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Abstract. Farming is using more terrestrial ground, as popu-
lation increases and agriculture is increasingly used for non-
nutritional purposes such as biofuel production. This agricul-
tural expansion exerts an increasing impact on the terrestrial
carbon cycle. In order to understand the impact of such pro-5

cesses, the Community Land Model (CLM) has been aug-
mented with a CLM-Crop extension that simulates the de-
velopment of three crop types: maize, soybean, and spring
wheat. The CLM-Crop model is a complex system that relies
on a suite of parametric inputs that govern plant growth under10

a given atmospheric forcing and available resources. CLM-
Crop development used measurements of gross primary pro-
ductivity and net ecosystem exchange from AmeriFlux sites
to choose parameter values that optimize crop productivity in
the model. In this paper we calibrate these parameters for one15

crop type, soybean, in order to provide a faithful projection
in terms of both plant development and net carbon exchange.
Calibration is performed in a Bayesian framework by devel-
oping a scalable and adaptive scheme based on sequential
Monte Carlo (SMC).20
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1 Introduction

Development of Earth system models (ESMs) is a chal-
lenging process, involving complex models, large input25

datasets, and significant computational requirements. As
models evolve through the introduction of new processes and
through improvement of algorithms, the ability of the mod-
els to accurately simulate feedbacks between coupled sys-
tems improves, although results may not have the desired30

impact on all areas. For example, Lawrence et al. (2012) es-
timate that changes to the hydrology parameterization may
be responsible for the warm bias in high-latitude soils in
the Community Land Model (CLM) version 3.5 to become
cold biased in CLM4.0. Although testing of ESMs is exten-35

sive, ensuring after new developments are merged that the
model can still perform with limited (if any) degradation, on
rare occasions model behavior can be negatively affected.
The strong nonlinearity of such models also makes param-
eter fitting a difficult task; and as global models are devel-40

oped by several different user groups simultaneously, com-
binations of multiple alterations make identifying the spe-
cific cause that leads to a new model output challenging. The
CLM has been augmented with a CLM-Crop extension that
simulates the development of three crop types: maize, soy-45

bean, and spring wheat (Drewniak et al., 2013). The CLM-
Crop model is a complex system that relies on a suite of
parametric inputs that govern plant growth under a given at-
mospheric forcing and available resources. CLM-Crop de-
velopment used measurements of gross primary productivity50

(GPP) and net ecosystem exchange (NEE) from AmeriFlux
sites to choose parameter values that optimize crop produc-
tivity in the model.

Global climate models have historically been tuned or cali-
brated to meet certain requirements, such as balancing the top55

of the atmosphere radiation budget (Bender, 2008; Hourdin
et al., 2012; Mauritsen et al., 2012). Various techniques have
been applied to models to adjust parameters, including using
data assimilation (Pauwels et al., 2007), applying an ensem-
ble Kalman filter (EnKF) (Hargreaves et al., 2004; Annan60

et al., 2005; Evensen, 2009), and using a sampling algorithm
such as multiple very fast simulated annealing (MVFSA)
(Yang et al., 2012), which can be used to calibrate one or
many parameters at a time in coupled or uncoupled modes.
Most calibration strategies can be traced to a Bayesian ap-65

proach that in most cases is simplified (e.g., MVFSA) or
augmented with assumptions that make the problem tractable
(e.g., EnKF). The tuning parameters that are not directly ob-
served may be stated as an inverse problem (Tarantola, 2004).
Inverse problems are, in general, very challenging especially70

when the data are sparse, the models are complex, and the
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state space is large. This is the case for ESMs as well as for
the CLM-Crop model.

Our goal is to calibrate some of the CLM-Crop parameters
in order to improve model projection of plant development75

and carbon fluxes. To this end, we follow a Bayesian ap-
proach (Tarantola, 2004; Kaipio and Somersalo, 2004). We
start by summarizing our initial state of knowledge in a prior
probability distribution over the parameters we wish to cali-
brate. After making some observations, our updated state of80

knowledge is captured by the posterior distribution. Since the
posterior is not analytically available, we attempt to approx-
imate it using an ensemble of particles (samples) from it. To
construct this particle approximation, we employ ideas from
sequential Monte Carlo (SMC) Doucet et al. (2001). Basi-85

cally, we define a one-parameter family of distributions of
increasing complexity that starts at the prior and ends at the
posterior. Starting from a particle approximation of the prior,
we gradually move it toward the posterior by sequentially
applying importance sampling. The scheme is highly par-90

allelizable, since each particle of the approximation can be
computed independently. The way we move the particle ap-
proximation towards the posterior is adjusted on the fly using
the ideas developed by Bilionis and Koutsourelakis (2012)
and Bilionis and Zabaras (2014). Each intermediate step of95

our scheme requires Markov chain Monte Carlo (MCMC)
(Metropolis et al., 1953) sampling of the intermediate dis-
tributions. One of the novelties of this work, is the auto-
matic construction of MCMC proposals for those interme-
diate steps using Gaussian mixtures (Blei and Jordan, 2005).100

The result is an algorithmic framework that can adjust itself
to the intricacies of the posterior. As demonstrated by the nu-
merical examples, our scheme can perform model calibration
using very few evaluations and, by exploiting parallelism, at
a fraction of the time required by plain vanilla MCMC.105

We present the results from a twin experiment (self-
validation) and calibration results and validation using real
observations from an AmeriFlux tower site in the midwest-
ern United States, for the soybean crop type. The improved
model will help researchers understand how climate affects110

crop production and resulting carbon fluxes, and additionally,
how cultivation impacts climate.

2 The CLM-Crop model

CLM-Crop was designed and tested in the CLM3.5 model
version (Drewniak et al., 2013) and in CLM4 (Levis et al.,115

2012). The crop model was created to represent crop veg-
etation similarly to natural vegetation for three crop types:
maize, soybean, and spring wheat. The model simulates GPP
and yield driven by climate, in order to evaluate the impact
of climate on cultivation and the impact of agriculture on cli-120

mate. Crops are modeled within a grid cell sharing natural
vegetation; however, they are independent (i.e., they do not
share the same soil column). This approach allows manage-

ment practices, such as fertilizer, to be administered without
disturbing the life cycle of natural vegetation. For a full de-125

scription of the crop model see the study by Oleson et al.
(2013); the harvest scheme is described by Drewniak et al.
(2013).

Although the design of the crop model fits within the
framework of natural vegetation, crops have a significantly130

different growing scheme, separated into four phases: plant-
ing, emergence, grain fill, and harvest. Each phase of growth
changes how carbon and nitrogen are allocated to the vari-
ous plant parts: leaves, stems, fine roots, and grain. During
planting, carbon and nitrogen are allocated to the leaf, repre-135

sentative of seed. This establishes a leaf area index (LAI) for
photosynthesis, which begins during the emergence phase.
The emergence phase allocates carbon and nitrogen to leaves,
stems, and roots using functions from the Agro-IBIS model
(Kucharik and Brye, 2003). During the grain fill stage, de-140

creased carbon is allocated to leaves, stems, and roots in or-
der to fulfill grain requirements. When maturity is reached,
harvest occurs: all grain is harvested, while leaves, stems, and
roots are turned over into the litter pool. Residue harvest is
not active in the model.145

The allocation of carbon to each plant part is driven largely
by the carbon-nitrogen (CN) ratio parameter assigned to each
plant segment. CLM first calculates the potential photosyn-
thesis for each crop type based on the incoming solar radia-
tion and the LAI. The total nitrogen needed to maintain the150

CN ratio of each plant part is calculated as plant demand.
If soil nitrogen is sufficient to meet plant demand, potential
photosynthesis is met; however, if soil nitrogen is inadequate,
the total amount of carbon that can be assimilated is down-
scaled.155

During the grain fill stage, a nitrogen retranslocation
scheme is used to fulfill nitrogen demands by mobilizing ni-
trogen in the leaves and stems for use in grain development.
This scheme uses alternate CN ratios for the leaf and stem to
determine how much nitrogen is transferred from the leaves160

and stems into a retranslocation storage pool. The total nitro-
gen transferred at the beginning of the grain fill stage from
the leaf and stem is represented by

retransnleaf =
Cleaf

leafcn
− Cleaf

fleafcn
, (1)

retransnstem =
Cstem

stemcn
− Cstem

fstemcn
. (2)165

Cleaf and Cstem are the total carbon in the leaf and stem, re-
spectively; leafcn and stemcn are the pregrain fill CN ratios
for the leaf and stem; and fleafcn and fstemcn are the post-
grain fill CN ratios for the leaf and stem. All of the CN ratios170

are fixed parameters, which vary with crop type; default val-
ues are reported in Table 1.

In addition to the above, CLM-Crop has a fertilizer appli-
cation and soybean nitrogen fixation, described by Drewniak
et al. (2013). Planting date and time to maturity are based on175

temperature threshold requirements (Levis et al., 2012). For
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the calibration procedure, we used the actual planting date
reported for the Bondville site for the year 2004. Crops are
not irrigated in the model, nor do we consider crop rotation.
Although rotation will have an impact on the carbon cycle180

both above and below-ground, CLM does not support crop
rotation at this time.

The version of CLM-Crop detailed by Drewniak et al.
(2013) was calibrated against AmeriFlux data for both the
Mead, NE, and Bondville, IL, sites’ plant carbon measure-185

ments, for both maize and soybean, using optimization tech-
niques to fit parameters. When available, parameter values
were taken from the literature or other models. Remaining
parameters were derived through a series of sensitivity simu-
lations designed to match modeled carbon output with Amer-190

iFlux observations of leaf, stem, and grain carbon at the
Bondville, IL, site and total plant carbon at the Mead, NE,
(rainfed) site.

When CLM-Crop was ported into the CLM4.5 framework,
the parameter values were no longer optimized as a result195

of various changes in model processes that affected how
crops fit into the model framework. In addition, a new below-
ground subroutine of carbon and nitrogen cycling is included
in CLM4.5 (Koven et al., 2013), which has a strong influ-
ence on crop productivity. Therefore, we needed to retune200

the model parameters that represented crops with a more so-
phisticated approach described later in this paper.

2.1 Parameters affecting the crops

Over 100 parameters are defined in CLM4.5 to represent
crops. Many of these parameters are similar to those that gov-205

ern natural vegetation, but some are specific to crops. These
parameters define a variety of processes, including photosyn-
thesis, vegetation structure, respiration, soil structure, car-
bon nitrogen dynamics, litter, mortality, and phenology. To
add further complication, parameters are assigned in various210

parts of the model; some parameters are defined in an exter-
nal physiology file, some are defined in surface datasets, and
others are hardcoded in the various subroutines of CLM4.5.

Performing a full model calibration for all parameters
would be a monumental task, so we began our calibration215

process by narrowing down the parameters that are used only
in crop functions or might have a large influence on crop be-
havior. Of this list, parameter values can be fixed across all
vegetation types (or crop types), vary with crop type, or vary
spatially and by crop type. We chose to limit the parameters220

to those that are either constant or vary with crop type.
Crop parameters are taken from the literature (when avail-

able) and used to determine a range of values appropriate for
each crop type. When parameters are not available, optimiza-
tion techniques are used to estimate parameter values based225

on CLM performance. Determining a full range of accept-
able values was difficult for several parameters, and in some
cases not possible. Of the full list of parameters in need of
calibration, we began our approach with the ten parameters

listed in Table 1 that may have a large influence on crop pro-230

ductivity and have the greatest uncertainty because the val-
ues are based on optimization from a previous model ver-
sion. Six of the parameters are the carbon-nitrogen (CN) ra-
tios for the various plant parts (leaf, stem, root, and grain).
Since the leaf and stem account for nitrogen relocation dur-235

ing grain fill, they are represented by two separate CN ratios,
to separate pre- and postgrain fill stages of plant develop-
ment. They influence how carbon and nitrogen are allocated,
thereby affecting growth, nutrient demand, photosynthesis,
and so on, and are included as part of the physiology data240

file. Four additional parameters are included in the calibra-
tion process. The leaf/stem orientation is used to calculate
the direct and diffuse radiation absorbed by the canopy, the
specific leaf area at the top of the canopy is used with the
leaf CN ratio to calculate the LAI, and the growth respiration245

factors determine the timing and quantity of carbon allocated
toward respiration of new growth.

2.2 Description of the observational dataset

We used observations from the Bondville, IL, AmeriFlux
tower located in the midwestern United States (40.01◦ N,250

88.29◦ W) using an annual no-till corn-soybean rotation;
a full site description is given by Meyers and Hollinger
(2004). The site has been collecting measurements since
1996 of wind, temperature, humidity, pressure, radiation,
heat flux, soil temperature, CO2 flux, and soil moisture. Soy-255

beans were planted in 2002 and 2004, and corn was planted
in 2001, 2003, and 2005. We used daily averaged eddy co-
variance measurements of NEE and derived GPP in our
model calibration procedure, which are categorized as Level
4 data published on the AmeriFlux site, gap filled by using260

the Marginal Distribution Sampling procedure outlined by
Reichstein et al. (2005). GPP is derived as the difference be-
tween ecosystem respiration and NEE, where ecosystem res-
piration is estimated by using the method of Reichstein et al.
(2005). In addition, biomass information (which we convert265

to carbon assuming half of the dry biomass is carbon) and
LAI have been collected for years 2001–2005 for the vari-
ous plant segments, including leaf (LEAFC), stem (STEMC),
and grain (GRAINC), which are reported on the AmeriFlux
website (http://public.ornl.gov/ameriflux).The frequency of270

biomass measurements is generally every seven days, begin-
ning a few weeks after planting and continuing through the
harvest. We chose to calibrate against the Bondville Ameri-
Flux site because of the availability of unique biomass data
collected. By performing the calibration against site data that275

includes crop rotation, we hope to indirectly include the ef-
fects of crop rotation on GPP and NEE in the model.

The time-dependent observations are denoted by z(t) =
{z1(t), . . . ,z6(t)}, where the indices correspond to GPP,
NEE, GRAINC, LEAFC, STEMC, and TLAI. Because of280

uncertainties in fertilization use and measured data, we fo-
cused on the peak observed values, as well as the growth

http://public.ornl.gov/ameriflux
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slope for GPP, NEE, LEAFC, and STEMC. To remove the at-
mospheric induced noise in the NEE and GPP measurements
we filtered the time series by applying a moving average op-285

erator with a width of 30 days. These operations are denoted
by the map

y = [y1, . . . ,y11]T

= [max(z1(t)),slope(z1(t)),
max(abs(z2(t))),slope(z2(t)),
max(z3(t),slope(z3(t)), . . . ,
max(z5(t),slope(z5(t)),max(z6(t)]T ,

(3)

where x represents the filtered x and the slope is calculated290

in the beginning of the plant emergence phase, resulting in
one maximum and one slope per variable per year. The ob-
served GPP and NEE slopes were computed as the slope be-
tween the 208th day and 188th day for 2002 and between the
180th day and 160th day for 2004. The observed LEAFC and295

STEMC slopes were computed based on observed values on
7/16-8/13 and 7/23-9/10 for 2002, and on 6/8-7/27 and 6/8-
8/10 for 2004, respectively.

2.3 Initial conditions and spin-up

CLM requires a spin-up to obtain balanced soil carbon and300

nitrogen pools, which are responsible for driving decomposi-
tion and turnover. A global spin-up of the model is provided
with the model, using the below-ground biogeochemistry and
spin-up method provided by Koven et al. (2013). Crops are
then interpolated to a higher resolution over the Bondville,305

IL, site.
The meteorological forcing data used for the calibration

procedure (post spin-up) is from the Bondville, IL flux tower
site. The atmospheric data covers the years 1996-2007, but
we focus on 2002 and 2004 for this experiment. The model310

is run in point mode, meaning only one grid cell is simulated
at a resolution of roughly 0.1◦× 0.1◦.

3 Calibration strategy

We represent the CLM-Crop model output relevant to Eq. (3)
by f(θ) = (f1(θ), . . . ,fq(θ)), where θ = (θ1, . . . ,θd) are the315

d time-independent parameters that we wish to calibrate and
q = 11 is the number of outputs. The slopes estimated from
numerical simulations were computed as the variable slopes
between the date when the fraction of growing degree days
to maturity reaches 0.3 and 20 days ahead of it, where grow-320

ing degree days are accumulated each day by subtracting the
minimum temperature for growth (10 degrees for soybean)
from the average daily temperature; see (Oleson et al., 2013).

We consider a set of ten calibration parameters that were
indicated by the model as being highly uncertain. This set325

consists of: xl, slatop, leafcn, frootcn, livewdcn, grperc, grp-
now, graincn, fleafcn, and fstemcn. See Table 1 and Sect. 2.1
for details.

The model calibration strategy aims to merge model pre-
dictions that depend on parameters θ with observational330

datasets. We assume that the relationship between observa-
tion data and the true process follows a relationship of type

Y = f(θ∗) + ε, (4)

where θ∗ are the perfectly calibrated parameters and ε rep-335

resents the observational errors. This holds under the as-
sumption that the model is a perfect representation of real-
ity (Kennedy and O’Hagan, 2001). The problem statement
can be extended to account for imperfect models, but then
the statistical description of ε tends to become much more340

complicated. Therefore, for this study we start by consider-
ing a perfect model assumption.

Following a Bayesian approach, we assume a prior distri-
bution on the calibration parameters:

p(θ)∝ C(θ)

d∏
i=1

1[θi,min,θi,max](θi), (5)345

where θi,min and θi,max are the minimum and maximum al-
lowed values for the parameter θi, respectively; 1A(x) is the
indicator function of a set A (i.e., 1A(x) is one if x ∈A and
zero otherwise); and C(θ) models any physical constraints350

that are known a priori. For the parameters we are consider-
ing, the constraints are as follows:

C(θ) = 1[θfleafcn>θleafcn](θ)1[θfstemcn>θlivewdcn](θ). (6)

We define the likelihood as

p(y|θ)∝N (y|f(θ),Σobs) , (7)355

where N (x|µ,Σ) is the Gaussian probability density
with mean µ and covariance matrix Σ. The covariance
matrix Σobs is taken to be diagonal, namely, Σobs =
diag

(
σ2

obs,1, . . . ,σ
2
obs,q

)
, with each diagonal component σ2

obs,i360

being the square of 10% of the corresponding observed
value. This choice of Σobs is equivalent to a priori assuming
10% observational noise.

Our state of knowledge about the parameters θ after ob-
serving y (see Sec. 2.2) is captured by the posterior distribu-365

tion:

p(θ|y)∝ p(y|θ)p(θ) . (8)

4 Approximating the posterior

We are going to construct a particle approximation of Eq. (8){(
w(i),θ(i)

)}N
i=1

, in the sense that370

p(θ|y)≈
N∑
i=1

w(i)δ
(
θ− θ(i)

)
, (9)
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where
∑N
i=1w

(i) = 1, and δ(·) is Dirac’s delta function. This
is achieved by using a combination of MCMC (Metropo-
lis et al., 1953; Hastings, 1970) and SMC methodologies
(Doucet et al., 2001). For more details on the methodological375

aspects, we refer the reader to the work of Del Moral et al.
(2006); Koutsourelakis (2009) and Bilionis and Koutsoure-
lakis (2012). Here we present the material briefly, focusing
only on the novel aspect of our approach that concerns auto-
matically tuning the MCMC proposals.380

Let us define a sequence of bridging distributions:

p(θ|y,γt)∝ p(y|θ)γtp(θ) =: πt(θ), (10)

where 0 = γ0 < γ1 < · · ·< γt < · · · ≤ 1. Notice that for γt =
0 we obtain the prior and for γt = 1 the posterior. The key
idea of SMC is to start from a particle representation of the385

prior (γt = 0), which is easy to obtain, and gradually increase
γt until it reaches 1, adjusting the weights along the way.
We will show later how this sequence can be determined on
the fly by taking into account the degeneracy of the particle
representations.390

4.1 Sequential importance sampling

Let
{(
w

(i)
t ,θ

(i)
t

)}N
i=1

be a particle representation of

p(θt|y,γt),

p(θt|y,γt)≈
N∑
i=1

w
(i)
t δ
(
θ− θ(i)t

)
, (11)

with the weigths being normalized (i.e.,
∑N
i=1w

(i)
t = 1). We395

now examine how this particle representation can be updated
to a particle representation corresponding to γt+1 > γt. To-
ward this goal, we introduce a fictitious probability density
on the joint space of θt and θt+1 by

qt(θt,θt+1) = p(θt+1|y,γt+1)Lt(θt|θt+1)
∝ πt+1(θt+1)Lt(θt|θt+1),

(12)400

where Lt is a backward transition density (i.e., Lt(θt|θt+1)
is the probability of θt given θt+1) properly normalized, that
is,
∫
Lt(θt|θt+1)dθt = 1. In addition, we introduce an impor-

tance sampling density,

ηt(θt,θt+1) = p(θt|y,γt)Kt(θt+1|θt)
∝ πt(θt)Kt(θt+1|θt),

(13)405

where Kt is a forward transition density (i.e., K(θt+1|θt) is
the probability of θt+1 given θt) properly normalized, that is,

∫
K(θt+1|θt)dθt = 1. Notice that

p(θt+1|y,γt) =

∫
p(θt+1|y,γt+1)L(θt|θt+1)dθt

=

∫
qt(θt,θt+1)dθt410

=

∫
qt(θt,θt+1)

ηt(θt,θt+1)
ηt(θt,θt+1)dθt

=

∫
qt(θt,θt+1)

ηt(θt,θt+1)
p(θt|y,γt)Kt(θt+1|θt)dθt

≈
N∑
i=1

w
(i)
t

qt

(
θ
(i)
t ,θt+1

)
ηt

(
θ
(i)
t ,θt+1

)Kt

(
θt+1|θ(i)t

)
.

This observation immediately suggests that to move the γt
particle representation of Eq. (11) to a γt+1 representation415 {(
w

(i)
t+1,θ

(i)
t+1

)}N
i=1

,

p(θt+1|y,γt+1)≈
N∑
i=1

w
(i)
t+1δ

(
θ− θ(i)t+1

)
,

with
∑N
i=1w

(i)
t+1 = 1, we must sample

θ
(i)
t+1 ∼Kt(θt+1|θ(i)t ), (14)

compute the incremental weights,420

ŵ
(i)
t+1 =

πt+1

(
θ
(i)
t+1

)
Lt

(
θ
(i)
t |θ

(i)
t+1

)
πt

(
θ
(i)
t

)
Kt

(
θ
(i)
t+1|θ

(i)
t

)
∝ qt

(
θ
(i)
t ,θ

(i)
t+1

)
ηt

(
θ
(i)
t ,θ

(i)
t+1

)
 ,
(15)

get the unormalized γt+1-weights,

W
(i)
t+1 = w

(i)
t ŵ

(i)
t+1, (16)

and get the normalized γt+1-weights:

w
(i)
t+1 =

W
(i)
t+1∑N

j=1W
(i)
t+1

. (17)425

4.2 Convenient choices for Lt andKt

The preceding remarks hold for any backward and forward
transition densities Lt and Kt, respectively. We now seek a
convenient choice that will simplify the form of the incre-
mental weights given in Eq. (15). Suppose for the momment430

that Kt is given and let us look for the optimal choice of
Lt. Since qt is the target distribution and ηt is the impor-
tance sampling density, the best choice of Lt is the one that
attempts to bring the two densities as close together as pos-
sible. This is easily seen to be the conditional of ηt on θt, in435

other words, the optimal choice is

L∗t (θt|θt+1) = η(θt,θt+1)∫
η(θ′t,θt+1))dθ′t

= πt(θt)Kt(θt+1|θt)∫
πt(θ′t)Kt(θt+1|θ′t)dθ′t

.
(18)
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From a computational point of view, however, it is more con-
venient to work with the suboptimal choice,

L∗,st (θt|θt+1) =
πt+1(θt)Kt(θt+1|θt)∫
πt+1(θ′t)Kt(θt+1|θ′t)dθ′t

, (19)440

which is motivated by the expectation that consecutive den-
sities are similar (i.e. πt ≈ πt+1). For this choice the incre-
mental weights of Eq. (15) become

ŵ
(i)
t+1 =

πt+1

(
θ
(i)
t+1

)
πt+1

(
θ
(i)
t

)
πt

(
θ
(i)
t

)∫
πt+1 (θ′t)Kt

(
θ
(i)
t+1|θ′t

)
dθ′t

. (20)

To get rid of the integral in the denominator, we pick Kt to445

be invariant with respect to πt+1:∫
πt+1(θ′t)Kt(θt+1|θ′t)dθ′t = πt+1(θt+1). (21)

This can always be achieved with a suitable choice of a
Metropolis-Hastings transition kernel (see below). For this
case, the incremental weights simplify to450

ŵ
(i)
t+1 =

πt+1

(
θ
(i)
t

)
πt

(
θ
(i)
t

) = p
(
y|θ(i)t

)γt+1−γt
. (22)

4.3 Metropolis-Hastings-basedKt.

As shown in the previous paragraph, it is convenient to select
Kt to be invariant with respect to πt+1. The easiest way to
achieve this is to associate Kt with one or more steps of the455

Metropolis-Hastings algorithm. Let ht(θ′|θ) be any proposal
density (e.g., a simple random walk proposal). The single-
step Metropolis-Hastings forward transition density is

K1
t (θt+1|θt) = ht(θt+1|θt)a(θt+1,θt), (23)

where460

a(θt+1,θt) := min

{
1,
πt+1(θt+1)ht(θt|θt+1)

πt+1(θt+1)ht(θt+1|θt)

}
. (24)

Samples from Eq. (14) may be obtained by performing one
step of the well-known Metropolis-Hastings algorithm. The
forward kernel corresponding toM > 1 Metropolis-Hastings
steps is given recursively by465

KM
t (θt+1|θt) =

∫
KM−1
t (θt+1|θ′)K1

t (θ′|θt)dθ′. (25)

The number of Metropolis-Hastings steps, M , at each γt is a
parameter of SMC. This is the forward kernel we use in all
numerical examples. Theoretically, M = 1 is enough, since
the number of particlesN →∞. Therefore, we will useM =470

1 in our numerical examples.

4.4 Resampling

As SMC moves to higher values of γt, some of the parti-
cles might find themselves in low probability regions. Con-
sequently, their corresponing weights will be small. This de-475

generacy of the weights can be characterized by the effectice
sample size (ESS) metric, defined by

ESS(γt) =
1∑N

i=1

(
w

(i)
t

)2 . (26)

Nottice that ESS is equal to N when the particles are equally
important (i.e., w(i)

t = 1/N ) and equal to 1 when only one480

particle is important (e.g., w(1)
t = 1 and w(i)

t = 0 for i 6= 1)
and in general takes values between 1 and N for arbitrary
weights. Resampling is triggered when the ESS falls below
a prespecified threshold ( 12N in our numerical examples).
The idea is to kill particles that have very small weights485

and let the particles with big weights replicate. This process
must happen in a way that the resulting particle ensemble
remains a valid representation of the current target proba-
bility density. This can be achieved in various ways. Perhaps
the most straightforward way is to use multinomial sampling.490

Let the resulting particles be denoted by
{(
w̃

(i)
t , θ̃

(i)
t

)}N
i=1

.
In multinomial resampling the final weights are all equal:

w̃
(i)
t = 1/N. (27)

The sequence
{
θ̃
(i)
t

}N
i=1

is found by sampling a sequence of

integers ji ⊂ {1, . . . ,N} with probabilities {w(1)
t , . . . ,w

(N)
t }495

and by setting

θ̃
(i)
t = θ

(ji)
t , (28)

for i= 1, . . . ,N .

4.5 Choosing γt+1 on the fly

We note that the incremental weights of Eq. (22) do not de-500

pend on the γt+1-samples obtained in Eq. (14). They depend
only on the likelihood of the γt-samples. In this part, we ex-
ploit this observation in order to devise an effective way of
selecting γt+1 based on the ESS. The idea is to pick the new
γt+1 so that the resulting particles do not become too degen-505

erate. Their degeneracy is characterized by ESS(γt+1) given
in Eq. (26). From Eqs. (22), (16), and (17), evaluation of
ESS(γt+1) does not require any new likelihood evaluations.
We select the new γt+1 by requiring that

ESS(γt+1) = ζESS(γt), (29)510

where ζ is the percentage of the degenaracy we are willing
to accept (ζ = 0.99 in our numerical examples). It is fairly
easy to show that ESS(γt+1) is a strictly decreasing function
for γt+1 ∈ (γt,1]). Therefore, Eq. (29) has a unique solution
that can be easily found by using a bisection algorithm.515
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4.6 Adapting theKM
t on the fly

Based on the discussion above, we expect that p(θt|y,γt)
should be similar to p(θt+1|y,γt+1). To exploit this fact,
we pick the proposal ht(θ′|θ) required by the Metropolis-
Hastings kernel KM

t given in Eq. (25) to be a mixture of520

Gaussians that approximates p(θt|y,γt). In particular, we
pick

ht(θ
′|θ) =

L∑
i=1

ciN (θ′|µt,i,Σt,i) , (30)

where the non-negative coefficients ci sum to one, µi,i ∈ Rd,
and Σt,i ∈ Rd×d are covariance matrices. The number of525

components L as well as all the parameters of the mixture
fitted to a resampled version of the particle approximation
of p(θt|y,γt) (see Eq. (28)) using the procedure of Blei and
Jordan (2005) as implemented by Pedregosa et al. (2011).

4.7 Parallelization530

SMC is embarrassingly parallelizable. Basically, each CPU
can store and work with a single particle. Communication
is required only for normalizing the weights (see Eq. (17)),
finding γt+1 (see Eq. (29)), and resampling. The first two
have a negligible communication overhead and can be imple-535

mented easily. Implementation of the resampling step is more
involved and requires more resources. However, the cost of
resampling is negligible compared with the evaluation of the
forward model.

4.8 The final algorithm540

We now collect all the details of SMC discussed above in
a single algorithm for convenience; Algorithm 1. Our imple-
mentation is in Python and is provided at: https://github.com/
ebilionis/pysmc.

5 Results545

In this section we present our calibration results for the pa-
rameters described in Sect. 2.1 by using the observations de-
tailed in Sect. 2.2. In this study we focus only on the pa-
rameters affecting the soy crop and restrict our calibration
to year 2004. With these calibrated parameters we perform a550

validation experiment by using the data from year 2002. In
addition, we forecast 2004 through a 2002-2003-2004 simu-
lation. We recognize that the Bondville observations include
crop rotation during 2003 that will influence the sequence of
output; but since the model does not support crop rotation,555

we plant soybean during 2003. The role of the latter exper-
iment is to demonstrate the robustness of the proposed cal-
ibration scheme. Moreover, we perform a twin experiment
that consists of generating artificial data by using some con-
trol parameter values, then applying the calibration strategy560

to recover the control parameters.

In all our numerical examples we fix the planting and har-
vest days. This approach is essential in order to avoid overfit-
ting the physiological parameters due to offsets in the grow-
ing seasons. The planting dates for 2002 and 2004 are 06/02565

and 05/07, respectively. The harvest day is controlled via the
input variable “hybgdd” (growing degree days for maturity),
where growing degree days are defined in Sec. 3. The val-
ues of “hybgdd” that give the right harvest days for 2002 and
2004 are 1474.3772 and 1293.7799, respectively.570

The number of particles we use is N = 1280. Each par-
ticle is assigned to a different computational core. A simu-
lated year takes about 2 min to complete if data localization
is used. Calibration requires approximately 100,000 simula-
tions and completes in about 6 hours.575

5.1 Validation of the method

We begin the twin experiment with the aim of validating the
proposed calibration strategy. We generate artificial observa-
tions by randomly sampling θ from its prior Eq. (5). We apply
the calibration strategy on the artificial observations to see580

whether the method can recover the ground truth. The adap-
tively selected γt sequence is shown in Fig. 1(a). In Fig. 2 we
compare the posterior of each parameter with the prior. The
true parameters are indicated by red dots. The fit to the arti-
ficial outputs is shown in Fig. 3. The parameters that are not585

specified precisely are parameters that have a small (if any)
effect on the observed outputs.

5.2 Calibration using real data

In our next experiment we calibrate the parameters listed in
Table 1. The observational operator (Eq. 3) is defined by tak-590

ing the annual maximum of the absolute value of LEAFC,
LAI, GRAINC, STEMC, GPP, and NEE; and the slope of
LEAFC, STEMC, GPP, and NEE as described in Sec. 2.2. In
Fig. 4, we compare the posterior we obtain with the prior. The
default parameters are indicated by red dots. The fit to the ar-595

tificial outputs is shown in Figures 5. The adaptively selected
γt sequence is shown in Fig. 1(b). In Table 2 we summarize
our findings, by showing the median and the p= 0.05 and
p= 0.95 quantiles of each calibrated parameter.

5.3 Validation of real data results600

To validate the generalization potential of our calibration we
perform a one-way validation We use the calibrated param-
eters to predict the observables in 2002. In Fig. 6 we plot
the median and 95% error bars of the calibrated time series
and we compare the results with observations and the default605

parameter output of 2002. We observe a notable improve-
ment in the ability of the model to explain the observations.
One of the most important improvements is related to LAI
calculations, which comes from improvements to the leaf
CN ratio and the specific leaf area. The timing of maximum610

LAI is important for the carbon allocation; when the crops

https://github.com/ebilionis/pysmc
https://github.com/ebilionis/pysmc
https://github.com/ebilionis/pysmc


8 I. Bilionis et al.: Crop Physiology Calibration in CLM

in CLM4.5 reach peak LAI, carbon allocation shifts from
above and below-ground to strictly below-ground (roots).
With the default parameter values, peak LAI occurred early
in the growing season, resulting in large and unrealistic al-615

location of carbon to roots and insufficient carbon to leaf,
stem, and ultimatly grain. The large increase in stem carbon
and the slower rate of growth and peak of GPP are clear in-
dications that the shift in allocation to roots no longer occurs
with the new calibrated parameter values. The grain carbon620

is still low, however, a result of the low leaf carbon and the
overestimation of stem carbon, which increases the amount
of carbon allocated to maintenance respiration at the expense
of new growth for this year. The increase in uncertainty is
likely a result of a limitation in nitrogen availability in some625

scenarios. When CN ratios are low, a higher demand of ni-
trogen from plants contributes to an increase in competition
for resources with below-ground decomposition processes.
When the nitrogen demand from the two sources exceeds
availability, the amount of carbon that can be assimilated is630

downscaled, resulting in a lower GPP, increase in NEE, and
so on. We continue the simulation through 2003 to 2004 and
compare the calibrated time series with the observations and
the default parameter output in Fig. 7. The differences be-
tween this plot and Fig. 5 are due to differences in the below635

ground conditions of carbon and nitrogen that drive the dy-
namics for plant competition with below-ground decomposi-
tion processes. Crops in CLM4.5 tend to be sensitive to vari-
ation in carbon and nitrogen pools; and since we ran the cal-
ibration over one year and didn’t consider variability in pre-640

vious years’ carbon and nitrogen pools, demand for nitrogen
is likely different when the model is run for multiple years.
Since the change in pools is minor, the resulting change in
output by the model is also small. This is also likely respon-
sible for the increased uncertainty in GPP and NEE, which645

occurs from competition for resources as discussed above.

6 Discussion

In this paper, we sought to improve CLM-Crop model perfor-
mance by parameter calibration of a subset of model param-
eters governing, mostly, the carbon and nitrogen allocation650

to the plant components. By using a Bayesian approach, we
were able to improve the model-simulated GPP, NEE, and
carbon biomass to leaf, stem, and grain with the new pa-
rameter values. In addition, we demonstrated that the cali-
brated parameters are applicable across alternative years and655

not solely representative of one year.
This study does have a few limitations stemming from

a lack of observation data. Currently our results are suit-
able at one site across multiple years; testing at multiple sites
would give a better indication of how well the model can per-660

form globally or even across a region. However, the limited
data over agricultural sites constrains our ability to determine
parameter values that are relevant at a global scale. In addi-

tion, our use of actual planting dates is not a typical approach
with CLM4.5, which generally uses temperature thresholds665

to trigger planting. Thus, the model may plant earlier or later
compared with observations, which, if significant, could in-
fluence the growth cycle and resulting carbon fluxes. In addi-
tion, CLM-Crop does not have crop rotation, which is com-
mon across agricultural landscapes, including in the obser-670

vation dataset. Crop rotation can modify below-ground car-
bon and nitrogen cycling that would have an impact on crop
productivity through nutrient availability as well as NEE.
While we would like to include crop rotation, CLM does
not currently have the capability to support this function.675

Therefore, we tried to include the effects indirectly by cal-
ibrating against data that includes crop rotation. As more so-
phisticated crop representation is introduced into the model,
we will revisit the calibration to improve model parameters.
Moreover, we considered the initial litter, carbon, and nitro-680

gen pools fixed by the values of the prior parameters because
a direct spin-up calculation would have made sampling pro-
hibitively expensive. We will address this issue in a future
study by including these pools in the calibration procedure.

Our approach has focused on one crop type, soybean, with685

the intent of determining the effectiveness of the proposed
calibration method. We consider the results promising and,
as part of future work, hope to expand this research to ad-
ditional years, crop types, and other parameters. Many other
variables are of interest, including fertilization rate, timing690

of the growth stages, and a few other parameters related to
photosynthesis. As the model continues to evolve with the
addition of new or improved processes, we also may need
to revisit the parameter choices and evaluate their appropri-
ateness. Moreover, a calibration procedure carried for such695

complex models with relatively little data and a few calibra-
tion parameters has the potential to lead to overfitting. To as-
sess this effect, we performed a validation experiment, which
provides good confidence, albeit not proof, of a robust cali-
bration of the parameters. Richer datasets will likely sharpen700

the results and enhance the confidence intervals.
The introduction of new datasets documenting agriculture

productivity or carbon mass will also allow us to determine
the applicability of our new parameter values across regions.
In general, the calibration results depend on an accurate spec-705

ification of the observational errors. In this study we did
not have access to any information regarding the measure-
ment process and, therefore, assumed a certain observational
noise. These calibration results can be sharpened by anno-
tating the observational data with levels of confidence. The710

calibration strategy presented in this study has the potential
to improve model performance by helping modelers define
parameters that are not often measured or documented.
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Data: N the desired number of particles, M the desired number of Metropolis-Hastings steps per SMC step, ζ ∈ (0,1) the desired
effective sample size (ESS) reduction and ε ∈ (0,1) the resampling threshold.

Result: A particle approximation
{(
w(i) = w

(i)
1 ,θ(i) = θ

(i)
1

)}N
i=1

of Eq.(8).

t← 0;
γt← 0;
w

(i)
0 ← 1/N, i= 1, . . . ,N ;

Sample θ(i)0 ∼ p(θ|y,γ0 = 0) = p(θ), i= 1, . . . ,N ;
while γt < 1 do

Find γ′ ∈ (γt,1] s.t.:

ESS(γ′) =
1∑N

i=1

(
w

(i)

γ′

)2 = ζESS(γt), (31)

where w(i)

γ′ is the normalized version of W (i)

γ′ = w
(i)
γt ŵ

(i)

γ′ with ŵ(i)

γ′ =
p(θ

(i)
γt

|y,γ′)

p(θ
(i)
γt

|y,γt)
.

if ESS(γ′)< εN then
Resample according to Sec. 4.4;

end
Adjust the MCMC proposal ht(θ′|θ) according to Sec. 4.6;
Perform M MCMC steps (see Sec. 4.3);
Adjust the next proposal ht(θ′|θ);
γt+1← γ′;
t← t+1;

end
Algorithm 1: Sampling from the posterior using sequential Monte Carlo.

(a) Twin experiment (b) Calibration

Fig. 1: Adaptation of γt for the twin experiment (a) and the calibration (b). The small jumps indicate the locations where
resampling occurs.
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Fig. 2: Twin experiment: Comparison of the posterior with the prior. The red dot indicates the true parameter value. The figure
continues on the next page.
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Fig. 2 continued.

Table 1: Prior information on the parameters.

Name Description Constraints Min Max Default

xl leaf/stem orientation index none -0.40 0.60 -0.50
slatop specific leaf area at top of canopy none 0.00 0.15 0.07
leafcn leaf C none 5.00 80.00 25.00
frootcn fine root C none 40.00 100.00 42.00
livewdcn live wood (phloem and ray parenchyma C) none 10.00 100.00 50.00
grperc growth respiration factor 1 none 0.10 0.50 0.25
grpnow growth respiration factor 2 none 0.00 1.00 1.00
graincn organ carbon nitrogen ratio none 20.00 100.00 50.00
fleafcn final leaf carbon nitrogen ratio > leafcn 10.00 100.00 65.00
fstemcn final stem carbon nitrogen ratio > livewdcn 40.00 200.00 130.00
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Fig. 3: Twin experiment: Comparison of the true model output with samples from the posterior of the calibration.
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Fig. 4: Calibration experiment: Comparison of the posterior with the prior. The red dot indicates the default parameter value.
The figure continues on the next page.
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Fig. 4 continued.

Table 2: Posterior information on the parameters.

Name Median p= 0.05 p= 0.95

xl 0.09 -0.32 0.51
slatop 0.06 0.05 0.07
leafcn 29.51 25.26 35.79
frootcn 66.90 46.02 95.66
livewdcn 48.17 10.56 85.89
grperc 0.40 0.18 0.50
grpnow 0.54 0.05 0.91
graincn 55.69 27.18 89.14
fleafcn 64.30 33.68 89.43
fstemcn 118.02 59.47 180.88
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Fig. 5: Calibration experiment: Comparison of the observed data for 2004 with calibrated outputs. The grey areas correspond
to 95% confidence error bars.



18 I. Bilionis et al.: Crop Physiology Calibration in CLM

Fig. 6: Validation experiment: Comparison of the observed data for 2002 with the model. The grey areas correspond to 95%
confidence error bars.
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Fig. 7: Validation experiment: Comparison of the observed data for 2004 with the model started on 2002. The grey areas
correspond to 95% confidence error bars.
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