ 1.5 times higher. The time-step size for
the WENO5 solution is ∼ 1.25 times higher than that for the CRWENO5 solution for
problems with unresolved scales.

3. Parallel Implementation. The fifth-order CRWENO scheme (2.20) results
in a solution-dependent, tridiagonal system of equations of the form

Af̂ = r; where r = Bf + b. (3.1)

The tridiagonal, left-hand side matrix A is of size (N+1)2, f̂ = [f̂j+1/2; j = 0, · · · , N ]T

is the (N+1)-dimensional vector of unknown flux at the interfaces, B is a (N+1)×N
matrix representing the right-hand side operator, and f = [fj ; j = 1, · · · , N ]T is the
vector of (known) flux at the cell centers (N is the number of interior points in the
grid). The boundary terms are represented by b. Parallel implementations of the
CRWENO scheme (as well as the hybrid compact-ENO/WENO schemes) depend
on the efficient, multiprocessor solution of (3.1). We focus on a distributed-memory
parallel algorithm in this study; shared-memory thread-based parallelization is beyond
the scope of this paper and will be investigated in future studies. This section describes
the parallel tridiagonal solver and demonstrates its performance and scalability.

3.1. Tridiagonal Solver. We require a parallel tridiagonal solver that solves
the system to sufficient accuracy (so as to ensure that no parallelization errors exist

1This factor is determined by numerical experiments in Sections 3.3 and 4.
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Fig. 3.1. Example of a partitioned grid: 21 points distributed among five processors, with the
global and local numbering of points.

Fig. 3.2. Reordered tridiagonal system of equations for a multiprocessor algorithm. The lines
divide the data stored on each processor; the solid boxes show the decoupled tridiagonal blocks on
each processor; the rows inside the dashed box at the bottom are the first point in each subdomain
(except the first), and each row resides on a different processor.

in the overall scheme), whose mathematical complexity is comparable to that of the
serial Thomas algorithm and does not involve any collective communications. Figure
3.1 shows an example of a system with N = 21, distributed on five processors. We use
the substructuring or partitioning approach [47, 38] that is explained by reordering
the system as shown in Fig. 3.2. The first row on each subdomain (except the global
first that is a physical boundary point) is placed at the bottom of the matrix in the
order of the processor rank on which it resides (marked by the dotted box in Fig.
3.2). The decoupled tridiagonal blocks on each processor are marked by the solid
boxes. Independent elimination of these decoupled blocks followed by the elimination
of the reordered rows results in the reduced tridiagonal system of size p − 1 (p being
the number of processors), shown in Fig. 3.3. A more detailed description of our
implementation of this algorithm is provided in [19].

Several strategies exist for solving the reduced system [37, 38]; however, a scalable
and efficient method is challenging because each row of the reduced system resides
on a different processor. We choose to solve the reduced system iteratively using
the Jacobi method. Although this approach may not work well for general systems
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Fig. 3.3. Elimination of all the rows results in a reduced tridiagonal equation (shown by the
box) with each row residing on a different processor.

[38], we specifically solve tridiagonal systems that result from the compact finite-
difference discretization of a hyperbolic flux, such as (2.20). The reduced system
represents the coupling between the first interfaces on each subdomain, separated by
the interior grid points on each processor. Therefore, this system has a strong diagonal
dominance for p ≪ N ; as p → O(N ), the diagonal dominance decreases. We consider
as an example the tridiagonal system (2.19) with N = 1024 and a random right-hand
side. Figure 3.4 shows the elements of the p/2th column (an arbitrary choice) of the
inverse of the reduced system for 16, 64, 128, and 256 processors (where p is the
number of processors), corresponding to subdomain sizes of 64, 16, 8, and 4 points,
respectively. Elements larger than machine zero (10−16) are shown. We observe that
for a subdomain size of 64 points (16 processors), only the diagonal element has a
value higher than machine zero; the reduced system is effectively a diagonal matrix,
and the solution is trivial. The number of non-machine-zero elements grows, and the
diagonal dominance decreases as the subdomain size decreases.

We analyze the properties of the reduced system as a function of the global
problem size and the number of processors, and we estimate the number of Jacobi
iterations needed to achieve converged solutions. The reduced system of equations is
expressed as

Rf̂p = r̃, (3.2)

where R represents the tridiagonal matrix of size p−1 (inside the box in Fig. 3.3), r̃ is
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(a) 16 processors (b) 64 processors

(c) 128 processors (d) 256 processors

Fig. 3.4. Elements of the p/2th column of the inverse of the reduced system for various numbers
of processors (p).

the corresponding right-hand side obtained from r in (3.1) by applying the elimination
steps, and f̂p is a portion of the interface flux vector f̂ in (3.1) constituting the first
interface of each subdomain (except the physical boundary interface). The Jacobi
method is expressed as [42]

f̂k+1
p = D−1 (I−R) f̂kp +D−1r̃, (3.3)

where f̂kp is the kth guess for f̂p, D is the diagonal of R, and I is the identity matrix.
The initial guess is taken as

f̂0p = D−1r̃. (3.4)

The convergence of the Jacobi method is determined by the spectral radius of the
iteration matrix; we thus require

ρ
[

D−1 (I− R)
]

< 1. (3.5)
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(a) Case 2 (b) Case 3

Fig. 3.5. Solutions (N = 1024) by which ωi in (2.20) are computed for the analysis of the
reduced system.

We estimate the number of iterations for a converged solution from the convergence
rate φ = − log ρ [42] as

NJacobi =
logC

φ
, (3.6)

where C is the convergence criterion or tolerance.
We evaluate the spectral radius of the Jacobi iteration matrix,

[

D−1 (I−R)
]

, for
several global problem sizes and number of processors. We also analyze the effect of
nonlinear weights in (2.20) on the reduced system. We consider three cases. “Case 1”
represents a smooth solution for which the nonlinear weights are optimal (ωi = ci),
and (2.20) is essentially (2.19). “Case 2” represents the tridiagonal system (2.20) with
the weights computed for the solution shown in Fig. 3.5(a), given by

u(x) =



























exp
(

− log(2) (x+7)2

0.0009

)

−0.8 ≤ x ≤ −0.6,

1 −0.4 ≤ x ≤ −0.2,
1− |10(x− 0.1)| 0 ≤ x ≤ 0.2,
[

1− 100(x− 0.5)2
]1/2

0.4 ≤ x ≤ 0.6,
0 otherwise.

(3.7)

This is representative of smooth solutions with isolated discontinuities. “Case 3”
represents the tridiagonal system (2.20) with weights computed for a solution repre-
sentative of turbulent flows, given by

u(x) =

N/2
∑

k

A (k) cos (2πkx + φ (k)) , (3.8)

where A(k) = k−5/3 is the amplitude and the phase φ(k) ∈ [−π, π] is a randomly cho-
sen for each wavenumber k. Figure 3.5(b) shows one realization of (3.8). Although the
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(a) Spectral radius vs. number of processors (b) Spectral radius vs. subdomain size

(c) Jacobi iterations vs. number of processors (d) Jacobi iterations vs. subdomain size

(e) Legend

Fig. 3.6. Analysis of the iterative solution to the reduced system with the Jacobi method.

solution is theoretically smooth, the presence of small length scales (high wavenum-
bers) results in highly nonlinear behavior [18]. Thus, our choice of cases includes all
possible solution features of compressible, turbulent flows.

Figure 3.6(a) shows the spectral radius of the Jacobi iteration matrix as a func-
tion of the number of processors for the three cases described above and for several
values of the global system size (N = 256, 512, . . . , 16384). The largest number of
processors for a given global system size corresponds to a subdomain size of 4 points
per processor. Note that for “Case 3” the data points represent the average, and the
gray error bars represent the maximum and minimum values over 10, 000 realizations
of (3.8) (this analysis is similar to the nonlinear spectral analysis of WENO [14] and
CRWENO [18] schemes). The spectral radius increases as the number of processors
increases for a given global problem size. This result is expected because the reduced
system represents the compact finite-difference coupling between the first point on
each processor; as the number of processors increases, these points come closer, and
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(b) N = 131, 072

Fig. 3.7. Performance of the parallel tridiagonal solver, and comparison with ScaLAPACK
(pddtsv): Wall time as a function of subdomain size and number of processors for the solution of
the tridiagonal system given by (2.19) with N grid points and a random right-hand side.

the coupling is stronger. The spectral radius for the system with optimal weights
(“Case 1”) is the largest for a given global system size and number of processors; the
spectral radius corresponding to the other two cases is either lower or similar. This
result is again expected because the optimal weights result in the widest stencil with
highest-order accuracy, while nonoptimal weights reduce the accuracy by biasing the
stencil in one direction and make it more local. Thus, the spectral radius correspond-
ing to the linear scheme (2.19) is an upper bound, and nonoptimal weights will result
in an iteration matrix with a smaller or equal spectral radius. Figure 3.6(b) shows the
spectral radius as a function of the subdomain size for the same systems and cases.
The spectral radii for the systems corresponding to “Case 1” are insensitive to the
global system size (and thus the size of the reduced system) and are a function of the
subdomain size only.

Figure 3.6(c) shows the number of Jacobi iterations required for a tolerance of
C = 10−10 estimated by using (3.6) and the spectral radii reported in Fig. 3.6(a). The
number of Jacobi iterations increases with the number of processors for a given global
system size (N ), as expected. The number of iterations required by the optimal case
(“Case 1”) is an upper bound on the number of iterations required by the other two
cases for a given global system size and number of processors. Figure 3.6(d) shows
the number of Jacobi iterations as a function of the subdomain size. We observe that
the required number of Jacobi iterations for “Case 1” is a function of the subdomain
size only, and not of the global system size or number of processors. We show results
for subdomain sizes from 4 points to 64 points per processor; for subdomain sizes
larger than 64 points per processor, no Jacobi iterations are needed if the initial
guess is (3.4) since the reduced system is essentially a diagonal matrix (this is verified
in subsequent sections). We do not consider subdomains smaller than 4 points per
processor because this is almost the smallest practical subdomain size for fifth-order
finite-difference methods.

The analysis presented leads to the following conclusions regarding the a priori
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Fig. 3.8. Array arrangement for the tridiagonal solver: two-dimensional problem with i and j
as the grid indices in x and y, respectively, while reconstructing the x-derivatives.

specification of the number of Jacobi iterations to solve the reduced system. When the
solution is smooth and when the CRWENO5 scheme (2.20) is equivalent to the optimal
fifth-order compact scheme (2.19), the number of iterations required is an upper bound
for a given problem size and number of processors; any other solution resulting in
nonoptimal weights will require a smaller or equal number of Jacobi iterations. This
number of Jacobi iterations for the optimal case is a function of the subdomain size
and not of the global problem size. Thus, for an arbitrary problem with a given grid
size and number of processors, specifying the number of Jacobi iterations as the one
required for a smooth solution with the corresponding subdomain size ensures that
the solution to the reduced system is converged. This allows us to avoid a norm-based
exit criterion and, consequently, the requirement of collective communications.

The performance of the parallel tridiagonal solver is demonstrated by solving a
tridiagonal system of equations given by (2.19) with a random right-hand side, and
compared with that of the ScaLAPACK [6, 9] routine pddtsv—a parallel tridiago-
nal solver for diagonally-dominant systems. Appendix A describes the computing
platform and the software environment used. Figure 3.7(a) shows the wall time as
a function of the number of processors and subdomain sizes for a system of size
N = 4, 194, 304. The solutions are obtained using the iterative substructuring-based
tridiagonal solver with a norm-based exit criterion (C = 10−10) as well as a pri-
ori specification of the number of Jacobi iterations. The smallest subdomain size in
this example is 128, and thus, both approaches (norm-based exit, and a priori spec-
ification) do not perform any Jacobi iterations. The initial guess, given by (3.4), is
sufficiently accurate. The norm-based exit is slightly more expensive due to the collec-
tive communications in the calculation of the global norm. Solutions are also obtained
using ScaLAPACK; however, the ScaLAPACK solver scales poorly for the tridiago-
nal system considered here when subdomain sizes are smaller than 4, 096 points per
processor.

Figure 3.7(b) shows the wall times for a smaller system with N = 131, 072 points,
and smallest subdomain size is 4 points per processor. The iterative substructuring-
based tridiagonal solver with a norm-based exit criterion scales well till a subdomain
size of 128 points per processor; at smaller subdomain sizes, the cost of Jacobi it-
erations and global norm calculations increase significantly. A priori specification of
the number of Jacobi iterations results in a similar performance; however, avoiding
the calculation of the global norm results in a significant reduction of the cost. At
subdomain sizes smaller than ∼ 10, 000 points per processor, the scalability and per-
formance of the iterative substructured tridiagonal solver are superior to those of the
ScaLAPACK routine for the systems considered here because the former exploits the
strong diagonal dominance of the reduced system.
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3.2. Extension to Multidimensions. Solutions to multidimensional problems
using a compact finite-difference scheme require solving several tridiagonal systems
of equations—one system along each grid line in each dimension. We extend our par-
allel tridiagonal solver to multiple dimensions by solving the systems in one function
call. The data is stored in arrays with the innermost loop representing distinct sys-
tems; that is, the arrays containing the diagonals and the right-hand side vectors of
all the systems have a given row element of all the systems in consecutive memory
locations. Figure 3.8 shows this arrangement for a two-dimensional problem where
the x-derivative (corresponding to grid index i) is being reconstructed. Each opera-
tion on an element of a single tridiagonal system is carried out on the corresponding
elements of multiple tridiagonal systems, thus increasing the arithmetic density. In
addition, messages that contained the relevant elements of one tridiagonal system
contain elements of multiple systems, thus increasing communication efficiency; that
is, the size of the messages increases while their number stays the same. Therefore,
the cost of the tridiagonal solver is initially sublinear in the number of systems. We
thus expect the proposed implementation of the tridiagonal solver to be more efficient
for multidimensional simulations.

Reconstruction of the interface fluxes with the CRWENO5 scheme (2.20) is carried
out independently along each dimension for multidimensional problems. The analysis
presented in the previous section can thus be used to specify the number of Jacobi
iterations based on the number of grid points and the number of processors along
each dimension.

3.3. Performance Analysis. We analyze the performance of our parallel im-
plementation of the CRWENO5 scheme by applying it to the inviscid Euler equations
[30]. We consider smooth, well-resolved solutions as well as solutions with unresolved
length scales. The software environment and hardware details of the computing plat-
forms used in this study are summarized in Appendix A. The fourth-order four-stage
Runge-Kutta (RK4) scheme is used for time integration. The scalar reconstruction
schemes are applied to each component of the vector quantities. The CRWENO5
scheme was previously demonstrated [17] to be computationally more efficient than
the WENO5 scheme (for both smooth and discontinuous problems) on a single pro-
cessor with time-step sizes dictated by the linear stability limits of each scheme. The
cost of the parallel tridiagonal solver described above increases with the number of
processors for the same domain size because of the larger number of Jacobi iterations
needed to solve the reduced system. We investigate the efficiency of the CRWENO5
scheme (relative to that of the WENO5 scheme) as the number of processors increases
(i.e., the subdomain size becomes smaller). We expect CRWENO5 to be less efficient
than the WENO5 scheme for subdomains smaller than a critical size; however, we
show that it retains its higher efficiency for subdomain sizes of practical relevance.

We note that we use a modified definition of the parallel efficiency when comparing
the two schemes. Although generally one defines the parallel efficiency of a scheme
based on its own wall time on the smallest number of processors, we calculate the
efficiencies of both schemes based on the wall time of the CRWENO5 scheme on the
lowest number of processors considered. The modified parallel efficiency is given by

Efficiency =
τ0,CRWENO5 p0,CRWENO5

τp
, (3.9)

where τ0,CRWENO5 is the wall time of the CRWENO5 solution on p0,CRWENO5 number
of processors (which is the minimum number for a given case), and τ is the wall time



PARALLEL IMPLEMENTATION OF COMPACT SCHEMES 17

of the CRWENO5 or WENO5 solution on p number of processors. This definition
allows for the computational efficiencies of the two schemes (based on accuracy and
wall time) to be reflected in our comparisons. The traditional definition results in a
starting value of one for both and does not provide any information on the relationship
between the wall times of the two schemes. Our definition results in a starting value
of one for the CRWENO5 scheme and a starting value less than one for the WENO5
scheme, thus reflecting that the WENO5 scheme requires a larger wall time to yield
a solution of desired accuracy on the smallest number of processors considered. The
modified parallel efficiency shows the scalability of each scheme (through its slope),
as well as the relative costs to compute similar solutions (through its absolute value).

We start with the one-dimensional advection of a sinusoidal density wave—an ex-
ample of a smooth, well-resolved solution for which the Taylor series analysis (Section
2.4) holds. The initial density, velocity, and pressure are specified as

ρ = ρ0 + ρ̃ sin (2πx) ,

u = 1 p = 1/γ, (3.10)

respectively, on a unit periodic domain x ∈ [0, 1]. The specific heat ratio is γ = 1.4.
The mean density ρ0 is 1, and the amplitude of the wave is ρ̃ = 0.1. Solutions are
obtained with the CRWENO5 scheme on grids with 64, 128, and 256 points (baseline
grids), and with the WENO5 scheme on grids with 1.5 times as many points (96, 192,
and 384). The solutions are obtained after one cycle over the periodic domain. A
small time-step size of 10−4 is used such that the numerical time integration errors
are negligible (relative to those from the spatial discretization).

Table 3.1 shows the L2 norm of the numerical errors and the wall times for
different grid sizes (Nglobal). The number of Jacobi iterations (NJac) is specified
based on Fig. 3.6(d). Both schemes show fifth-order convergence, and the errors
for the WENO5 solutions on grids with 96, 192, and 384 points are comparable to
those for the CRWENO5 solutions on grids with 64, 128, and 384 points, respectively.
The numerical errors for the CRWENO5 scheme are identical for varying numbers of
processors on a given grid, thus demonstrating that our algorithm does not introduce
any parallelization-based errors. All the cases considered use the same time-step size;
therefore the WENO5 solutions are obtained at a CFL number that is ∼ 1.5 times
higher than that of the CRWENO5 solutions (Section 2.6). The WENO5 cases on
the finer grids are run on the same number of processors; in other words, with a given
number of processors, we investigate whether the CRWENO5 scheme is more efficient
than the WENO5 scheme.

The solutions obtained on one processor show that the CRWENO5 scheme is
more efficient; the wall times of the CRWENO5 scheme are lower on the 64, 128,
and 256 point grids than those of the WENO5 scheme on the 96, 192, and 384 point
grids, respectively. These results agree with previous studies [17]. As we reduce
the subdomain sizes for a given case of grid sizes (e.g., CRWENO5 on the 64-points
grid and WENO5 on the 96-points grid), the relative cost of the CRWENO5 scheme
increases because of the increasing number of Jacobi iterations. As a result, the
WENO5 scheme is more efficient at smaller subdomain sizes. We observe from Table
3.1 that the CRWENO5 scheme is less expensive for subdomain sizes larger than 64
points, whereas for smaller subdomains the WENO5 scheme is less expensive. Figure
3.9(a) shows the wall time per time step as a function of the number of processors.
The CRWENO5 scheme does not scale as well as the WENO5 scheme for larger
numbers of processors; the wall time for the CRWENO5 scheme is initially lower than
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Table 3.1

Errors (L2) and wall times (in seconds) for the one-dimensional advection of a sinusoidal
density wave.

WENO5 CRWENO5
Nglobal Error Wall Time Nglobal Error Wall Time NJac

1 processor
96 1.3332E-08 126.33 64 1.1561E-08 96.69 0
192 4.1680E-10 248.20 128 3.3927E-10 187.26 0
384 1.3024E-11 484.51 256 1.0253E-11 366.87 0

2 processors
96 1.3332E-08 65.25 64 1.1561E-08 56.43 0
192 4.1680E-10 126.35 128 3.3927E-10 103.00 0
384 1.3024E-11 244.52 256 1.0253E-11 195.15 0

4 processors
96 1.3332E-08 34.27 64 1.1561E-08 41.72 2
192 4.1680E-10 64.95 128 3.3927E-10 61.91 1
384 1.3024E-11 124.36 256 1.0253E-11 104.34 0

8 processors
96 1.3332E-08 18.66 64 1.1561E-08 34.97 4
192 4.1680E-10 34.25 128 3.3927E-10 41.51 2
384 1.3024E-11 64.17 256 1.0253E-11 61.75 1

16 processors
192 4.1680E-10 18.68 128 3.3927E-10 34.97 4
384 1.3024E-11 33.76 256 1.0253E-11 41.44 2

32 processors
384 1.3024E-11 19.46 256 1.0253E-11 43.37 6

(a) Wall time vs. number of processors (b) Modified parallel efficiency vs. subdomain
size

Fig. 3.9. One-dimensional advection of density sine wave: wall times and efficiencies for the
CRWENO5 on grids with 64, 128, and 256 points, and the WENO5 scheme on grids with 96, 192,
and 384 points (data in Table 3.1).
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Table 3.2

Errors (L2) and wall times (in seconds) for the three-dimensional advection of a sinusoidal
density wave.

WENO5 CRWENO5
Nglobal Error Wall time Nglobal Error Wall time NJac

64 (43) processors
483 5.3211E-07 12960 323 5.4544E-07 5058 10

512 (83) processors
483 5.3211E-07 1818 323 5.4544E-07 933 10
963 1.6660E-08 12884 643 1.4849E-08 4985 10

4096 (163) processors
963 1.6660E-08 1803 643 1.4849E-08 936 10
1923 5.2096E-10 12819 1283 4.3038E-10 4929 10
32768 (323) processors
1923 5.2096E-10 1953 1283 4.3038E-10 941 10

that of the WENO5 scheme, but as the number of processors increase, the cost of
the CRWENO5 scheme exceeds that of the WENO5 scheme. Figure 3.9(b) shows
the modified parallel efficiency as a function of the subdomain size and reiterates
this result; the CRWENO5 scheme is more efficient for larger subdomains, but the
efficiency decreases rapidly as subdomains grow smaller, and the WENO5 scheme is
more efficient at the smallest subdomains considered.

We next consider the three-dimensional smooth, well-resolved solution. The di-
mensionality of the problem affects the efficiency and relative computational cost of
the CRWENO5 scheme in two ways. The first effect is that the WENO5 scheme
requires grids with ∼ 1.25–∼ 1.5D (D being the number of dimensions) more points
than that required by the CRWENO5 scheme to yield comparable solutions, and this
factor increases by the Dth power. Thus, in two and three dimensions, this factor is
∼ 2.25 and ∼ 3.375 respectively. The other effect of dimensionality is on the efficiency
of the tridiagonal solver, as discussed in Section 3.2. The solution to multidimensional
problems requires solving several systems, thus increasing the arithmetic density and
communication efficiency of the tridiagonal solver. These two factors indicate that our
implementation of the CRWENO5 scheme is expected to be more efficient in higher
dimensions.

The initial density, velocity, and pressure for the three-dimensional advection of
a sinusoidal density wave are specified as

ρ = ρ0 + ρ̃ sin (2πx) sin (2πy) sin (2πz) ,

u = v = w = 1 p = 1/γ, (3.11)

on a unit periodic domain [0, 1]3. The specific heat ratio is γ = 1.4. The mean
density ρ0 is 1, and the amplitude of the wave is ρ̃ = 0.1. We use a time-step
size of 10−4 for all the cases. Table 3.2 shows the errors (L2 norm) and wall times
for the grid sizes (Nglobal) considered. Fifth-order convergence is verified; and, the
errors of the CRWENO5 scheme on the grids with 323, 643, and 1283 points are
comparable to those of the WENO scheme on grids with 1.53 times more points (483,
963, and 1923). The CRWENO5 scheme is less expensive than the WENO5 scheme
for all the cases considered, including the smallest subdomain size of 43 points per
processor. The number of Jacobi iterations (NJac) in Table 3.2 is identical (10) for all
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(a) 323 grid points (b) 1283 grid points

Fig. 3.10. Energy spectrum of the numerical solutions to the three-dimensional advection of
density fluctuations.

the cases. Although ten iterations are more than what is required for convergence for
subdomains larger than 4 points per dimension per processor (see Fig. 3.6(d)), the
CRWENO5 scheme is less expensive by a relatively large margin (because of the effect
of dimensionality), allowing us to specify a more-than-adequate number of iterations.
Thus, all the cases reported carried out with 10 Jacobi iterations to solve the reduced
tridiagonal system.

We now consider the three-dimensional advection of density waves comprising all
grid-supported wavenumbers—an example of a solution with unresolved length scales
for which the WENO5 and CRWENO5 schemes show nonlinear behavior. The initial
density fluctuations is prescribed in the Fourier space as

ρ̂(kx, ky, kz) =
ρ̃ |k|−5/6

√
2

(1 + i) ;|k| =
√

k2x + k2y + k2z ;

1 ≤ kx, ky, kz ≤ N/2, (3.12)

where N is the number of points per dimension on a square grid and the complex
conjugates are taken in the remainder of the wavenumber domain. The amplitude
decay is such that the fluctuation energy spectrum is representative of the kinetic
energy spectrum of turbulent flows. The initial density is then specified in the physical
space as

ρ = ρ0 + δρ (3.13)

where δρ(x, y, z) is the inverse Fourier transform of ρ̂(kx, ky, kz). The maximum ampli-
tude of fluctuations ρ̃ is taken as 10−5 to ensure that the total density is non-negative.
Uniform unit velocity (in all dimensions) and pressure (p = 1/γ) are specified where
γ = 1.4 is the ratio of specific heats. A periodic domain of unit length in each
dimension is taken.

We solve the problem on two grid sizes: CRWENO5 and WENO5 solutions are
obtained on grids with 323 and 1283 points, and the WENO5 solutions are obtained
on grids with 1.253 times more points (403 and 1603 points) as well. Figure 3.10
shows the density fluctuations spectrum for the solutions after one time period. The
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Table 3.3

Wall times (in seconds) for the three-dimensional advection of density fluctuations.

WENO5 CRWENO5
Nproc Nlocal Wall Times Nlocal Wall Times NJac

403 (WENO5) and 323 (CRWENO5) grid points
8 203 4516.9 163 3343.9 10
64 103 655.3 83 520.1 10
512 53 93.4 43 92.8 10
1603 (WENO5) and 1283 (CRWENO5) grid points
8 803 1004960 643 795420 10
64 403 137864 323 103310 10
512 203 18791 163 14651 10
4096 103 2616 83 2084 10
32768 53 376 43 378 10

spectral resolutions of the CRWENO5 scheme on the grids with 323 and 1283 points
are comparable to those of the WENO5 scheme on grids with 403 and 1603 points,
respectively. The WENO5 solutions are obtained at a CFL number ∼ 1.5 times
higher than that for the CRWENO5 solutions (Section 2.6); the time-step sizes are
1 × 10−3 (CRWENO5 on 323 points), 1.25 × 10−3 (WENO5 on 403 points), 2.5 ×
10−4 (CRWENO5 on 1283 points), and 3.125× 10−5 (WENO5 on 1603 points). We
compare the wall times of these cases in Table 3.3 for solutions obtained on Nproc

processors (Nlocal is the subdomain size). The number of Jacobi iterations (NJac) is
specified as 8 for all the cases and is more than adequate to ensure convergence of
the reduced system, as shown in our analysis (Figs. 3.6(c) and 3.6(d), “Case 3”).
The CRWENO5 scheme is less expensive than the WENO5 scheme for all except the
smallest subdomain sizes (43 points per processor) considered; the costs are similar
at this subdomain size.

The numerical experiments presented in this section indicate that our implemen-
tation of the parallel tridiagonal solver does not introduce any parallelization-related
errors. We analyze the computational cost of our implementation as a function of
grid size and number of processors. In one spatial dimensional, a critical subdomain
size is observed, and the CRWENO5 has a lower time to solution for subdomain sizes
larger than this. The increasing cost of solving the tridiagonal system renders it
less efficient at smaller subdomain sizes. In three dimensions, however, the WENO5
scheme requires several times more grid points to yield comparable solutions, and
the CRWENO5 scheme is computationally less expensive for solutions of comparable
accuracy for most subdomain sizes considered. The two schemes have comparable
expense for the smallest practical subdomain size (43 points per processor). These re-
sults imply that our implementation of the CRWENO5 scheme is a viable alternative
to standard, noncompact schemes even for massively parallel simulations.

4. Results. The performance of the CRWENO5 scheme is evaluated on bench-
mark flow problems. Previous studies [17, 20, 16, 18] demonstrated two desirable
properties of the CRWENO5 scheme: accurate preservation of flow features as they
convect large distances and improved resolution of a larger range of relevant length
scales for turbulent flows. The two flow problems in this section—the long-term con-
vection of an isentropic vortex and the decay of isotropic turbulence—illustrate these
properties, and the computational efficiency of the CRWENO5 scheme on multiple
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processors is demonstrated for these flows.

4.1. Isentropic Vortex Convection. The long-term convection of an isen-
tropic vortex [43] tests the ability of the algorithm to preserve a flow feature for large
simulation times. The vortex is a two-dimensional flow; however, we solve this flow
over a three-dimensional domain in order to demonstrate the computational cost and
efficiency of the three-dimensional solver. The CRWENO5 scheme shows a signifi-
cant improvement in the preservation of the strength and shape of the vortex as it
convects over a large distance [17]. In this study, we consider a large domain along
the direction of vortex convection in order to evaluate the strong and weak scaling
of the parallel algorithm for a large number of grid points and correspondingly large
number of processors. The freestream flow is specified as ρ∞ = 1 (density), u∞ = 0.5
(x-velocity), v∞ = w∞ = 0 (y and z velocities), and p∞ = 1 (pressure). The initial
vortex is specified as

ρ =

[

1− (γ − 1)b2

8γπ2
e1−r2

]

1

γ−1

,

δu = − b

2π
e

1−r2

2 (y − yc) ,

δv =
b

2π
e

1−r2

2 (x− xc) ,

δw = 0, p = ργ , (4.1)

where δu, δv, and δw are the velocity perturbations, (xc, yc) = (5, 5) is the initial
location of the vortex center, r = (x2 + y2)1/2 is the radial distance from the vortex
center, γ = 1.4 is a ratio of specific heats, and b = 0.5 is the vortex strength. The
vortex has a unit core radius. The flow is uniform along the z dimension. Periodic
boundary conditions are specified on all boundaries.

The strong scaling of the algorithm is evaluated by solving the flow on a domain
of length 1, 280× 10× 10. Solutions are obtained with the CRWENO5 and WENO5
schemes on a grid with 8, 192× 64× 64 points. Solutions are also obtained with the
WENO5 scheme on a grid with 1.53 times more points (12, 288 × 96 × 96 points).
The vortex convects a distance of 1, 000 times the core radius. The solution is in-
tegrated in time by using the third-order-accurate strong-stability-preserving Runge-
Kutta (SSPRK3) scheme [22] with a time-step size of 0.025 on both grids. Figure 4.1
shows the density contours of the flow for the solutions obtained with the WENO5
and CRWENO5 schemes. The solution obtained by the WENO5 scheme on the
8, 192×64×64 points grid is significantly dissipated, whereas the CRWENO5 scheme
on this grid yields a solution comparable to the one obtained by the WENO5 scheme
on the 12, 288 × 96 × 96 points grid. This is reiterated through Figs. 4.2(a) and
4.2(b), which show the cross-sectional pressure through the vortex core and the time
history of the vortex core pressure error, respectively. We compare the wall times of
the CRWENO5 scheme on the 8, 192× 64× 64 points grid with those of the WENO5
scheme on the 12, 288 × 96 × 96 points grid. The number of Jacobi iterations for
the CRWENO5 scheme is fixed at 10, irrespective of the subdomain size. The do-
main is partitioned along all three dimensions. Figure 4.3(a) shows the wall times per
core-radius distance traveled by the vortex (80 time steps) as a function of the num-
ber of processors. The subdomain sizes range from 43 (63 for WENO5) for 524, 288
(2, 048× 16× 16) processors to 163 (243 for WENO5) for 8, 192 (512× 4× 4) proces-
sors. Although the CRWENO5 scheme does not scale as well as the WENO5 scheme
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WENO5

Fig. 4.1. Isentropic vortex convection: density contours after vortex has traveled a dis-
tance 1, 000 times its core radius.

(a) Cross-sectional pressure (b) Core pressure error

Fig. 4.2. Isentropic vortex convection: cross-sectional pressure after vortex has traveled
a distance 1, 000 times its core radius, and pressure error at vortex center as a function of
time.

for larger numbers of processors, the absolute wall time is significantly lower. Figure
4.3(b) compares the modified parallel efficiencies of the two schemes as a function of
the subdomain size. The efficiency of the CRWENO5 scheme decreases rapidly as
the subdomain size decreases; however, in absolute terms, the CRWENO5 scheme is
significantly more efficient than the WENO5 scheme even for the smallest subdomain
size.

Figure 4.3(c) shows the wall times per core-radius distance traveled by the vortex
of the CRWENO5 and WENO5 scheme for constant subdomain sizes of 43 and 63

points, respectively (the number of grid points and the number of processors are
increased by the same factors). These results are obtained by varying the physical
length, number of points, and number of processors along the direction of vortex
convection while keeping these quantities along the other two dimensions constant.
We initially start with a domain of size 40×10×10 length units, discretized by a grid
with 256× 64× 64 points (384× 96× 96 points for WENO5) on 16, 384 (64× 16× 16)
processors and increase the quantities in the x-dimension by a factor of two until a
domain of size 1280× 10× 10 length units, discretized by a grid with 8, 192× 64× 64
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(a) Strong Scaling: Wall times (b) Strong Scaling: Modified parallel efficiency

(c) Weak Scaling

Fig. 4.3. Isentropic vortex convection: wall times and parallel efficiencies for the CR-
WENO5 and WENO5 schemes. the number of processors varies from 8,192 to 524,288.

points (12288×96×96 points for WENO5) on 524, 288 (2, 048×16×16) processors. The
wall times for CRWENO5 scheme are significantly lower than those of the WENO5
scheme. The parallel implementation of the tridiagonal solver involves only point-
to-point communications between processors, and thus an excellent weak scaling is
observed. We therefore predict that the CRWENO5 scheme will remain more efficient
than the WENO5 scheme as the problem sizes and the number of processors increase
further.

4.2. Isotropic Turbulence Decay. The decay of an isotropic turbulent flow-
field [41, 33] is a canonical turbulent flow problem and is characterized by a transfer
of energy from larger to smaller length scales. The flow is compressible for higher
values of the turbulent fluctuations, and a nonoscillatory scheme is required. Pre-
vious studies [16, 18] have demonstrated through direct numerical simulation that
the CRWENO5 scheme yields solutions with higher resolution of moderate and high
wavenumbers when compared with the WENO5 scheme on the same grid. A sim-
ilar problem is solved in this paper to compare the computational costs of the two
schemes for solutions of comparable resolution. The three-dimensional Navier-Stokes
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(a) Density (b) Vorticity Magnitude

Fig. 4.4. Isotropic turbulence decay: Solution at Reλ = 200, obtained at t/τ = 3.0 by
CRWENO5 scheme on a grid with 256

3 points.

(a) 643 grid, Reλ = 50 (b) 2563 grid, Reλ = 200

Fig. 4.5. Isotropic turbulence decay: energy spectrum at t/τ = 3.0 for solutions obtained
by the WENO5 and CRWENO5 schemes (inset figures are zoomed-in portions showing in-
termediate and small length scales).

equations [25] are solved without a turbulence model; in addition to the numerical
method described in Section 2, the viscous terms are discretized using fourth-order
central differences. An initial solenoidal velocity field is specified that satisfies the
following prescribed kinetic energy spectrum:

E(k) = 16

√

2

π

u2
0

k0

(

k

k0

)4

exp

[

−2

(

k

k0

)2
]

, (4.2)

where E is the kinetic energy, k is the wavenumber, k0 = 4 is the wavenumber
corresponding to the maximum kinetic energy, and u0 = 0.3 is the RMS turbulence
intensity. Constant initial density and pressure are specified (ρ = 1 and p = 1/γ,
where γ = 1.4 is a ratio of specific heats). The procedure to specify the complete
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initial solution is described in [41]. A periodic cubic domain is taken with edge length
2π. The problem is solved with the WENO5 and CRWENO5 schemes on two grids—
643 and 2563 points; in addition, solutions are obtained with the WENO5 scheme on
grids that are 1.25 times as fine in each dimension (803 and 3203 points). The flow is
solved at initial Taylor microscale-based Reynolds numbers (Reλ = ρu0λ/µ, where λ
is the Taylor microscale and µ is the coefficient of viscosity) of 50 on the grids with
643and 803 points, and 200 on the grids with 2563 and 3203 points. Solutions are
obtained at a normalized time (t/τ , where τ = λ/u0 is the turbulent time scale based
on the initial flow) of 3.0. The solutions are integrated in time with the four-stage
fourth-order Runge-Kutta scheme, and the following time-step sizes are specified:
0.02 (CRWENO5 on 643 points), 0.03125 (WENO5 on 643 points), 0.025 (WENO5
on 803 points), 0.005 (CRWENO5 on 2563 points), 0.008 (WENO5 on 2563 points),
and 0.00625 (WENO5 on 3203 points). These values ensure that a fair comparison
of the computational cost is made based on the linear stability limits of the two
schemes. The initial turbulence intensity (u0) results in a smooth, turbulent flow;
however, the flow is characterized by severe gradients. These can be observed in Fig.
4.4, which shows the density and vorticity magnitude contours for the CRWENO5
solution obtained on the grid with 2563 points. The number of Jacobi iterations for the
tridiagonal solver in the CRWENO5 scheme is fixed at 10. Figure 4.5 shows the kinetic
energy spectrum for the solutions obtained, with the inset in each figure showing the
moderate and small length scales. The CRWENO5 scheme yields solutions with higher
resolution than that of the WENO5 scheme on the same grid (643 and 2563 points).
At moderate length scales, the resolution of the CRWENO5 scheme on grids with
643 and 2563 points is comparable to that of the WENO5 scheme on 803 and 3203

points, respectively, whereas at smaller length scales, the CRWENO5 solutions have
the highest resolution.

Figure 4.6(a) shows the solution wall times for the CRWENO5 scheme on the 2563

points grid and the WENO5 scheme on the 3203 points grid. The subdomain sizes vary
from 43 (53 for WENO5) points for 262, 144 (643) processors to 323 (403 for WENO5)
points on 512 (84) processors. Figure 4.6(b) shows the modified parallel efficiencies
of the CRWENO5 and WENO5 schemes as a function of the subdomain sizes. Both
figures show that the CRWENO5 scheme does not scale well at small subdomain sizes;
however, it is more efficient than the WENO5 scheme for subdomain sizes larger than
43 points per processor, and the performances are similar at this subdomain size.
Figure 4.6(c) shows the solution wall times of the CRWENO5 and WENO5 schemes
with constant subdomain sizes of 43 and 53 points per processor, respectively. The
problem sizes vary from 323 (403 for WENO5) points on 83 processors to 2563 (3203 for
WENO5) points on 643 processors. The CRWENO5 scheme is observed to scale well
and remains less expensive than the WENO5 scheme as the problem size increases.

5. Conclusions. We present an efficient parallel implementation of nonlinear
compact schemes by applying the iterative substructuring approach to the solution
of the tridiagonal system of equations. The diagonal dominance of the reduced sys-
tem allows it to be solved iteratively to sufficient accuracy with few iterations, whose
number is specified a priori. Collective communications, data transposition across pro-
cessors, and complicated scheduling of computation and communications are avoided;
minimal point-to-point communications between neighboring processors are required.
Solutions on multiple processors are identical to those on a single processor; thus,
parallelization does not affect the numerical properties (accuracy and resolution) of
the compact schemes.
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(a) Strong Scaling: Wall times (b) Strong Scaling: Modified parallel efficiency

(c) Weak Scaling

Fig. 4.6. Isotropic turbulence decay: wall times and parallel efficiencies for the CR-
WENO5 and WENO5 schemes. The number of processors varies from 512 to 262,144.

In this paper we consider the CRWENO scheme as an example of a nonlinear
compact scheme. The performance of this algorithm is demonstrated on manufactured
solutions as well as physically relevant flow problems. We compare the computational
cost of the CRWENO and WENO schemes as a function of the number of processors
for comparable solutions. The effect of the increasing cost of the tridiagonal solver on
the performance of the CRWENO scheme is demonstrated in one spatial dimension:
it is computationally more efficient for larger subdomains; for smaller subdomains,
the increasing cost of the tridiagonal solver renders it more expensive than the WENO
scheme. The difference in the computational efficiencies of the CRWENO and WENO
schemes is larger for three-dimensional problems, and the parallel tridiagonal solver
achieves higher communication efficiency and arithmetic intensity. Our analysis on
the IBM Blue Gene/Q architecture shows that the CRWENO scheme has a higher
computational efficiency until very small subdomain sizes; at the smallest subdomain
size considered (4 points per dimension), the efficiencies are similar. Our parallel
implementation of the CRWENO scheme shows excellent weak scaling, compared
with the noncompact WENO scheme. We demonstrate these properties on up to
∼ 500, 000 processors.
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This study used the three- and four-stage explicit Runge-Kutta schemes for time
integration, and the wall times for the CRWENO and WENO schemes are compared
by allowing a larger CFL for the WENO scheme because of its higher linear stabil-
ity limit. This is relevant for simulations where the solution is obtained with the
largest possible stable time-step. Derivation and implementation of an optimal time-
integration scheme for the CRWENO scheme (and other nonlinear compact schemes)
are subjects of future research. Although this paper presents results for the CRWENO
schemes, the implementation can be applied to other nonlinear compact schemes as
well, such as the hybrid compact-WENO, WCS, and FVCW schemes.

The analysis presented in this paper and the conclusions drawn are based on the
performance of our algorithm on the IBM BG/Q architecture, which is characterized
by an excellent communication network. The scalability and parallel efficiency of
our approach on other high-performance computing platforms will be investigated in
the near future. In addition, performance improvements with alternative, platform-
specific compilers will be explored.

Appendix A. Hardware and Software Details.

The computations presented in this study are carried out on the IBM Blue
Gene/Q architecture. Smaller cases are solved on Vesta, a small development rack
[2], while larger cases (including those presented in Section 4) are solved on Mira [1].
The two machines have identical hardware and software environments but differ by
the number of racks—Vesta comprises two racks while Mira comprises 49, 152 racks.
One rack of either system has 1024 compute nodes, each having a 1600 MHz PowerPC
A2 processor with a 16-core chip and 16 GB RAM. Each core supports 4 hardware
threads. A 17th core is available for the communication library. Vesta thus has 32, 768
cores with a peak performance of 419.44 teraflops, while Mira has 805, 306, 368 cores
with a peak performance of 10 petaflops. The nodes are connected by a 5D torus
network with 2 GB/s links.

The algorithm is coded in the C programming language, and the GNU C compiler
suite is used to compile it. The -O3 optimization flag is used. The Message Passing
Interface (MPI) library is used to implement the parallel functions. We do not use any
thread-based parallelism in our algorithm in this study. The performance tests are
carried out by running 32 processes on each node of our platforms, or 2 processes per
core to use the resources efficiently.
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